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Abstract. Static analysis of programs using regular tree grammars has
been studied for more than 30 years, the earliest example being Reynolds’
work on automatic derivation of data-type definitions from untyped func-
tional programs. Recently the topic has attracted renewed attention, with
applications in program specialisation, data flow analysis, shape analysis,
mode and type inference, termination analysis and infinite state model
checking.

There are several related viewpoints on analysis using regular tree gram-
mars, including set constraints, abstract interpretation over tree au-
tomata domain, directed types, regular approximation and regular type
inference.

The lectures will first summarise the relevant properties of finite tree
automata, which provide a common foundation for these different view-
points. It will then be shown how to construct an abstract interpretation
over a domain of finite tree automata. Various program analyses based on
this domain will be presented, such as “soft” type construction, checking
of safety properties in infinite state systems, and derivation of term-size
measures for termination analysis.

The lectures will also cover the construction of static analyses based on
a given tree grammar capturing some properties of interest. It will be
shown (for logic programs) how to build a precise analysis for a program
based on an arbitrary regular tree grammar. This has applications in type
and mode inference, binding time analysis for offline partial evaluation,
and control of online partial evaluation.

1 Introduction and Definitions

Descriptions of sets of terms (or trees) can capture the “shape” of computational
entities such as data structures, computation trees and proof trees. The field of
finite tree automata provides fundamental notations and tools for defining and
manipulating sets of terms. The aim of an analysis based on tree automata
is to infer the approximate structure of such entities, allowing the analysis of
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many run-time properties such as descriptive types, termination, resource con-
sumption, synchronisation and reachability of states. Tree automata can also be
combined with constraints to increase their expressiveness.

In these notes we cover the following topics, some only briefly.

– The definitions of the main concepts concerning finite tree automata, their
syntax and semantics.

– The relationship of finite tree automata to other common notations for spec-
ifying sets of terms.

– Key computational aspects such as decision procedures for emptiness, and
operations on tree automata, especially determinisation.

– An outline of a static analysis framework for logic programs, in which a
program is analysed with respect to a given tree automaton.

– Using tree automata to define program properties.
– Applications of tree automata in offline and online program specialisation.
– Applications in model checking and analysis of infinite-state systems.
– Scalability and complexity. Compact representation of determinised automata.

Using BDDs to perform analyses based on tree automata.
– Deriving a tree automaton as an approximation of a program.

1.1 Fundamental Definitions

For the most part we use the notation and terminology from Comon et al. [12].
Let Σ be a set of function symbols. Each function symbol in Σ has a rank

(arity) which is a natural number. Whenever we write an expression such as
f(t1, . . . , tn), we assume that f ∈ Σ and has arity n. We write fn to indicate
that function symbol f has arity n. If the arity of f is 0 we often write the term
f() as f and call f a constant.

The set of ground terms (or trees) TermΣ associated with Σ is the least
set containing the constants and all terms f(t1, . . . , tn) such that t1, . . . , tn are
elements of TermΣ and f ∈ Σ has arity n.

Finite tree automata provide a means of finitely specifying possibly infinite
sets of ground terms, just as finite automata specify sets of strings.

Definition 1. A finite tree automaton (FTA) is a quadruple 〈Q,Qf , Σ,∆〉,
where Q is a finite set called states, Qf ⊆ Q is called the set of accepting (or
final) states, Σ is a set of ranked function symbols and ∆ is a set of transi-
tions. Each element of ∆ is of the form f(q1, . . . , qn) → q, where f ∈ Σ and
q, q1, . . . , qn ∈ Q.

FTAs can be “run” on terms in TermΣ . To define what is meant by running an
FTA we introduce contexts. Let Xn be set of n constants x1, . . . , xn not occurring
in Σ. A term t ∈ TermΣ∪Xn is linear if each xi occurs at most once in t. A linear
term C ∈ TermΣ∪Xn

is called a context, and the expression C[t1, . . . , tn] denotes
the term in TermΣ obtained by substituting ti for xi in C (for 1 ≤ i ≤ n).

There is a top-down move t → t′ for the FTA 〈Q, Qf , Σ,∆〉, where t, t′ ∈
TermΣ∪Q (here Q is considered as a set of constants), if and only if there exists
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a context C ∈ TermΣ∪X1 , a transition f(q1, . . . , qn)→ q ∈ ∆, t = C[q] and t′ =
C[f(q1, . . . , qn)]. The top-down derivation relation ∗→ is the reflexive, transitive
closure of →.

Bottom-up moves and derivations are similarly defined, but the arrow is re-
versed. A term t ∈ TermΣ is accepted by an FTA 〈Q,Qf , Σ,∆〉 if q0

∗→ t (where
the derivation is top-down) or t

∗→ q0 (where the derivation is bottom-up), where
q0 ∈ Qf . Implicitly, a tree automaton R defines a set of terms, that is, a tree
language, denoted L(R), as the set of all terms that it accepts.

Tree Automata and Regular Types In order to put this discussion in con-
text, we draw attention immediately to the connection between regular types
and tree automata. (We often refer to regular types simply as “types”). A type
is simply regards as an accepting state of an automaton. Given an automaton
R = 〈Q,Qf , Σ,∆〉, and q ∈ Qf , define the automaton Rq to be 〈Q, {q}, Σ,∆〉.
The language L(Rq) is the set of terms corresponding to type q. We say that a
term is of type q, written t : q, if and only if q ∈ L(Rq).

Example 1. In the following examples, let Σ = {[]0, [ | ]2, leaf1, tree2, 00, s1},
and let Q = {list, listnat, nat, zero, one, bintree, any, list0, list1, list2}. We de-
fine the set ∆any to be the following set of transitions.

{f(
n times︷ ︸︸ ︷

any, . . . , any)→ any |fn ∈ Σ}

– Qf = {listnat}, ∆ = {[]→ listnat, [nat|listnat]→ listnat, 0→ nat, s(nat)→
nat}. The type listnat is the set of lists of natural numbers in successor no-
tation.

– Qf = {list}, ∆ = ∆any ∪ {[] → list, [any|list] → list}. The type list is the
set of lists of arbitrary terms in TermΣ .

– Qf = {list2}, ∆ = {[] → list0, [one|list0] → list1, [zero|list1] → list2, 0 →
zero, s(zero)→ one}. The type list2 is the set consisting of the single term
[0, s(0)].

– Qf = {bintree}, ∆ = ∆any∪{leaf(any)→ bintree, tree(bintree, bintree)→
bintree}. The type bintree is the set of binary trees whose leaves are any
terms in TermΣ .

– Qf = {list1}, ∆ = {[] → list1, [one|list1] → list1, [zero|list0] → list1, [] →
list0, [zero|list0] → list0, 0 → zero, s(zero) → one}. The type list1 is the
set of lists consisting of zero or more elements s(0) followed by zero or more
elements 0 (such as [s(0), 0], [s(0), s(0), 0, 0, 0], [0, 0], [s(0)], . . ..

Example 2. Take the second automaton in the previous example:

– A bottom-up derivation of [[0], 0] is

[[0], 0]→ [[0|any], 0]→ [[any|any], 0]→ [any, 0]→ [any, any]
→ [any, any|list]→ [any|list]→ list
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– A top-down derivation of [s(0)|0] fails after, e.g.

list→ [any|list]→ [s(any)|list]→ [s(0)|list]

since for any derivation to succeed there would have to be a transition 0→ list.

Deterministic and Non-deterministic Tree Automata There are two no-
tions of non-determinism in tree automata: bottom-up and top-down. Both are
highly relevant, in different ways, for types.

Definition 2. A bottom-up deterministic finite tree automaton is one in which
the set of transitions ∆ contains no two transitions with the same left-hand-side.

It can be shown that (so far as expressiveness is concerned) we can limit our
attention to FTAs to bottom-up deterministic finite tree automata. For every
FTA R there exists a bottom-up deterministic FTA R′ such that L(R) = L(R′).

Bottom-up deterministic FTAs define disjoint types, and there are applica-
tions where it is desirable to obtain disjoint types. The transformation to bottom-
up deterministic form can introduce an exponential number of new states, in the
worst case. However, it is often useful and practical in the context of types. In
Section 5.3 we discuss the determinisation process in more detail.

We will examine the process of determinisation in greater detail later.

Definition 3. An automaton R = 〈Q,Qf , Σ,∆〉 is called complete if it con-
tains a transition f(q1, . . . , qn) → q for all n-ary functions f ∈ Σ and states
q1, . . . , qn ∈ Q.

We may always extend an FTA 〈Q,Qf , Σ,∆〉 to make it complete, by adding a
new state q[ to Q. Then add transitions of the form f(q1, . . . , qn)→ q[ for every
combination of f and states q1, . . . , qn (including q[) that does not appear in ∆.
Note that a complete bottom-up deterministic finite tree automaton in which
every state is an accepting state is one which partitions the set of terms into
disjoint subsets (types), one for each state. This follows since in a bottom-up
derivation there is exactly one transition that can be applied to each context of
form C[f(q1, . . . , qn)]. In such an automaton q[ can be thought of as the error
type, that is, the set of terms not accepted by any other type.

