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and executes iterations until the maximal implication chain length
has been spanned. It prints out all initial and final fuzzy truth
values.
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On Ordered Weighted Averaging Aggregation
Operators in Multicriteria Decisionmaking

RONALD R. YAGER

Abstract —We are primarily concerned with the problem of aggregating
multicriteria to form an overall decision function. We introduce a new type
of operator for aggregation called an ordered weighted aggregation (OWA)
operator. We investigate the properties of this operator. We particularly
see that it has the property of lying between the “and,” requiring all the
criteria to be satisfied, and the “or,” requiring at least one of the criteria to
be satisfied. We see these new OWA operators as some new family of
mean operators.

INTRODUCTION

The problem of aggregaung criteria functions to form overall
decision functions is of considerable importance in many disci-
plines. A primary factor in the determination of the structure of
such aggregation functions is the relationship between the criteria
involved. At one extreme is the situation in which we desire that
all the criteria be satisfied. At the other extreme is the case in
which the satisfaction of any of the criteria is all we desire. These
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two extreme cases lead to the use of “and” and “or” operators to
combine the criteria functions.

Our purpose in this paper is to introduce a new family of
operators called ordered weighted averaging (OWA) operators
that provide an aggregation which lies in between these two
extremes. The name “orand” operator may be more appropriate.
We shall see the simple mean is a special case of this new
operator. We should carefully point out this operator is different
than the classical weighted average in that coefficients are not
associated directly with a particular attribute but rather to an
ordered position. We shall further see that the structure of these
operators are very much in the spirit of combining the criteria
under the guidance of a quantifier. That is, the requirement that
“most” of the criteria be satisfied corresponds to one of these
OWA operators. We can see this work very much in the spirit of
[1], [2] where Yager discusses an alternative approach to these
aggregation processes.

FORMULATING OF THE AGGREGATION PROBLEM

Assume A,,A,,--,A, are n criteria of concern in a multi-
criteria problem. Let X be some proposed alternative. For each
criteria, 4;, 4,(x) € [0,1] indicates the degree to which x satis-
fies that criteria. We shall use / to indicate the unit interval, thus
A,;(x) € I Our central interest is the problem of formulating an
overall decision function D such that for any alternative x,
D(x) €I indicates the degree to which x meets our desired
requirements with respect to the criteria.

The problem becomes that of formulating a function D from
the constituent individual criteria functions

D(x) = F(4,(x), 45(x),- -+, 4,(x)).

The structure of F should be such that the following conditions
are met.

1) As our satisfaction in the individual alternative increases the
overall satisfaction should increase; if A;(x)>4,(y) for all j
then D(x)> D(y). We call this a monotomcnty property or
positive association of individual criteria with aggregate prefer-
ences.

2) The equality of importance of the different criteria means
that F should be symmetric with respect to the criteria. More
specifically, if ay,---,a, is a collection of numbers in the unit
interval than any one to one association of these numbers with
the A, (x)’s will result in the same value for D(x), thatisif n=3

F(“u“b%) =F(327017”3)-

More formally recalling that a bag [3] is a set like object which
allows duplication but pays no attention to ordering then

D(x) = F({A\(x), 4,(x), -, A4,(x)))

where we use ( and ) to denote a bag. We shall call this property
symmetry or generalized commutativity.

Another consideration that we must be concerned with in
formulating is the interrelationship between the criteria which we
desire to model.

At one extreme is the situation in which we desire that an
alternative satisfy “all” the criteria. In this case we see that x
must satisfy 4, and A4, and A4;,---, and 4,. Thus the require-
ment that all the conditions be satisfied is manifested by an
“anding” of the criteria values.

At the other extreme is the situation in which we desire that an
alternative satisfy “at least one of the criteria.” In this case we
desired that x satisfy A4; or A, or A;,---, or A,. Thus the
requirement that at least one of the criteria be satisfied is
manifested by an “oring” of the criteria values in the formulation
of the decision function.

0018-9472 /88 /0100-0183$01.00 ©1988 IEEE
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In many cases the interrelationship between the criteria lies
somewhere between these two extreme cases of wanting “all” or
“at least one.” That is, we desire that “most” or “many” or “at
least half” or “more than four” of the criteria are satisfied. It is
our purpose here to obtain a general functional form of this type
of situation.

GENERAL “ANDING” AND “ORING” OPERATORS

There exists a class of operators called t-norms [4]-[6] that
provide way of quantitatively implementing the type of “anding”
aggregation implied by the “all” requirement. A closely related
class of operators, called co-+-norms, provide a way of imple-
menting the type “oring” operating previously discussed. In this
section we briefly discuss these operators and point out some
properties relevarit to our discussion.

A t-norm T is a mapping

T:[0,1]x[0,1} - [0,1]
such that

1) T(a, b) =T(b, a) “commutative”,

2) T(a,b)>T(c,d)if a> c and b> d monotonic,
3) T(a,T(b,c)) =T(T(a,b), c) “associative”,

4 T(,a)=a.

Among these operators that satisfy the property of being a
#-norm are

1) T(a, b) =Min(a, b),
2)T(a,b)=a-b,
3) T(a,b) =1-Min(1,((1 - a)* +(1— b)")/?) for P>1 [7).

Bonnisone [8}] among others has looked with considerable detail
into the empirical properties of -norm operators.

We should note that while the f-norms were defined in terms
of binary operators they were extendible, via their associative
property, to combining any number of values in the unit interval.
Thus if the relationship between the criteria is an “anding” then

D(x) =T(A4(x), 4;(x), -+, 4,(x,))

where T is some r-norm operator. The issue of selection of the
appropriate f-norm in a given situation is one discussed by
Bonnisone [8] and Yager [9].

An important property of the -norm operator is stated in the
following theorem.

Theorem: Assume T is any t-norm operator; then for any a
and b

T(a,b) <Min(a,b).
Proof: Without loss of generality assume Min(a, b) = b.
Since
T(1,b) =b
and for any a, a <1; then
T(a,b) <T(1,b) < b<Min(a,b).
An implication of this theorem is that the ~norm Min provides

the largest of these class of operators. We note that it is easy to
show that for any collection a,, a5, - -, a,

T(al,...’a") <Mjn(a1’. ..’an).

This result implies that in multicriteria decisionmaking the use of
an “anding” allows for no compensation for one bad satisfaction.
Another interesting and unique property of the Min operator is
that it is the only 7 norm-operator such that for all a € 1

T(a,a) =a.
We say it has the idempotency property. We should point out

that the conditions one, two, and three of the defining definition
of r-norms essentially provide the satisfaction to requirements I

& II, symmetry (generalized commutativity) and monotonicity
required of aggregation operators. We note that it is condition 4,
T(1,a) = a, that essentially stipulates this as an “anding” oper-
ator by requiring a form of “allness” satisfied by a t-norm.

A co-t-norm § is a mapping

S:[0,1} x[0,1] - [0,1]
such that

1) S(a, b) = S(b, a) “commutative”

2) S(a,b) > S(c,d) if a> ¢ and b> d monotonic,
3) T(a,T(b,c)) =T(T(a,b), c) “associative”,

4) T(0,a) = a,“at least oneness.”

Among those operators that satisfy the property of being a
co-z-norm are

1) S(a,b) =Max(a,b),
2) S(a,b)=a+b—a-b,
3) S(a,b) =Min[l, a”+ b7/ P for p>1[7].

Thus if the relationship between the criteria is a pure “oring,”
then

D(x) =8(A(x),4,(x), -, 4,(x))
where S is some co--norm. An important property for these
co-7-norms is

Theorem: Assume S is any co-t-norm operator; then for any a
and b,

S(a,b) >Max(a,b).

An implication of this theorem is that the Max provides the
smallest of these class of operators. It can be shown that for any
collection a,,---,a

’ n
S(a;,--+,a,) >Max(a,, -+, a,).

This implies that in multicriteria decisionmaking the use of a
pure “oring” allows for no distraction from one good satisfac-
tion. We should also point out that Max is the only co-f-norm
having the idempotency property, for all a € ],

S(a,a)=a.

Again it should be noted that it is condition 4 that makes this an
“or” operation by implementing an “at least one” type of condi-
tion. Conditions 1, 2, and 3 again just enforce the symmetry and
monotonicity conditions.