Example 3. Let Σ = {[]0, [ | ]2, 00}, and let Q = {list, listlist, any}. The set
∆any is defined as before. let Qf = {list, listlist}, ∆ = ∆any∪{[]→ list, [any|list]→
list, [] → listlist, [list|listlist] → listlist, [listlist|listlist] → listlist}. The type
list is the set of lists of any terms, while the type listlist is the set of lists whose
elements are of type list or listlist.

The automaton is not bottom-up deterministic; for example, three transitions
have the same left-hand-side, namely, []→ list, []→ listlist and []→ any. So for
example the term [[0]] is accepted by list, listlist and any. A determinization
algorithm could be applied, yielding the following. Intuitively, we can think of
q1 as the type any ∩ list ∩ listlist, q2 as the type (list ∩ any)− listlist, and q3
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as any− (list∪ listlist). Thus q1, q2 and q3 are disjoint. The automaton is given
by Q = {q1, q2, q3}, Σ as before, Qf = {q1, q2} and ∆ = {[] → q1, [q1|q1] →
q1, [q2|q1] → q1, [q1|q2] → q2, [q2|q2] → q2, [q3|q2] → q2, [q3|q1] → q2, [q2|q3] →
q3, [q1|q3]→ q3, [q3|q3]→ q3, 0→ q3}.

This automaton is also complete.

FTAs can be extended to allow ε-transitions, without altering their expressive
power. An ε-transition is of the form q → q′. Such transitions can be removed
from ∆, after adding all transitions f(q1, . . . , qn) → q′ such that there is a
transition f(q1, . . . , qn)→ q in ∆, and there is a chain of ε-transitions q → · · · →
q′. We assume that ε-transitions have been removed unless otherwise stated.

A more restrictive kind of deterministic automaton can be defined, which is
also highly relevant in the context of types.

Definition 4. An FTA is top-down deterministic if it has no two transitions
with both the same right-hand-side and the same function symbol on the left-
hand-side (for example f(q1, q2)→ q and f(q2, q3)→ q).

When constructing a top-down derivation in a top-down deterministic automa-
ton, there is thus at most one transition that can be used to construct a move
for each leaf. Thus checking whether t ∈ L(R) for such an automaton R can be
done in O(|t|) steps.

Top-down determinism introduces a loss in expressiveness. It is not the case
that for each FTA R there is a top-down deterministic FTA R′ such that L(R) =
L(R′). Note that a top-down deterministic automaton can be transformed to an
equivalent bottom-up deterministic automaton, as usual, but the result might
not be top-down deterministic.

Example 4. Take the final automaton from Example 1. Qf = {list1}, ∆ = {[]→
list1, [one|list1]→ list1, [zero|list0]→ list1, []→ list0, [zero|list0]→ list0, 0→
zero, s(zero)→ one}. This is not top-down deterministic, due to the presence of
transitions [one|list1] → list1, [zero|list0] → list1. No top-down deterministic
automaton can be defined that has the same language.

Now consider the automaton with transitions ∆any ∪ {[]→ list, [any|list]→
list}. This is top-down deterministic, but not bottom-up deterministic (since
[]→ list and []→ any both occur). Determinizing (bottom-up) this automaton
would result in one that is not top-down deterministic, since we would have
disjoint types corresponding to list and q = any − list. This would lead to
transitions [q|list] → list and [list|list] → list which violates top-down non-
determinism.

An automaton R which is not equivalent to any top-down deterministic automa-
ton can be approximated by a top-down deterministic automaton R′ such that
L(R) ⊆ L(R′). Obviously we could use R′ = 〈{any}, {any}, Σ,∆any〉 since this
is top-down deterministic, but we would like to find a top-down deterministic R′

having the smallest possible language that includes L(R).
Type systems for typed programming languages tend to insist on top-down

deterministic types. In spite of the loss of expressiveness they are perceived as
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somehow more “natural”. Worst case computational behaviour is unchanged, so
top-down determinism is not “simpler”.

Operations on Finite Tree Automata Tree automata have a number of
desirable properties and operations, which are at the heart of analysis algorithms.
Let R,R1, R2 be FTAs.

– t ∈ L(R) is decidable. The time required for the check is linear (O(|t|+ |R|)
if R is bottom-up deterministic, and O(|t|) if R is top-down deterministic)
otherwise it is O(|t| × |R|).

– L(R) = ∅ is decidable. We write empty(R) and nonempty(R) for L(R) = ∅
and L(R) 6= ∅ respectively. Emptiness can be decided in time O(|R|).

– R1×R2: the product automaton is defined as follows. Let R1 = 〈Q1, Qf1, Σ,∆1〉
and R2 = 〈Q2, Qf2, Σ,∆2〉. We assume that Q1 ∩Q2 is empty, and we can
rename states to ensure this if necessary. The product automaton R1×R2 is
defined as the automaton 〈Q1 ×Q2, Qf1 ×Qf2, Σ,∆1 ×∆2〉 where

∆1 ×∆2 = {f((q1, q
′
1), . . . , (qn, q′n))→ (q, q′) |

f(q1, . . . , qn)→ q ∈ ∆1

f(q′1, . . . , q
′
n)→ q′ ∈ ∆2}

The language accepted by R1×R2 is L(R1)∩L(R2). Note that if R1 and R2

are deterministic (either top-down or bottom-up), then so is R1 × R2. The
number of transitions in the product can often be reduced by generating only
product transitions with a right-hand-side (q, q′) that is reachable. (q, q′) is
reachable if and only if it is in Qf1 ×Qf2, or it occurs on the left-hand-side
of a transition whose right-hand-side is reachable. Eliminating unreachable
states can often yield a significant reduction especially if R1 and R2 are
top-down deterministic.

– R1 ∪ R2: the union of automata R1 and R2 is obtained straightforwardly.
Let R1 = 〈Q1, Qf1, Σ,∆1〉 and R2 = 〈Q2, Qf2, Σ,∆2〉. We assume again
that Q1 ∩Q2 is empty. Then R1 ∪ R2 = 〈Q1 ∪Q2, Qf1 ∪Qf2, Σ,∆1 ∪∆2〉.
L(R1∪R2) = L(R1)∪L(R2). Note that determinacy is not preserved by this
union operation. However, we may of course restore bottom-up determinacy
by further transformation but there may not be any top-down deterministic
automaton equivalent to R1 ∪R2.

– complement(R): the complement of R can be formed quite easily when R
is a complete bottom-up deterministic automaton. In this case, simply re-
place the set of final states Qf by Q − Qf . R can always be converted to
a complete bottom-up deterministic automaton, but at the possible cost of
an exponential increase in the number of states and transitions. Note that
the set of languages definable by top-down deterministic FTAs is not closed
under complement.

– R1 � R2: this holds if nonempty(R1 ∩ complement(R2)), and the complex-
ity can be derived from the emptiness check, intersection and complement
operations. R1 and R2 are equivalent if R1 � R2 and R2 � R1.
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– minimize(R): given any FTA R, we can construct another automaton with
the same language, having the minimum number of states. The standard
algorithm in the literature takes as input a bottom-up deterministic types.

Further details on FTAs and their properties can be found elsewhere [12].

1.2 Regular Tree Grammars

Regular tree grammars provide an alternative approach to defining sets of terms,
focussing on the language generated by a given grammar, rather than the terms
recognised by an automaton. However, the formal aspects, and the operations
on grammars, mirror the corresponding treatment of automata, so we do not
need to say much about regular tree grammars apart from noting the syntax
and terminology.

Definition 5. A regular tree grammar is a quadruple 〈N,S,Σ, Φ〉 consists of
a set Σ of terminal symbols, each with an arity, a set of non-terminals N , a
distinguished non-terminal S called the start symbol, and a set Φ of productions
L → R, where L is a non-terminal and R ∈ TermΣ∪N . The set of productions
with the same left-hand-side L, say {L → R1, . . . , L → Rk}, may be written as
L→ R1 | · · · | Rk.

A regular tree grammar G generates terms by commencing with the start
symbol S, and successively replacing some non-terminal L by R, where there is
a production L → R. The set of terms containing no non-terminals obtainable
in this way is called the language of G, L(G). Two grammars G1 and G2 are
equivalent if L(G1) = L(G2).

It can be shown that every regular tree grammar G is equivalent to another
normalised grammar in which all productions have the form L→ f(R1, . . . , Rn)
(n ≥ 0) where R1, . . . , Rn are non-terminals. Some new non-terminals might be
introduced in the normalisation process.