OWA OPERATORS

In many cases of formulation of multiple criteria decision
functions the type of aggregation implicitly desired by a decision
maker is neither the pure “anding” of the f-norm with its
complete lack of compensation nor the pure “oring” of the S
operator with its complete submission to any good satisfaction as
well as its indifference to the individual criteria. In many cases
the type of aggregation operator desired lies somewhere between
these two extremes. In this section, we shall introduce a new type
of operator that we shall call an ordered weight averaging (OWA)
operator. We shall see that this new aggregation operator allows
us to easily adjust the degree of “anding” and “oring” implicit in
the aggregation. As we shall see, a more descriptive name for this
operator may be an “orand” operator because of its acting like a
combination of the two.

Definition: A mapping F from

I" - I (where 7=[0,1])

is called an OWA operator of dimension 7 if associated with F,
is a weighting vector W,

Wi
w=| W
w,
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such that
1) W, €(0,1)
2) LW, =1
and where
F(a,,as, -+, a,) =Wib+ Wby + - W,b,,
where b, is the ith largest element in the collection a,, @,, ", 4,

We shall call an n vector B an ordered argument vector if each
clement b, €[0,1] and b, > b, if j>i. Given an OWA operator F
with weight vector W and an argument tuple (ay,a,," ", a,) We
can associate with this tuple an ordered input vector B such that
B is the vector consisting of the arguments of F put in descend-
ing order. Using this notation then

F(al,”',a,,) =W'B,

the inner product of W’ and B. We shall sometimes find it
convenient to denote F(a;, -, a,) as F(B) where B is the
associate ordered argument vector.

It is important to emphasize the fact that the weights, the W,’s,
are associated with a particular ordered position rather than a
particular element. That is W, is the weight associated with the
ith largest element whichever component it is.

We note that it can easily be shown that for any ordered
argument vector B and any OWA operator F with weighting
vector W that

0< F(B) <l
The following simple example illustrates the use of these OWA

operators.
Example: Assume F is an ordered weighting averaging oper-
ator of size n = 4 with weighting vector,
02
_103
=101
0.4

a) Calculate F(0.6,1,0.3,0.5).
In this case the ordered argument vector B is

hence
F(O.6,0.1,0.3,0.5)

1.0
0.6
0.5
0.3

= (0.2)(1) +(0.3)(0.6) + (0.1)(5) +(0.3)(04) = 0.55

= F(B) =W'B=[02,03,0.1,04]

b) Calculate F(0,0.7,0.1,0.2).

Here
1.0
107
B=102
0.0
and therefore
1.0
_ 0.7 _
F(B)4[0.2,0‘3,0.1,0.4] 02 =0.43
0.0
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PrOPERTIES OF OWA OPERATORS

In this section we shall investigate some of the properties of
these new operators. We first recall that in our discussion of
aggregation operators we required two fundamental properties
that any aggregation operator must satisfy.

Our first theorem shows that these OWA operators are mono-
tonic with respect to argument values.

Theorem: Assume F is an OWA operator. Let A= lay, - -,a,l]
be an ordered argument vector. Let B={b," "~ ,b,] be a second
ordered argument vector such that for each j

a;>b
then F(A) > F(B).
Proof: Since
F(A)=W'A
and
F(B)=W'B

the result follows directly from the property a; > b;.

Corollary: F(ersyy-- 560 > Fdyyda, o o5dy) i > )

Proof: Let A4 and B be the ordered argument vectors in each
of these cases. Then it can easily be shown that a; > b;.
We also note that every operator of this type exhibits the kind
of symmetry implied by equal importance of criteria.

Theorem: Assume F is an OWA operator. Then
F(ay,ay, " 8,) = F(aj,ay,-+,ay)
where
(af,a5,--.ay)
is any permutation of the elements in (@, " a,)-

Proof: If B and B’ are the ordered argument vectors of
(a, - -,a,) and (ai,a},a;) respectively then B = B’. Hence
F(B)=F(B’).

Thus we see that these operators exhibit the kind of gener-
alized commutativity we desire.

We note one further and perhaps defining property of these
OWA operators.