Correspondence between regular tree grammars and FTAs There are
various versions of the syntax of both FTAs and tree grammars; we have de-
liberately chosen versions to emphasise the close similarity between them. The
notions are almost interchangeable from our point of view. A normalised regular
tree grammar 〈N,S,Σ,Φ〉 can be considered as alternative syntax for the FTA
〈N, {S}, Σ,∆〉, where ∆ = {f(q1, . . . , qn) → q | q → f(q1, . . . , qn) ∈ Φ}. The
FTA arising from a grammar contains only a single accepting state, correspond-
ing to the start symbol of the grammar. The language generated by the grammar
is the same as the language accepted by the FTA.

Similarly, given an FTA 〈Q, Qf , Σ,∆〉, we can obtain a (non-normalised) tree
grammar 〈Q ∪ {qS}, qS , Σ, Φ〉, where qS is a new state not in Q, and the set of
productions Φ = {qS → qf | qf ∈ Qf}∪{q → f(q1, . . . , qn) | f(q1, . . . , qn)→ q ∈
∆}. In this case the language generated by the grammar is the union of the sets
of terms accepted by the states in Qf . The proofs of these equivalences is based
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on the close relationship between the generation of terms from the grammar and
top-down derivations in the corresponding FTA.

Example 5. Let a regular tree grammar G be defined as

G = 〈{list1, list2}, list1, {[]0, [ | ]2, 00, s1}, Φ〉

where Φ is the following set of productions.

list1→ [] | [s(0)|list1] | [0|list0]
list0→ [] | [0|list0]

L(G) is the set of lists consisting of zero or more elements s(0) followed by
zero or more elements 0 (such as [s(0), 0], [s(0), s(0), 0, 0, 0], [0, 0], [s(0)], . . .. It
is alternative syntax for the final FTA in Example 1. Normalising G would
introduce non-terminals, say one and zero, to replace the occurrences of s(0)
and 0 respectively on the right-hand-sides of the productions above, along with
the new productions one→ s(zero) and zero→ 0.

1.3 Regular Unary Logic Programs

The use of logic programs to represent regular tree languages was introduced by
Yardeni and Shapiro [50]. A unary or monadic definite logic program is a logic
program in which all predicates are unary. A regular unary logic (RUL) program
is one in which every clause is of the form

p(f(X1, . . . , Xn))← p1(X1), . . . , pn(Xn) (n ≥ 0)

where X1, . . . , Xn are distinct variables. If n = 0 the clause is a unit clause
represented p(f0)← true.

An RUL program is alternative syntax for an FTA, and hence for a reg-
ular tree grammar. Let P be an RUL program, and let the set of predicates
in P be preds(P ). Let Σ be the set of function symbols in the language of
P . Define the FTA 〈preds(P ), preds(P ), Σ,∆〉 where ∆ = {f(p1, . . . , pn) →
p | p(f(X1, . . . , Xn))← p1(X1), . . . , pn(Xn) ∈ P}.

The semantics of logic programs can be defined operationally, through (say)
SLD-derivations, or denotationally, using models. The success set of a program
P is the set of ground atomic formulas p(t) such that P ∪ {← p(t)} has an
SLD-refutation [36], in other words, the ground goal p(t) succeeds in P . An
SLD-refutation of {← p(t)} in an RUL program mirrors a top-down derivation
p

∗→ t in the FTA. Hence the success set of an RUL program captures the
language recognised by the corresponding automaton.

The usual denotational semantics of a definite logic program P is given as
the least Herbrand model of P . There are various ways to construct the least
Herbrand model, but the most significant one from our point of view is as the
least fixpoint of the immediate consequence function TP . Write c ∈ gndΣ(P )
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to mean that c is a ground instance of some clause in P (that is, each vari-
able of c is substituted by an element of TermΣ). Let I ⊆ {p(t1, . . . , tn) | p ∈
preds(P ), t1, . . . , tn ∈ TermΣ}.

TP (I) = {H | {B1, . . . , Bn} ⊆ I,H ← B1, . . . , Bn ∈ gndΣ(P )}

The least fixed point of TP , denoted lfp(TP ) exists and can be computed as⋃
{Tn

P (∅) | n > 0}. It is a standard result of logic program semantics that the
success set of a logic program P is identical to lfp(TP ). Thus the language defined
by an RUL program has a fixpoint definition. Similar fixpoint characterisations
could be given for the languages of FTAs and regular tree grammars.

The RUL program formulation of regular tree languages has another dimen-
sion, since the class of RUL programs is equivalent in its expressive power to a
wider class of logic programs called proper unary logic programs [17]. A proper
unary logic program contains clauses p(t) ← p1(t1), . . . , pn(tn) such that t does
not contain repeated variables, and for each ti, 1 ≤ i ≤ n, one of the following
holds.

1. ti is a subterm of t;
2. ti has no variable in common with t;
3. t is a strict subterm of ti, and no variable occurring in t occurs in ti other

than as a variable in the subterm t.

It was shown that every proper unary logic program P is equivalent to some RUL
program P ′ (equivalence meaning that preds(P ) ⊆ preds(P ′) and their success
sets, restricted to preds(P ), are the same). Furthermore, an algorithm exists [17]
which converts a proper unary logic program to a equivalent RUL program. This
is significant for deriving descriptive types (see Section 6).

A further dimension to the RUL notation for FTAs is the possibility of adding
constraints to transitions. Consider the clause

p(f(X1, . . . , Xn))← t1(X1), . . . , tn(Xn), c(X1, . . . , Xn)

where c(X1, . . . , Xn) is a constraint over a domain with a decision procedure and
a projection operation. For some classes of constraint, closure under intersection,
union and complementation, and decidability properties such as emptiness, are
retained under this extension. This provides an approach to extending the ex-
pressiveness of FTAs [12], [43].

1.4 Definite Set Constraints

A different approach to defining regular sets of terms was developed by Heintze
and Jaffar, building on earlier work by Reynolds, Jones and Muchnick, and
Mishra. This approach defines a set of constraints whose variables denote sets of
terms. Given a set of such constraints, one seeks a solved form. The solved form
for significant classes of set constraints, it turns out, is very similar to the form
of transitions in FTAs or productions in regular grammars.
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An initial intuition about the relation of set constraints to regular tree gram-
mars and hence to FTAs can be obtained by considering the productions of a
regular tree grammar as constraints. Let 〈N,S,Σ, Φ〉 be a regular tree gram-
mar. Introduce a set of variables V = {Xn | n ∈ N}. The variables range
over sets of terms in TermΣ . An interpretation of the variables is a mapping
I : V → 2TermΣ . Given an interpretation I, we can extend it to TermΣ∪V , where
I(f(u1, . . . , un)) = {f(t1, . . . , tn) | ti ∈ I(ui), 1 ≤ i ≤ n}.

Then the set of productions Φ is read as the conjunction of constraints {XL ⊇
R′ | L → R ∈ Φ}, where R′ is obtained from R by replacing each non-terminal
by the corresponding variable. If we write a production as L → R1 | · · · | Rk, it
gives rise to the constraint L ⊇ (R′

1 ∪ · · · ∪ R′
k)

Example 6. Consider the regular tree grammar in Example 5. It corresponds to
the constraints

(Xlist1 ⊇ ([] ∪ [s(0)|Xlist1] ∪ [0|Xlist0])) ∧
(Xlist0 ⊇ ([] ∪ [0|Xlist0]))

We seek a solution, or better, the least solution, to the set of constraints. (The
interpretation which maps both Xlist1 and Xlist0 to TermΣ is a solution, but not
a very interesting one). In the case of constraints arising from a tree grammar
G, it can be shown that the least solution assigns L(G) to XS , where S is the
start symbol of the grammar.

The main problem of set constraints is to consider a wider class of constraints
than the ones just considered, and develop algorithms for finding solutions for a
given conjunction of constraints.

Various presentations of set constraints have been given; given a set of ranked
function symbols Σ and a set of variables V a set expression (for our purposes)
is of the form X, ⊥, f(e1, . . . , en), f−1

i (e1, . . . , en), e1 ∪ e2, or e1 ∩ e2, where
X ∈ V and e1, e2, . . . , en are set expressions. A definite set constraint is of the
form X ⊇ e where X ∈ V and e is a set expression. If the constraint is X ⊇ e
where e has the form f(X1, . . . , Xn), (n ≥ 0, Xi ∈ V, 1 ≤ i ≤ n), it is in regular
form. A set of set constraints in regular form is clearly alternative syntax for an
FTA or regular tree grammar.

A conjunction of definite set constraints has a least solution which is a tuple
of regular sets of terms (one for each variable occurring in the set of constraints).
We can, of course, represent the solution as a tuple of tree grammars, a tuple
of FTAs, or a set of set constraints in regular form. A number of algorithms for
solving a conjunction of set constraints have been proposed.