Theorem: All OWA operators are idempotent in the sense that
ifa;=a, for all j=1,---,n, then

F(anazs"'an)=a-

1t should be noted that the desire to satisfy the condition of
symmetry (generalized commutativity) is what forced us to use an
“ordered” weighted average rather than simply taking a weighted
average. For example, if we defined

n
G(ay, +a,) = L %4
j=1

we would not in general get the symmetry condition satisfied.
Example: Assume
G(a,,a,) =0.7a; +0.3a,.

If g, =1and a,=0 then

G(1,0)=0.7.
However, if a, =0 and a, =1 then
G(0,1)=03

thus G(1,0) # G(0,1).
One special OWA operator worth noting is the pure “averag-
ing” or “mean” operator. In this case W, =1/n and thus

n

F(B)=1/nY b,

Jj=1
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We shall denote this as F,,. It should be noted that this is the
only case of a “fixed” weighting operator that is also an OWA
operator.

We shall now introduce two special weighting vectors associ-
ated with OWA operators.

Definition: W, is defined as the weighting vector that has
W, =1 and W, =0 for all j+ n. W* is defined as the weighting
vector which has W, =1 and W, =0 for all j#1.

Theorem. Assume B is an arbitrary ordered input vector. Then
for any weighting vector W

(W)’ B<W'B < (W*)B.
Proof: a) (W,YB<W'B
( W*) 'B= bn

n—1
WB=Y Wb =bW,+ L Wb
n s Jj=1

Since B is an ordered input vector then b;>b, for k> j. In

particular 5, <b, for j=1,---,n—1, hence
WB>bW,+b,+ ¥ W,
Jj=2
however
n—1
Y W=1-w,
j=1
thus

B> anVn +(1* I/V;t)bn > bn > (W*)/B
b) (W*YB>W'B
(W*YB=b,

WB=Y,Wh=Y Wh+bW.
j=2
Since b, > b; then

WB<bWi+b ), W<b,.
j=2

We shall use F* and F, to denote the OWA operator with
respectively W* and W, as their weighting vectors. If 4=
(aj,ay,"+,a,) is a bag of criteria values, then for any operator

Fy(4) < F(A) < F*(4).

Thus F, and F* provide a lower and upper bound on the
aggregation using an ordered weighted average operator.

Theorem.: Assume a,,---,a, is a collection of numbers each
lying in the unit interval then

Fay, - ,a,) = Minj(aj)
F*(ay,--- ’an) =Maxj(aj')

Proof: a) Fy(ay,- - ,a,) = (W,)B =0,
but b, = Min, (a)).
b) Follows in a similar manner.

Thus the two extreme cases of OWA operators are the “and”
and “or” operators. In particular, the largest F operator is the
smallest “or” operator, Max, while the smallest F operator is the
largest “and” operator, Min.

Assume 4=[a,,---,a,] is a collection of attribute satisfac-
tions. Let T and S be any ¢ and co-#-norms. Let F be any OWA
operator, then

T(A) < F(A) <S(A).

Thus F provides an aggregation type operator that always lies
between the “and” and the “or” aggregation. This property leads
us to think of these OWA operators as a kind of “orand”
operator.

A natural question that arises in the formulation of an aggrega-
tion function F of the type we have just proposed concerns itself
with the issue of obtaining the weights associated with the
weighting vector, the W,’s. For our purposes we shall consider
that F is a function used to aggregate n criteria.

There exists at least two ways that can be used to obtain the
value of the W,’s. The first approach is to use some kind of
learning mechanism. In this approach we use some sample data,
arguments and associated aggregated values and try to fit the
weights to this collection of sample data. The process involves the
use of some kind of regression model.

A second approach is to try to give some semantics or meaning
to the #,’s. Then based upon these semantics we can have the
decisionmaker directly provide the values for the W,'s. This
approach also will provide some further insight into the meaning
of the OWA operators we have just introduced. In the following
we shall provide some semantics for the weights.

We shall let

Sg =
J

w.
0

Nk

We note that S, =1 and S, = 0. Assume we have an input vector
of criteria satisfaction B such that b, =1 for J<Kand b =0 for
J > K. This indicates that K of the criteria are completely satis-
fied and the rest are completely unsatisfied. In this situation

K
F(B)y=W'B= )}, W,=5.
j=1

Thus Sy is the degree of satisfaction the decisionmaker has if he
satisfies K /N portion of the criteria. Furthermore since Sy =
Sk—1+ Wy we can interpret Wy as the degree of additional (or
marginal) satisfaction he gets when we go from satisfaction of
K ~1 of the criteria to the satisfaction of X. We note that in this
interpretation then the case of W, =1/n corresponds to a linear
increase for each increment. From a pragmatic point of view it
appears more natural for the decisionmaker to provide the S,
function, the degree to which he is happy with & criteria being
satisfied. We note that it is easy to obtain the W,’s from the Sg’s
since

Wi =Sk = Sk_1»

where S, = 0.

With this interpretation F, indicates the situation where there
is no satisfaction until all the criteria are satisfied while F*
implies complete satisfaction if at least one of the criteria are
satisfied.

QUANTIFIERS AND OWA OPERATORS

Drawing upon Zadeh’s [10], [11] concept of linguistic quanti-
fiers and Yager’s application [1], [2], [12] of this idea to multi-
criteria decision making we can provide a deeper and more
unifying interpretation of the weighting function W associated
with an aggregation operator F,

The classic binary logic allows for the representation of two
quantifiers, “there exists” and “for all.” In natural language we
use many additional quantifiers such as “almost all,” “few,”
“many,” “most,” etc. the theory of approximate reasoning [13]
extends the binary logic among other ways by allowing for the
representation of these linguistic quantifiers. In [10] Zadeh sug-
gests that quantifiers are of at least two kinds— those which say
something about the number of elements and those which say
something about the proportion of elements, It is also suggested
by Zadeh that quantifiers can be represented as fuzzy subsets of
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either the unit interval or the real line. The distinction is based
upon whether the quantifier relates to an absolute or is a propor-
tion type statement. Thus if Q is relative a quantity such as
“most,” then Q can be represented as a fuzzy subset of I such
that for each r € I, Q(r) indicates the degree to which r portion
of the objects satisfies the concept denoted by Q. We note that
the quantifier “for all” can be represented as a fuzzy subset of
such that

(1) =1

Q(r)=0
We shall call a quantifier ¢ monotonically nondecreasing if
rn>rn—=0(n)>0(n)

Assume we have a decision problem in which we have »n
criteria, A,,---,A,, where 4 (%) indicates the degree to which
alternative x satisfies criteria A;. Furthermore, assume in speci-
fying the manner in which these criteria are to be aggregated to
form an overall decision function the decisionmaker states that
he desires Q of the criteria be satisfied. In this representation Q
is an absolute quantifier definable on the space L=[0,n]. In
addition for y € L, Q(y) indicates the degree to which the
decisionmaker is satisfied with y criteria being solved. We can
make the following observations:

1) Q(0) =0, the decisionmaker gets absolutely no satisfaction
if he gets no criteria satisfied.

2) Q(n) =1, he is completely satisfied if he gets all the criteria
satisfied.

3) If r,>r, then Q(r)>Q(r,) as he gets more criteria
satisfied he will not become less satisfied.

r#l.

One can see that this quantifier function has the same properties
as the function of the previous section. Therefore it is our
conjecture that the weighing vector W is a manifestation of the
quantifier underlying the aggregation process. In particular, if a
decisionmaker suggests that they want Q of the objectives satis-
fied, then we obtain the weighing vector as Wy = Q(K)— Q(K —
1), K=1,---,n, and Q(0) = 0.

On the other hand if the weights are obtained via some kind of
learning process, we can conjecture an underlying quantifier Q as

Q(K) = Z w.

Jj=1

The important idea of this section is that the type of OWA
operators we have been discussing appear to be manifestations of
monotonic quantifiers. We also recall that “and” (for all) oper-
ator that corresponds to one of the extremes of these quantifiers
has

W, =1
W,=0 i#n.
In particular
Quuns(K) =0 k#n
Quna-(K) =1.
On the other hand, for the “or” (there exists) quantifier
W =1 for j=1
W=0 forj#1,
therefore,
0., (K)=1 K>

The pure averaging quantifier has

W=1/n forall j=1,---,n,
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then
Q“mean"( K) = K/n )
its a linear quantifier.