1.5 Tree Languages: Summary

The main concept underlying type languages is that of a regular set of terms.
This can be defined by several closely related formalisms, such as FTAs, regular
tree grammars, RUL programs, and regular form set constraints. To these we
could add type graphs [31, 47] which are data structures for tree grammars,
having a graphical representation.
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There is a number of useful operations, decidable properties and closure prop-
erties, available in all the formalisms. Restrictions, especially top-down determin-
ism, play an important role in expressiveness of the formalisms and efficiency of
the operations.

Another dimension, displayed by unary logic programs and set constraints,
is the transformation of a wider class of expressions into regular form. Proper
unary logic programs can be transformed to equivalent RUL programs, and
definite set constraints can be transformed to equivalent regular set constraints.
These procedures play a role in some of the algorithms for deriving descriptive
types from programs.

2 Abstractions Based on Determinised Tree Automata

2.1 Analysis Based on Pre-Interpretations

We now define an analysis framework for logic programs. Bottom-up declarative
semantics captures the set of logical consequences (or a model) of a program.
The standard, or concrete semantics is based on the Herbrand pre-interpretation.
The theoretical basis of this approach to static analysis of definite logic programs
was set out in [4, 3] and [18]. We follow standard notation for logic programs [36].

Let P be a definite program and Σ the signature of its underlying language
L. A pre-interpretation of L consists of

1. a non-empty domain of interpretation D;
2. an assignment of an n-ary function Dn → D to each n-ary function symbol

in Σ (n ≥ 0).

Correspondence of FTAs and Pre-Interpretations A pre-interpretation
with a finite domain D over a signature Σ is equivalent to a complete bottom-up
deterministic FTA over the same signature, as follows.

1. The domain D is the set of states of the FTA.
2. Let f̂ be the function Dn → D assigned to f ∈ Σ by the pre-interpretation.

In the corresponding FTA there is a set of transitions f(d1, . . . , dn)→ d, for
each d1, . . . , dn, d such that f̂(d1, . . . , dn) = d. Conversely the transitions of
a complete bottom-up deterministic FTA define a function [12].

Semantics parameterized by a pre-interpretation We quote some defini-
tions from Chapter 1 of [36]. Let J be a pre-interpretation of L with domain D.
Let V be a mapping assigning each variable in L to an element of D. A term
assignment TV

J (t) is defined for each term t as follows:

1. TV
J (x) = V (x) for each variable x.

2. TV
J (f(t1, . . . , tn)) = f ′(TV

J (t1), . . . , TV
J (tn)), (n ≥ 0) for each non-variable

term
f(t1, . . . , tn), where f ′ is the function assigned by J to f .
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Let J be a pre-interpretation of a language L, with domain D, and let p be an n-
ary function symbol from L. Then a domain atom for J is any atom p(d1, . . . , dn)
where di ∈ D, 1 ≤ i ≤ n. Let p(t1, . . . , tn) be an atom. Then a domain instance
of p(t1, . . . , tn) with respect to J and V is a domain atom p(TV

J (t1), . . . , TV
J (tn)).

Denote by [A]J the set of all domain instances of A with respect to J and some
V .

The definition of domain instance extends naturally to formulas. In partic-
ular, let C be a clause. Denote by [C]J the set of all domain instances of the
clause with respect to J .

Core bottom-up semantics function T J
P The core bottom-up declarative

semantics is parameterised by a pre-interpretation of the language of the pro-
gram. Let P be a definite program, and J a pre-interpretation of the language
of P . Let AtomJ be the set of domain atoms with respect to J . The function
T J

P : 2AtomJ → 2AtomJ is defined as follows.

T J
P (I) =

 A′

∣∣∣∣∣∣
A← B1, . . . , Bn ∈ P
A′ ← B′

1, . . . , B
′
n ∈ [A← B1, . . . , Bn]J

{B′
1, . . . , B

′
n} ⊆ I


MJ [[P ]] = lfp(T J

P ): MJ [[P ]] is the minimal model of P with pre-interpretation J .

Concrete Semantics The usual semantics is obtained by taking J to be the
Herbrand pre-interpretation, which we call H. Thus AtomH is the Herbrand
base of (the language of) P and MH [[P ]] is the minimal Herbrand model of P .

The minimal Herbrand model consists of ground atoms. In order to cap-
ture information about the occurrence of variables, we extend the signature
with an infinite set of extra constants V = {v0, v1, v2, . . .}. The Herbrand pre-
interpretation over the extended language is called HV . The model MHV [[P ]] is
our concrete semantics.

The elements of V do not occur in the program or goals, but can appear
in atoms in the minimal model MHV [[P ]]. Let C(P ) be the set of all atomic
logical consequences of the program P , known as the Clark semantics [9]; that
is, C = {A | P |= ∀A}, where A is an atom. Then MHV [[P ]] is isomorphic to C(P ).
More precisely, let Ω be some fixed bijective mapping from V to the variables
in L. Let A be an atom; denote by Ω(A) the result of replacing any constant
vj in A by Ω(vj). Then A ∈ MHV [[P ]] iff P |= ∀(Ω(A)). By taking the Clark
semantics as our concrete semantics, we can construct abstractions capturing
the occurrence of variables. This version of the concrete semantics is essentially
the same as the one discussed in [18].

In our applications, we will always use pre-interpretations that map all ele-
ments of V onto the same domain element, say dv. In effect, we do not distin-
guish between different variables. Thus, a pre-interpretation includes an infinite
mapping {v0 7→ dv, v1 7→ dv, . . .}. For such interpretations, we can take a sim-
pler concrete semantics, in which the set of extra constants V contains just one
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constant v instead of an infinite set of constants. Then pre-interpretations are
defined which include a single mapping {v 7→ dv} to interpret the extra constant.

Abstract Interpretations Let P be a program and J be a pre-interpretation.
Let AtomJ be the set of domain atoms with respect to J . The concretisation
function γ : 2AtomJ → 2AtomHV is defined as γ(S) =

{
A

∣∣ [A]J ⊆ S
}

MJ [[P ]] is an abstraction of the atomic logical consequences of P , in the
following sense.
Proposition 1. Let P be a program with signature Σ, and V be a set of con-
stants not in Σ (where V can be either infinite or finite). Let HV be the Her-
brand interpretation over Σ ∪V and J be any pre-interpretation of Σ ∪V. Then
MHV [[P ]] ⊆ γ(MJ [[P ]]).
Thus, by defining pre-interpretations and computing the corresponding least
model, we obtain safe approximations of the concrete semantics.

Condensing Domains The property of being a condensing domain [37] has to
do with precision of goal-dependent and goal-independent analyses (top-down
and bottom-up) over that domain. Goal-independent analysis over a condens-
ing domain loses no precision compared with goal-dependent analysis; this has
advantages since a single goal-independent analysis can be reused to analyse
different goals (relatively efficiently) with the same precision as if the individual
goals were analysed.

The abstract domain is 2AtomJ , namely, sets of abstract atoms with respect
to the domain of the pre-interpretation J , with set union as the upper bound
operator. The conditions satisfied by a condensing domain are usually stated in
terms of the abstract unification operation (namely that it should be idempotent
and commutative) and the upper bound t on the domain (which should satisfy
the property γ(X t Y ) = γ(X) ∪ γ(Y )). The latter condition is clearly satisfied
(t = ∪) in our domain). Abstract unification is not explicitly present in our
framework. However, we argue informally that the declarative equivalent is the
abstraction of the equality predicate X = Y . This is the set {d = d | d ∈ DJ}
where DJ is the domain of the pre-interpretation. This satisfies an idempotency
property, since for example the clause p(X, Y )← X = Y, X = Y gives the same
result as p(X, Y )← X = Y . It also satisfies a relevant commutativity property,
namely that the solution to the goal q(X, Y ), X = Y is the same as the solution
to q(X, Y ), where each clause q(X, Y ) ← B is replaced by q(X, Y ) ← X =
Y,B. These are informal arguments, but we also note that the goal-independent
analysis yields the least, that is, the most precise, model for the given pre-
interpretation, which provides support for our claim that domains based on
pre-interpretations are condensing.

3 Tree Automata for Binding-Time Analysis

Offline partial evaluation techniques rely on an annotated version of the source
program to control the specialisation process. These annotations consist of bind-
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ing types along with control indicators, which guide the specialisation and ensure
the termination of the partial evaluation.

A binding type indicates something about the structure of an argument at
specialisation time. The basic binding types are usually known as static and
dynamic defined as follows.

– static: The argument is definitely known at specialisation time;
– dynamic: The argument is possibly unknown at specialisation time.

We will see that these binding types, and also more precise binding types can
be defined by means of regular type declarations.

For example, an interpreter may use an environment that is a partially static
data structure at partial evaluation time. To model the environment, e.g., as a
list of static names mapped to dynamic variables we would use the following
definition:

:- type binding = static / dynamic.
:- type list_env = [] | [binding | list_env].

We discuss the definitions of static and dynamic in the next section.
We present an type-based abstract interpretation for propagating the bind-

ing types. This algorithm has been implemented as part of the logen partial
evaluation system.

Definition of Modes as Regular Types Instantiation modes can be coded
as regular types. In other words, we claim that modes are regular types, and
that this gives some new insight into the relation between modes and types.
The set of ground terms over a given signature, for example, can be described
using regular types, as can the set of non-ground terms, the set of variables, and
the set of non-variable terms. Assume the signature Σ = {[], [ | ], s, 0} with the
usual arities, though clearly the definitions can be constructed for any signature.
The definition of the types static and dynamic over Σ ∪ {v} are static = 0 |
[] | [static|static] | s(static) and dynamic = v | 0 | [] | [static|static] | s(static)
respectively. We can add the binding types representing variable (var) and non−

Input states Output states Corresponding modes

g, var, any {any,g}, {any,var}, {any} ground, variable, non-ground-non-variable
g, any {any,g}, {any} ground, non-ground
var, any {any,var}, {any} variable, non-variable

Fig. 1. Mode pre-interpretations obtained from g, var and any

variable (nonvar) as var = v and nonvar = 0 | [] | [dynamic|dynamic] |
s(dynamic)

Using the determinization algorithm, we can derive other modes automat-
ically. Abbreviating static as g (for ground), dynamic as any, Table 1 shows
some disjoint modes obtained by determinisation of different combinations.
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Different pre-interpretations are obtained by taking one or both of the modes
g and var along with the type any, and then determinizing. The choices are
summarised in Figure 1. We do not show the transitions, due to lack of space.
To give one example, the mode non-variable in the determinized FTA computed
from var and any is given by the transitions for {any}.

{any} = 0 | [] | [{any}|{any}] | [{any, var}|{any}] | [{any}|{any, var}] |
[{any, var}|{any, var}] | s({any}) | s({any, var})

Let P be the naive reverse program shown below.

rev([], []). rev([X|U ],W )← rev(U, V ), app(V, [X],W ).
app([], Y, Y ). app([X|U ], V, [X|W ])← app(U, V,W ).

The result of computing the least model of P is summarised in Figure 2, with
the abbreviations ground=g, variable=v, non-ground=ng, non-variable=nv and
non-ground-non-variable=ngnv. An atom containing a variable X in the abstract
model is an abbreviation for the collection of atoms obtained by replacing X
by any element of the abstract domain. The analysis based on g and any is

Input types Model

g, v, any {rev(g, g), rev(ngnv, ngnv), app(g, var, ngnv), app(g, var, var),
app(g, g, g), app(g, ngnv, ngnv), app(ngnv, X, ngnv)}

g, any {rev(g, g), rev(ng, ng), app(g, X, X), app(ng, X, ng)}
var, any {rev(nv, nv), app(nv, X, X), app(nv, X, nv)}

Fig. 2. Abstract Models of Naive Reverse program

equivalent to the well-known Pos abstract domain [37], while that based on
g, var and any is the fgi domain discussed in [18]. The presence of var in
an argument indicates possible freeness, or alternatively, the absence of var
indicates definite non-freeness. For example, the answers for rev are definitely
not free, the first argument of app is not free, and if the second argument of app
is not free then neither is the third.

Combining Modes with Other Types Consider the usual definition of lists,
namely list = []; [any|list]. Now compute the pre-interpretation derived from
the types list, any and g. Note that list, any and g intersect. The set of disjoint
types is {{any, ground}, {any, list}, {any, ground, list}, {any}} (abbreviated as
{g, ngl, gl, ngnl} corresponding to ground non-lists, non-ground lists, ground
lists, and non-ground-non-lists respectively). The abstract model with respect
to the pre-interpretation is

{rev(gl, gl), rev(ngl, ngl),
app(gl,X,X), app(ngl, ngnl, ngnl), app(ngl, gl, ngl), app(ngl, ngl, ngl)}
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A given set of user types can be determinized together with types represent-
ing static, dynamic (that is, g and any) and var. Call types can be computed
from the abstract model over the resulting pre-interpretation, for example us-
ing a query-answer transformation (magic sets). This is a standard approach to
deriving call patterns; [11] gives a clear account and implementation strategy.

Let P be the following program for transposing a matrix.

transpose(Xs, [])← makerow([], [], []).
nullrows(Xs). makerow([[X|Xs]|Y s], [X|Xs1], [Xs|Zs])←

transpose(Xs, [Y |Y s])← makerow(Y s, Xs1, Zs).
makerow(Xs, Y, Zs), nullrows([]).
transpose(Zs, Y s). nullrows([[]|Ns])← nullrows(Ns).

Let row and matrix be defined as row = [] | [any|row] and matrix =
[] | [row|matrix] respectively. These are combined with the standard types
g, var and any. Given an initial call of the form transpose(matrix, any), BTA
with respect to the disjoint types results in the information that every call to the
predicates makerow and transpose has a matrix as first argument. More specif-
ically, it is derived to have a type {any,matrix, row, g} or {any,matrix, row},
meaning that it is either a ground or non-ground matrix. Note that any term of
type matrix is also of type row. This BTA is optimal for this set of types.

4 Analysis of Program Properties Expressed as Tree
Automata

Finite tree automata can capture properties of interest in a computational system
(represented below as Horn clauses). In the examples below, the properties are
then determinised and used to construct an analysis domain.

Infinite-State Model Checking The following example is from [42].

gen([0, 1]). trans1([0, 1|T ], [1, 0|T ]). trans(X, Y )←
gen([0|X])← gen(X). trans1([H|T ], [H|T1])← trans1(X, Y ).
reachable(X)← trans1(T, T1). trans([1|X], [0|Y ])←

gen(X). trans2([0], [1]). trans2(T, T1).
reachable(X)← trans2([H|T ], [H|T1])←

reachable(Y ), trans(Y, X). trans2(X, Y ).

It is a simple model of a token ring transition system. A state of the system is a
list of processes indicated by 0 and 1 where a 0 indicates a waiting process and
a 1 indicates an active process. The initial state is defined by the predicate gen
and the the predicate reachable defines the reachable states with respect to the
transition predicate trans. The required property is that exactly one process is
active in any state. The state space is infinite, since the number of processes (the
length of the lists) is unbounded. Hence finite model checking techniques do not
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suffice. The example was used in [6] to illustrate directional type inference for
infinite-state model checking.

We define simple regular types defining the states. The set of “good” states
in which there is exactly one 1 is goodlist. The type zerolist is the set of list
of zeros. (Note that it is not necessary to give an explicit definition of a “bad”
state).

one = 1 goodlist = [zero|goodlist] | [one|zerolist]
zero = 0 zerolist = [] | [zero|zerolist]

Determinization of the given types along with any results in five states repre-
senting disjoint types: {any, one}, {any, zero}, the good lists {any, goodlist},
the lists of zeros {any, zerolist} and all other terms {any}. We abbreviate these
as one, zero, goodlist, zerolist and other respectively. The least model of the
above program over this domain is as follows.

gen(goodlist) trans1(goodlist, goodlist), trans1(other, other)
trans2(other, other) trans(goodlist, goodlist), trans(other, other)
trans2(goodlist, other) reachable(goodlist)
trans2(goodlist, goodlist)

The key property of the model is the presence of reachable(goodlist) (and the
absence of other atoms for reachable), indicating that if a state is reachable
then it is a goodlist. Note that the transitions will handle other states, but in
the context in which they are invoked, only goodlist states are propagated. In
contrast to the use of set constraints or directional type inference to solve this
problem, no goal-directed analysis is necessary. Thus there is no need to define
an “unsafe” state and show that it is unreachable.

In summary, the examples show that accurate mode analysis can be per-
formed, and that modes can be combined with arbitrary user defined types.
Types can be used to prove properties expressible by regular types. Note that
no assumption needs to be made that programs are well-typed; the programmer
does not have to associate types with particular argument positions.

Further examples of the use of tree automata for expressing and analysing
properties of cryptographic protocols come from [24], [25] and [39].

5 Complexity and Scalability

5.1 Abstract Compilation of a Pre-Interpretation

The idea of abstract compilation was introduced first by Debray and Warren
[16]. Operations on the abstract domain are coded as logic programs and added
directly to the target program, which is then executed according to standard con-
crete semantics. The reason for this technique is to avoid some of the overhead
of interpreting the abstract operations. The implementation method is to trans-
form the program first, introducing equalities until every non-variable appears
as the right-hand-side of an equality, and no nested functions occur. Secondly
the program is transformed to an abstract domain program by interpreting these
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equalities as the pre-interpretation function. The stages of transformation are
illustrated for a single clause below.

rev([X|Xs],Zs) :- rev(Xs,Ys), append(Ys,[X],Zs).

rev(U,Zs) :- rev(Xs,Ys), append(Ys,V,Zs), [X|Xs]=U, [X|W]=V, []=W.

rev(U,Zs) :- rev(Xs,Ys), append(Ys,V,Zs), [X|Xs]→U, [X|W]→V, []→W.