2

|

I

[13 ” !
and :

L

“mean” l

Thus we see that the weights associated with the OWA func-
tion determine the kind of quantifier it is effecting. By varying
the assignment of the weights in W we can move from a Min
type, “for all,” quantifier, to a Max type there exists quantifiers.
In particular, we can capture aggregations which emulate things
like “most” etc. Thus we see that these OWA operators provide
an interesting class of operators.

MEASURE OF “ANDNESS” AND “ORNESS”

Assume F is an OWA operator with weighting function W. If
W, =1 then as we have shown F is a pure “and” operator while
if W, =1, then F is a pure “or” operator. We can further observe
the closer all the total weight is to being in W, the closer the F
function is to being a pure “or” operator while the closer it is to
being all in W, the function is closer to an “and.” We shall here
introduce a measure of “orness” associated with a weighting
function.

Definition: Assume F is an OWA aggregation operator with
weighing function W=[W,,---,W,]. The degree of “orness”
associated with this operator is defined as

orness (W) =(1/n-1) 2": ((n—i)xw).
i=1
Example: a) W=[1000---]
orness (W) =1
b) W=[000---1]
orness (W) =0
oWwW=Q1/n,1/n,---1/n)

orness(W) =1/n-1 i (n—i)l/n
i=1

1 1 n n )
277—* (n-1) *igln_igll
=1/m)(1/(n=1))(n—n—(n)(n+1)/2)
=1,2.

We can see that this measure of “orness” is defined by
n
“orness” (W) =Y, (h,,(j)* VK)
j=1
where 4, (/) is a linear type function. That is
ho(§)=(n/n=1)=(j/n=1)=(n=j)/(n-1),
j=1,---,n
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In point of fact since h,(i) > h,(j) for j>i then we can see
that A, is really a prototype “linear argument vector.” Thus the
measure of “orness” of an OWA operator is its aggregated value
under a linear argument vector. It is interesting to point out
whatever value »n is, h,(n)=0 and h,(1)=1. Thus given this
type of input any S-norm always evaluates to degree of “orness”
equal to 1 and every #-norm to zero “orness.”
We recall that if W= W, --- W,] then we define

where 0, =1 and Qg > Qx_ ;.
Theorem: Assume W and W’ are two weighting functions such
that for each K

Qx> 0k,
then
“orness(W)” > “orness” (W’).

Proof: We shall let

K
UCK) =1/n=1 ¥ (n=))
=

K
U(K)=1/n=13 (n— )W/
Jj=1

thus orness(W) =U(n) and orness(W’) =U(n). We shall first
show that if for any K

U(K)>U(K), whereU(K)=U(K)+a.
It is impossible for U(K +1) > U'(K +1).
U(K+1) =U(K)+((n— K=1)/(n=1)) * Wy,
U(K+1D) =U(K)+(1/(n—=1)*(n—-K-1)*W{,,.
For U'(K+1) > U(K +1) then
Wi =Wy =(n-1)/(n—K-1)*a.
However since it is always required that
OQx+120ks1

then to get this much additional Wy, — Wi, it must be the
case that

Ok —Qk>((n-1)/(n-K-1))*a.
However, if this condition holds true then
U(K)-U'(K)

>((n=K)/(n=1))*x((n=1)/(n-K-1))+a>a,
thus this is a contradiction.
Furthermore, since
v() =w,
U =w,
then since Q(1) =W, and Q’(1) =W/ then
U(1) =U'(1).

This theorem allows us to directly compare quantifiers and tell
whether one is more of an “or” than another.

We should note that if @, and @, are two linguistic quanti-
fiers then we say Q; < Q, if Q;(x) < Q,(x) for all x. Thus from
the above theorem if Q, and Q, are two quantifiers underlying
aggregation functions F; and F, then if Q;<Q, then F, is a
more “orlike” aggregation. In particular, we see that the more

specific the monotone quantifier underlying the aggregation pro-
cess the more “and” like the aggregation.