To continue the example, the pre-interpretation capturing the properties
ground (g) and non-ground (ng) is given by the following facts defining the
relation →: {[] → g, [g|g] → g, [g|ng] → ng, [ng|g] → ng, [ng|ng] → ng}. The
least model of the transformed program together with the facts defining the
pre-interpretation is then computed.

When a specific pre-interpretation J is added to P̄ , the result is a domain
program for J , called P̄ J . Clearly P̄ J has a different language than P , since the
definition of→ /2 contains elements of the domain of interpretation. It can easily
be shown that least model MJ [[P ]] = lfp(T J

P ) is obtained by computing lfp(TP̄ J ),
and then restricting to the predicates in P (that is, omitting the predicate→ /2
which was introduced in the abstract compilation). An example of the domain
program for append and the pre-interpretation for variable/non-variable is shown
below. (Note that don’t care arguments are used in the definition of → /2).

app(U, Y, Y )← []→ U. app(U, Y, V )← app(X, Y, Z), [X|X]→ U, [X|Z]→ V.
v → var. []→ nonvar. [ | ]→ nonvar.

5.2 Efficient Computation of the Least Domain Model

The computation of the least model is an iterative fixpoint algorithm. The it-
erations of the basic fixpoint algorithm, which terminates when a fixed point
is found, can be decomposed into a sequence of smaller fixpoint computations,
one for each strongly connected component (SCC) of the program’s predicate de-
pendency graph. These can be computed in linear time [44]. In addition to the
SCC optimisation, our implementation incorporates a variant of the semi-naive
optimisation [46], which makes use of the information about new results on each
iteration. A clause body containing predicates whose models have not changed
on some iteration need not be processed on the next iteration.

The essential task in performing an analysis using finite pre-interpretations
(complete deterministic tree automata) can be seen as computing the minimal
model of a (definite) Datalog program [45], that is, a definite logic program
containing no function symbols with non-zero arity. Such programs have finite
models. Although there appear to be function symbols in the definition of the
pre-interpretation rules f(d1, . . . , dn)→ d, we can easily represent the rules us-
ing a separate predicate for each function symbol; say pref is the relation corre-
sponding to f . Then all atoms of form f(d1, . . . , dn)→ d would be represented as
the function-free atom pref (d1, . . . , dn, d) instead. Since function symbols occur
nowhere else in the abstract program, we are left with a Datalog program.

Efficient techniques for computing Datalog models have been studied exten-
sively in research on deductive database systems [45], and indeed, many tech-
niques (especially algorithms for computing joins) from the field of relational
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databases are also relevant. In the logic programming context, facts containing
variables are also allowed; tabulation and subsumption techniques have been
applied in a Datalog model evaluation system for program analysis [14].

The analysis method based on pre-interpretations is of course independent
of which technique is used for computing the model of the Datalog program.
Having transformed the analysis task to that of computing a Datalog program
model, we are free to choose the best method available. We do not give a detailed
account of the various techniques here, but remark only that current techniques
allow very large Datalog programs to be handled [49].

Our previous experiments [20] used a Prolog implementation, which though
it incorporated many optimisations such as computing SCCs and the semi-naive
strategy, did not scale well in certain dimensions. In particular, programs con-
taining predicates of high arity (such as the Aquarius compiler benchmark, which
has some predicates with arity greater than 25) could not be analysed for do-
mains with size greater than three. The number of possible tuples of arity n with
a domain of size m is mn, so this limitation is almost certain to apply to any
tuple-based representation. It was pointed out in [20] that improved representa-
tions of finite relations was a key factor in scaling up to larger domains.

Computing Datalog models using BDDs. Our current work uses the BDD-based
solver bddbddb developed by Whaley [48]. This tool computes the model of
a Datalog program, and provides facilities for querying Datalog programs. It
is written in Java and can link to established BDD libraries using the Java
Native Interface (JNI). Our experiments were conducted using bddbddb linked
to the BuDDy package [35]. We wrote a front end to translate our abstract logic
programs and pre-interpretations into the form required by bddbddb.

The possibility of using Boolean functions to represent finite relations was
exploited in model-checking [10], and in the logic programming context by [30].
Assume that a relation over Dn is to be represented, where D contains m ele-
ments. Then we code the m elements using k = dlog2(m)e bits and introduce n.k
Boolean variables x1,1, . . . , x1,k, x2,1, . . . , xn,1, . . . , xn,k. A tuple in the relation
is then a conjunction x1,1 = b1,1 ∧ . . .∧, xn,k = bn,k where bi,1 · · · bi,k is the en-
coding of the ith component of the tuple. A finite relation is thus a disjunction
of such conjunctions. BDDs allow very large relations, translated in this way
into Boolean formulas, to be represented compactly (though variable ordering is
critical, and there are some relations that admit no compact representation).

In a BDD-based evaluation of a Datalog program, the solution of each pred-
icate is thus represented as a Boolean formula (in BDD form) and the relational
operations required to compute the model can be translated into operations on
BDDs. For example, if we are solving the conjunction p(A,B), q(B,C) we take
the Boolean formulas representing the current solutions of p and q, say Fp and
Fq and build a new BDD representing the formula Fp ∧ Fq ∧ x2,1 = y1,1 ∧ . . . ∧
x2,k = y1,k where x1,1, . . . , x1,k, x2,1, . . . , x2,k and y1,1, . . . , y1,k, y2,1, . . . , y2,k are
the Boolean variables representing the respective arguments of p and q.

Representing and manipulating Boolean formulas is a very active research
field and there are other techniques besides BDDs that are competitive. In logic-
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program analyses, multi-headed clauses have demonstrated good performance
when compared to BDDs, for example [29].

5.3 An Algorithm for Determinisation

Product representation sets of transitions. The determinisation algorithm de-
scribed below generates an automaton whose transitions are represented in prod-
uct form, as described below, which is a more compact form and leads to a
correspondingly more efficient determinisation algorithm. A product transition
is of the form f(Q1, . . . , Qn) → q where Q1, . . . , Qn are sets of states and q is
a state. This product transition denotes the set of transitions {f(q1, . . . , qn) →
q | q1 ∈ Q1, . . . , qn ∈ Qn}. Thus

∏
i=1...n |Qi| transitions are represented by a

single product transition.

Example 7. Let Σ = {[]0, [ | ]2, 00}, and let Q = {list, listlist, any}. We define
the set ∆any in the usual way for Σ. Let Qf = {list, listlist}, ∆ = {[] →
list, [any|list] → list, [] → listlist, [list|listlist] → listlist} ∪ ∆any. The tran-
sitions of the DFTA generated for this NFTA can be represented in prod-
uct transition form as follows. ∆′ = {[] → q1, 0 → q3, [{q1, q2, q3}|{q3}] →
q3, [{q1, q2}|{q2}] → q2, [{q1, q2, q3}|{q1}] → q1, [{q3}|{q2}] → q2}. Thus 4 prod-
uct transitions replace the 9 transitions for [ | ]2 in the full DFTA. There are
other equivalent sets of product transitions, for example, ∆′ = {[] → q1, 0 →
q3, [{q1, q2}|{q3}] → q3, [{q1, q2}|{q2}] → q2, [{q1, q2}|{q1}] → q1, [{q3}|{q3}] →
q3, [{q3}|{q1}]→ q1, [{q3}|{q2}]→ q2}.

A Determinisation Algorithm Generating Product Form The algorithm
outlined in this section was based initially on the classical text-book algorithm
[12]. It differs firstly by introducing an index structure to avoid traversing the
complete set of transitions in each iteration of the algorithm, and secondly by
noting that the algorithm only needs to compute explicitly the set of states of
the determinised automaton. The set of transitions can be represented implicitly
in the algorithm and generated later if required from the determinised states and
the implicit form. However, in our approach the implicit form is close to product
transition form and we will use this form directly. Hence, we never need to
compute the full set of transitions and this is a major saving of computation.
Let 〈Q,Qf , Σ,∆〉 be an FTA. Consider the following functions.

– qmap∆ : (Q×Σ ×N )→ 2∆

qmap∆(q, fn, j) = {f(q1, . . . , qn)→ q0 ∈ ∆ | j ≤ n, q = qj}.
– Qmap∆ : (2Q ×Σ ×N )→ 2∆

Qmap∆(Q′, fn, j) =
⋃
{qmap∆(q, fn, j) | q ∈ Q′}.

– states∆ : 2∆ → 2Q

states∆(∆′) = {q0 | f(q1, . . . , qn)→ q0 ∈ ∆′}.
– fmap∆ : Σ ×N × 22Q → 22∆

fmap∆(fn, i,D) = {Qmap∆(Q′, fn, i) | i ≤ n, Q′ ∈ D} \ ∅.
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– C : 2Q

C = {{q | f0 → q ∈ ∆} | f0 ∈ Σ}
– F∆ : 22Q → 22Q

F∆(D′) = C ∪ {states∆(∆1 ∩ · · · ∩∆n) | fn ∈ Σ,
∆1 ∈ fmap∆(fn, 1,D′), . . . ,
∆n ∈ fmap∆(fn, n,D′)} \ ∅

The subscript ∆ is omitted in the context of some fixed FTA. The function
qmap∆ is an index on ∆, recording the set of transitions that contain a given
state q at a given position in its left-hand-side. Qmap∆ is the same index lifted
to sets of states.

The algorithm finds the least set D ∈ 22Q

such that D = F(D). The set D is
computed by a fixpoint iteration as follows.

initialise i = 0; D0 = ∅
repeat Di+1 = F(Di); i = i + 1 until Di = Di−1

It can be shown that the sequence D0,D1,D2, . . . increases monotonically (with
respect to the subset ordering on 22Q

) and clearly there exists some i such that
Di−1 = Di since Q is finite.

Example 8. Consider the following regular types (FTA transitions), in which
each transition has been labelled to identify it conveniently. We have Q =
{any, list} and ∆ = {t1, . . . , t5}.

t1 : []→ list t3 : []→ any
t2 : [any|list]→ list t4 : [any|any]→ any

t5 : f(any, any)→ any

The qmap function is as follows:

qmap(list, cons, 1) = ∅ qmap(list, cons, 2) = {t2} qmap(list, f, 1) = ∅
qmap(list, f, 2) = ∅ qmap(any, cons, 1) = {t2, t4} qmap(any, cons, 2) = {t4}
qmap(any, f, 1) = {t5} qmap(any, f, 2) = {t5}

There is only one constant, [], and C = {{any, list}}. Initialise D0 = ∅; the
iterations of the algorithm produce the following values.

1. D1 = {{any, list}}
2. D2 = {{any, list}, {any}}
3. D2 = D3

The determinised automaton can be constructed from the fixpoint D and Qmap.
The set of statesQ is D itself. The set of final statesQf is {Q′ | Q′ ∈ Q, Q′∩Qf 6=
∅}. The set of transitions is

{f(Q1, . . . , Qn)→ states(Qmap(Q1, f, 1) ∩ · · · ∩ Qmap(Qn, f, n)) |
fn ∈ Σ, Q1 ∈ Q, . . . , Qn ∈ Q}
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The transition for each constant f0 is f0 → {q | f0 → q ∈ ∆}. For the example
above, we obtain

[]→ {any, list}
[{any}|{any, list}]→ states(Qmap({any}, cons, 1) ∩ Qmap({any, list}, cons, 2))
→ states({t2, t4} ∩ {t2, t4})
→ {any, list}

[{any} | {any}]→ states(Qmap({any}, cons, 1) ∩ Qmap({any}, cons, 2))
→ states({t2, t4} ∩ {t4})
→ {any}

f({any}, {any})→ states(Qmap({any}, f, 1) ∩ Qmap({any}, f, 2))
→ states({t5} ∩ {t5})
→ {any}

and so on.

There are nine transitions in this small example. The algorithm returns a more
compact representation as a set of product transitions, namely:

[{{any}, {any, list}}|{{any, list}}]→ {any, list}
[{{any}, {any, list}}|{{any}}]→ {any}
f({{any}, {any, list}}, {{any}, {any, list}})→ {any}
[]→ {any, list}

The two states {any} and {any, list} denote non-lists and lists respectively. The
determinised automaton is a pre-interpretation over this two-element domain. In
general, a state {q1, . . . , qk} in a determinised automaton represents those terms
in the intersection of the original states q1, . . . , qk, and not in any other state.
Thus {any} always stands for terms that are f type any that are not of some
other type.

6 Deriving an FTA Abstraction of a Program

We now turn to a different aspect of the use of finite tree automata in program
analysis. We aim to derive a tree automaton that approximates a given program.
Previously, we supplied a tree automaton and built an analysis based on it.

Recursively defined sets of terms are familiar to us as approximations of the
runtime values of program variables. For example, the expression intlist ::=
[ ] | [int|intlist] defines a set called intlist containing all lists of integers, where
int denotes the set of integers. Such expressions are sometimes used by the
programmer to restrict the values that an argument or variable is allowed to take,
but in this paper we are concerned with deriving such descriptions statically,
rather than prescribing them.

Derivation of set expressions such as these has many applications including
type inference [17, 7], debugging [28], assisting compiler optimisations [31, 47],
optimising a theorem prover [15], program specialisation [23], planning [5] and
verification [7]. The first work in this area was by Reynolds [41]; other early
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research was done by Jones and Muchnick [33, 32]. In the past decade two differ-
ent approaches to deriving set expressions have been followed. One approach is
based on abstract interpretation [31, 47, 19, 13, 38], and the other on solving set
constraints derived from the program text [27, 17, 26, 2, 1, 34, 8, 40]. In abstract
interpretation the program is executed over an abstract type domain, program
variables taking on abstract values represented by types rather than standard
values. In set-constraint analysis, program variables are also interpreted as tak-
ing on sets of values, but a set of inclusion relations is derived from the program
text and then solved.

Cousot and Cousot pointed out [13] that set constraint solving of a particular
program P could be understood as an abstract interpretation over a finite domain
of tree grammars, constructed from P . Set constraint analysis can be seen as
one of a range of related “grammar-based” analyses. One practical advantage
of seeing set constraint solving as abstract interpretation (noted by Cousot and
Cousot) is that set-constraint-based analysis can be combined with other analysis
domains, using well established principles. A second advantage is that various
tradeoffs of precision against efficiency can be exploited without departing from
the abstract interpretation framework.

6.1 Abstract Domains of NFTAs

Let P be a definite logic program and M[P ] its minimal Herbrand model. We
will construct a set of NFTAs that forms the abstract domain for an abstract
interpretation of P .

Consider the set of occurrences of subterms of the heads of clauses in P ,
including the heads themselves; call this set headterms(P ). headterms(P ) is the
set of program points that we want to observe.

A function S will be defined from headterms(P ) to a set of identifiers. The
states of an NFTA will be constructed from these identifiers.

For instance, we might assign an identifier, say qX , to an occurrence of a
variable X in some clause head. The set of terms accepted at state {qX} in the
automaton that is produced will approximate the set of terms that could appear
as instances of X at that position. There will be one or more transitions in the
automaton of the form f(Q1, . . . , Qk)→ {qX}, where Q1, . . . , Qk are themselves
sets of identifiers.

Thus if S maps two distinct elements of headterms(P ) to the same state,
then we will not be able to distinguish the sets of terms that occur at the two
positions. We will consider two variants of the mapping, called SP

var, the variable-
based mapping, and SP

arg, the argument-based mapping, which differ in the degree
to which they distinguish different positions.

The S mapping is built from several components, representing the mappings
of arguments, variables, and other terms that occur in the clause heads. Let
Q,Args and V be disjoint infinite sets of identifiers. The mapping idP is chosen to
be any injective mapping headterms(P )→ Q. The set of argument positions is the
set of pairs 〈p, j〉 such that p is an n-ary predicate of the language and 1 ≤ j ≤ n.
The function argpos is some injective mapping from the set of argument positions
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to Args, that is, giving a unique identifier to each argument position. Let varid
be an injective mapping from the set of variables of the language to V. Let type
and any be distinguished identifiers not in Q∪ Args ∪ V.

We will assume for convenience that the clauses of programs have been stan-
dardised apart; that is, no variable occurs in more than one clause. The following
definitions define two different mappings from clause head positions to states.

Definition 6. SP
var

Let P be a definite program. The function SP
var : headterms(P ) → Q ∪ V ∪

{type} is defined as follows.
SP

var(t) = if t is a clause head, then type
else if t is a variable, then varid(t)
else idP (t)

Definition 7. SP
arg

Let P be a definite program. The function SP
arg : headterms(P )→ Q∪Args∪

V ∪ {type} is defined as follows.
SP

var(t) = if t is a clause head, then type
else if t occurs as argument j of predicate p, then argpos(〈p, j〉)
else if t is a variable, then varid(t)
else idP (t)

Example 9. Let P be the append program.

append([ ], A, A)← true append([B|C], D, [B|E])← append(C,D,E)

Taking them in textual order headterms(P ) is the following set. We can imagine
the different occurrences of the same term (such as A) to be subscripted to
indicate their positions, but we omit this extra notation.

{append([ ], A, A), [ ], A, A, append([B|C], D, [B|E]), [B|C], B, C, D, [B|E], B, E}.