We shall define a measure of “andness” associated with an
OWA operator as the complement of the “orness” thus “and-
ness” (W) =1—“orness” (W).

Consider two weighing functions W, and W, where

0 1/5
0 1/5
w=|1|andw,=]|1/5
0 1/5
0 1/5

We note that while both of these weighting functions have the
same degree of “orness,” 0.5, we can see that they are different in
the sense that the first one is more volatile and uses less of the
input. In order to capture this idea we introduce a measure of
“dispersion” associated with a weighting function W.

Definition: Assume W is a weighting vector with elements
W, - - - W, then the measure of dispersion of W is defined as

dispersion(W) = — 3. W, InW,.
J

We note that since this dispersion is really a measure of entropy
and thus the following properties are valid.

1) if W, =1 for some i then the dispersion is minimum and
dispersion(W) =0

2) the dispersion is maximum if W,=1/n and in this case
dispersion(W) =Inn.

It is interesting to see that this measure of dispersion uses this
Shannon information concept, for in a certain sense the more
disperse the W the more of the information about the individual
criteria is being used in the aggregation of the aggregate value.

Assume Q is the quantifier underlying an aggregation process
with a weighting vector W. Since

K

Q(K) =2 W,

Jj=1

it appears that the concept of dispersion in the framework of
weighting vectors is closely related to the concept of the fuzziness
[4] in the underlying quantifier. In particular, a very crisp quanti-
fier such as “for all,” “ there exists,” “at least 50 percent” tend to
have less disperse weighting vectors while fuzzier quantifiers such
as many tend to have a more disperse weighting vector.

IN A GENERAL SETTING

It appears that these new OWA operators can be seen as a
special family of a more general class of mean-like operators. We
can call these generalized means or more descriptively “orand”
operators. We shall denote these general operators as R oper-
ators and define them as having the following properties:

R:I"—>1T
such that:

1) R satisfies a generalized commutativity (symmetry)

R(alvazv'..van) =R(bl!b2v""'b,,)
if the bags (a,,"--,a,) and (b}, -, b, are equal;
2) R is monotonic;
R(ay, a5, - a,) 2 R(b. - .b,)

if a,> b, forall i=1,2, n;
3) R is idempotent. Forevery a €1,

R(a,a,a,---,a) =a.
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We note Dubois and Prade [15] looked at binary operators of this
type fact that these operators lie between the “and” and “or”
operators can be seen by the following theorem.

Theorem: For any R operator

Min(a,,- -,
Proof:

a, < R(al’4 o 7an) SM&X(al, e 7an)
a) Assume b=Min(a,,---,a,). By property 3,
R(b,b,---b)=b

a; > b, then by

i

however since for each i,
property 1,

a,)>R(b,---,b)>b

b) follows in a similar manner.

R(ay,a,, -,

Another family of operators which are members of this general
class of R (orand) operators are the generalized means intro-
duced by Dyckhoff & Pedrycz [16], in this case,

n I/p
R(alv”'van) =( Z l/n(aj)P)

j=1
where p €[ — o0, 0].

In the general case of these R operators and in the OWA
family in particular the one nice property that is not required,
hence not usually available, is the associativity property. The
usefulness of this property is based upon its ability of helping us
easily include additional data. However, as discussed by Dubois
& Prade [15] associativity and idempotency don’t usually coexist
casily.

BUILDING CONSISTENT OWA OPERATORS

Assume A4,---,4, are n criteria having satisfactions
ay, -+ ,a, under some x. Assume F is some OWA function with
weighting vector W, where W=[W,,---,W,]. Thus

F(x) =} Wb,
j=1

where b, equals the jth biggest element in the bag (a,,---,a,).

Assume A4, ., is some additional criteria having satisfaction
a, ., under x. Assume we are interested in aggregating the n +1
criteria in a method that is consistent with the aggregation of the
original n criteria. That is we must find some n+1 order
aggregation function F* and its associated weighting vector
W*=[W*, - WX W*,] that is in some sense consistent with
F and its W.

We shall say W and W* are g-consistent if three exists some
monotonic quantifier on the unit interval such that W and W*
could have been drawn from this same quantifier.

We recall that Q is a monotonic type quantifier if:

L o) =1;
2) Q(0)=0;
3) Q(n) > Q(ry) for all r,r, € where r,>r,.

Theorem: Two weighting vectors W and W* of size n and m
respectively are g-consistent if

K k
DY W>Y w* k=1,
i= /=1
K k+1
)Y W< X W* k=1,--,n-1;and
Jj=1 Jj=1
n n+1
)Y W= wr=1

Proof: Assume W and W* are two functions taken from
some function @. We note that from W we can specify Q(K /n)
for k=1, ,n, in particular,

K

Q(K/n)=Y W, k=1,--,n.
j=1

We also note that from W* we can specify Q(K/n+1) for
k=1,---,n+1. In particular

K
Q(K/n+1) = w* k=1,--,n+1.

j=1
The following observations can be made for any k=1,---,n,n
+1

k/n>k/n+1 k=1,---,n
and
k+1/n+1>k/n k=1,---,n—1.

From the monotonicity property of Q we can see that
Q(k/n) > Q(k/n+1)
Q(k+1/n+1)>Q(k/n).

Example: Assume we have W = [1,0] a pure “or” operator.
Consider W* ={0,0,1] a “pure and.” Are they g-consistent? The
requirements are:

L) Wy > W,

2) Wy + Wy > Wi + Wy

3) MW+ W

4 W+ Wy =W + W + Wi

We note that condition 3 fails to hold since
1>0+0.

A necessary condition for W* to be g¢-consistent with W is that
Wi* + Wy* =1. Thus W* = [a,1- a,0] is g-consistent.

Given an n dimension vector W one can set up as a linear
programming problem that of finding the n +1 vector W* that is
g-consistent with W and is the most “orlike” or “andlike.” Here
our objective function would involve use of our measure of
“orness.”

INCLUDING UNEQUAL IMPORTANCES

Implicit in our methodology for aggregating criteria is the
assumption that all criteria are of equal importance to the de-
cisionmaker. In some cases the decision maker may assign differ-
ing degrees of importance to each of the criteria. In this section
we shall suggest a scheme for including the ability to handle
different importances in OWA operators. We note that in
[17]-[21] we looked at issues related to importance.

Assume F is an OWA operator with weighting vector W.
Assume 4,,1=1,2,--- n, are a collection of criteria. Assume for
each criteria a; € I indicates the degree of importance associated
with the criteria. For each criteria, let 4,(x) € I be the degree of
satisfaction to criteria i. In this situation then our overall deci-
sion function evaluated at x is

F(x)=F(a,-".a,)
where
a; = H( A4;,(x), aj) is the effective satisfaction to criteria 4;.
We further recall if by is the kth largest element in the bag

{(ay, +,a,) then

F(x)= Y b, *W,.
K=1
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One possible form of the function H is

a;= H(A}(x),aj) =(a,Vp) *(Aj(x)

In the above formula q is the degree of “orness” associated with

the weighting function W and p is its complement p + g =1, the

degree of “andness” associated with W. We first note if p=1
and ¢=0, F is a pure “and” operator, then a; = Aj(x)”f.
Thus in this pure “and” environment, since W, =1, then

D(x) =j=l\14.il_1_ nAj(x)a/.

)(aj\/q)

This is in complete agreement with the original method for
including importances suggested by Yager [17]."On the other
hand if we have a pure “or” then p=0 and g=1 and W, =1
thus
a;=a;4,(x)
and
F(x)= I;IIaX a;4,(x)
j=1,--,n

which agrees with the approach suggested in [21]. We also note
that if importance of 4; is one, a; =1, then a; = 4,(x) and if all
importances are one we get the form suggested earlier.

CONCLUSION
We have introduced a new class of operators that are useful for
aggregating criteria guided by quantifiers.
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Correction to
“Learning Optimal Discriminant Functions Through
a Cooperative Game of Automata”
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In the above paper,! equation (13) should have read

Er(k+1) = max{ £r(k).d, - iy(k+1)},

lf E!,:,(k) #L‘i,[ ‘N(k)
=J'H}Ta;-bxn{d’\fl '”jnflinjn-ﬂ"’j.v(k+l)}'
otherwise,

E'(k+1)=E/(k), j#i

ne
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