Let Q = {q1, q2, . . .}; let idP map the ith element of headterms(P ) (in the
given order) to qi; let Args = {app1, app2, app3} and let argpos be the map-
ping such that argpos(〈append, 1〉) = app1, . . . , argpos(〈append, 3〉) = app3; let
V = {a, b, c, d, . . .}, and let varid(A) = a, varid(B) = b etc. Then SP

var is the
following mapping.

append([ ], A, A) 7→ type append([B|C], D, [B|E]) 7→ type D 7→ d
[ ] 7→ q2 [B|C] 7→ q6 [B|E] 7→ q10

A 7→ a B 7→ b B 7→ b
A 7→ a C 7→ c E 7→ e

The mapping SP
arg is given as follows.

append([ ], A, A) 7→ type append([B|C], D, [B|E]) 7→ type D 7→ app2

[ ] 7→ app1 [B|C] 7→ app1 [B|E] 7→ app3

A 7→ app2 B 7→ b B 7→ b
A 7→ app3 C 7→ c E 7→ e

It can be seen that SP
var distinguishes more states than SP

var, and hence will
lead to a finer-grained analysis.
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6.2 The Abstract Domains for a Program

Given a program P and a mapping SP : headterms(P ) → Q ∪ V ∪ {type} we
define the set of NFTAs that make up the abstract domain. The set contains all
the NFTAs whose states come from the powerset of the range of SP .

Definition 8. Abstract NFTA-Domains based on P and SP

Let P be a definite logic program, and let Σ be the set of function and predicate
symbols in P . Let RP = range(SP ), and let QP = 2RP

. Let ∆P be the set of
transitions {fnj

j (q1, . . . , qnj
) → q | f

nj

j ∈ Σ, {q1, . . . , qnj
, q} ⊆ QP }. Note that

the states q1, . . . , qnj
, and q are not elements of range(SP ), but rather sets of

elements.
Then DP is the following set of automata.

{〈QP , {type}, Σ,∆′ ∪∆Σ
any〉 | ∆′ ⊆ ∆P }

Note that range(SP ) is finite, and hence DP is finite.
Let R1 = 〈Q, {type}, Σ,∆1〉 and R2 = 〈Q, {type}, Σ,∆2〉 be two elements

of DP . We have an equivalence relation ≡ such that R1 ≡ R2 iff L(R1) ⊆
L(R2)∧L(R2) ⊆ L(R1). The abstract domain DP is the quotient set of DP under
≡, with the partial order induced by the subset order on the languages represented.
I.e. let d1, d2 ∈ DP , then d1 v d2 iff R1 ∈ d1 ∧R2 ∈ d2 ⇒ L(R1) ⊆ L(R2).

Define the concretisation functions γ : DP → 2Term(Σ), as γ(d) = L(R), where
R ∈ d and L(R) is the language of the NFTA R. γ is monotonic with respect to
the partial orders on DP and 2Term(Σ).

States that are sets containing more than one identifier represent products.
For instance, in the transition f({q1, q2}, {q3}) → {q}, the state {q1, q2} repre-
sents the product state. The set of terms accepted by R{q1,q2} is the product of
R{q1} and R{q2}.

6.3 Outline of Abstract Interpretation

A summary of the abstract interpretation proceeds as follows. A full description
appears in [22]. The least automaton, namely the automaton with zero transi-
tions, is the initial approximation.

On each iteration, the body of each clause is solved with respect to the current
approximation, yielding a possible empty set of solutions. Each solution is an
assignment of a state in QP to each occurrence of each variable occurring in
the clause body. Secondly, assignments to variables occurring more than once in
the body are checked for consistency. Namely, the product of the states assigned
to repeated occurrences of a variable should be non-empty. Finally, the set of
consistent assignments is projected onto the head variables. This yields a set
of transitions (after eliminating ε-transitions) which is added to the current
approximation.

The iterations continue until on some iteration no new transition is added.
Clearly the number of iterations is bounded since there is a finite number of
possible transitions, and the approximations monotonically increase.
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Example 10. Let P be the append program. Assume we use the state mapping
SP

var. On the first iteration we have:

reduce(true,Rmin) = {true} reduce(append(C,D,E), Rmin) = ∅.

For the first clause, projection onto clause head append([ ], A, A) gives these
transitions.

append(q2, a, a)→ type [ ]→ q2 any→ a

No transitions are returned from the second clause. On the second iteration, the
first clause returns the same result. Solving the clause body append(C,D,E) re-
turns the conjunction (q2(C), a(D), a(E)), since we can unfold append(C,D,E)
using the transition (in RUL form) type(append(X, Y, Z)) ← q2(X), a(Y ), a(Z)
obtained on the first step. Thus project gives the following transitions for the
second clause head.

append(q6, d, q10)→ type [b|c]→ q6 [b|e]→ q10 q2 → c
a→ d a→ e any→ b

Adding these to the results of the first iteration and eliminating ε-transitions we
obtain the following.

append(q6, d, q10)→ type [b|c]→ q6 [b|e]→ q10 [ ]→ c
any→ d any→ e any→ b

The third iteration yields the following new transitions, after eliminating ε-
transitions.

[b|c]→ c [b|e]→ e

No new transitions are added on the fourth iteration, thus the least fixed point
has been reached.

The argument-based approximation SP
arg generates the following sequence of

results: (only the new transitions on each iteration are shown).

(1) append(app1, app2, app3)→ type [ ]→ app1 any→ app2 any→ app3

(2) [b|c]→ app1 [ ]→ c [b|e]→ app3 any→ e any→ b
(3) [b|c]→ c [b|e]→ e

Considering the first argument of append, we can see that the variable-based
analysis is more precise. For instance, the term append([a], [ ], [ ]) is accepted
by the second automaton but not by the first. This is because the two clauses
of the append program are distinguished in the first, with two states (q2 and
q6) describing the first argument in the two clauses respectively. A single state
app1 describes the first argument in the argument-based analysis. However, in
this case (though not always), the precision of the variable-based analysis could
be recovered from the argument-based analysis. Further, note that the derived
automata are not minimal in the number of states. For example the states c and
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e could be eliminated in the argument-based analysis, giving an equivalent more
compact result.

append(app1, app2, app3)→ type [ ]→ app1 any→ app2 any→ app3

[b|app1]→ app1 [b|app3]→ app3 any→ b

As argued in [13], there is a procedure for solving set constraints generated
by a program which is isomorphic to the iterations of an abstract interpretation
as shown above.

6.4 Abstract interpretation over Infinite-height Domains of FTAs

In the method outlined above, the abstract domain is program-specific; this is
what allows the domain to be finite. Another approach is to define an infinite
domain - the set of all FTAs over a given signature and an infinite set of states.
We could also define the domain to be the set of all languages over a given
signature representable by FTAs.

An abstract interpretation on such a domain requires a widening in order to
ensure termination of the analysis. Typically, the approach generates FTAs that
describe as accurately as possible the initial iterations of the concrete fixpoint
semantics. As soon as the descriptions appear to be growing upboundedly, a
widening is introduced corresponding to a recursion in the transitions of the
automaton.

Example 11. Consider the append program again. The first iterations of the
concrete bottom-up “immediate consequence” operator return the sets.

1. {append([], X,X)}
2. {append([], X,X), append([A], X, [A|X])}
3. {append([], X,X), append([A], X, [A|X]), append([A,B], X, [A,B|X]), }
4. · · ·

The successive terms can be described reasonably accurately by the following
sets of transitions.

1. R1 = {append(q1, any, any)→ type, []→ q1}
2. R2 = R1 ∪ {append(q2, any, q3) → type, [any|q1] → q2, [] → q1, [any|any] →

q3}
3. R3 = R2 ∪ {append(q4, any, q5) → type, [any|q2] → q4, [any|q1] → q2, [] →

q1, [any|any]→ q3, [any|q3]→ q5}
4. · · ·

It can be seen that this sequence could be continued indefinitely, since each
iteration extends the terms accepted by the first argument of append. There
are various widening methods [31, 47, 19, 13, 38], which would in effect “notice”
the growth of the first argument and introduce a recursive transition which is a
fixpoint.

5. R4 = {append(q6, any, q3)→ type, []→ q6, [any|q6]→ q6, [any|any]→ q3}
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The complications of this approach are offset by two factors:

– In principle, greater precision is possible, since any set of terms can be ap-
proximated arbitrarily closely by some FTA.

– The finite-height domain is determined by syntactic factors in the source
program. For some applications (e.g. online program specialisation [21]) the
program itself is being unfolded or otherwise transformed. The widening
approach adapts more flexibly to such dynamic applications.

6.5 Deriving an FTA Approximation by Solving Constraints

As outlined in Section 1, procedures exist that transform formulas in some lan-
guage into FTAs. Examples are definite set constraints [27] and proper unary
clauses [17]. Another approach to deriving an FTA approximation of a program
can thus be summarised as follows:

1. Given a program P with least model M [P ], first construct a set of formulas
FP which are definite set constraints [27] or proper unary clauses [17], such
that FP describes some superset of M [P ].

2. Solve the formulas FP , obtaining an explicit solution represented as an FTA.

Cousot and Cousot [13] show that this method can also be presented as abstract
interpretation over a program-specific, finite height domain, as outlined in Sec-
tion 6.1. However the advantages and disadvantages from an algorithmic point
of view of the various approaches is still a subject of research.
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