Introduction to propositional logic

Torben Braüner Roskilde University

Plan

- Symbolization of sentences
- Syntax
- Semantics

In propositional logic we consider declarative sentences

Examples

"The sun is red"

"All sparrows are birds"

"My name is Torben"

"It is raining"

Note: There are other sorts of sentences

Syntax of propositional logic

The propositional symbols p, q, r, ... stands for propositions

Propositional symbols are <u>atomic formulas</u> with which <u>compound formulas</u> are built using the <u>connectives</u>

 $\neg,\ \wedge,\ \vee,\ \Rightarrow$

together with parantheses

The connectives stand for respectively

"not", "and", "or", "implies"

Examples of formulas

 $\neg p, (\neg p \lor q), (p \Longrightarrow q), (((p \Longrightarrow q) \land p) \Longrightarrow q)$

The formula $\neg p$ is built using the connective \neg and the atomic formula p,

The formula $(\neg p \lor q)$ is built using the connective \lor and the formulas $\neg p$ and q, etc.

Parantheses are often omitted like in the formula ¬pvq

Deklarative sentences are <u>symbolized</u> using formulas

Examples of symbolizations

If p and q symbolizes the sentences

"The sun is red" and "My name is Torben"

Then the formula \neg_p symbolizes the sentence

"The sun is not red"

and $\neg p \lor q$ symbolizes

"The sun is not red or my name is Torben"

Semantics of propositional logic

We call T og F <u>truth-values</u>

To <u>assign</u> a propositional symbol the truth-value T is to assume that it stands for a true proposition

Analogously, to assign a propositional symbol the truthvalue F is to assume that it stands for a false proposition

A propositional symbol is assigned either ${\tt T}$ or ${\tt F}$

Truth-tables

To each connective there is a <u>truth-table</u>

φ	$\neg \phi$	φψφ∧ψ	$\phi \psi \phi \forall \psi$	φψφ⇒ψ
Т	F	ТТТ	ТТТ	ТТ Т
F	Т	TF F	TF T	TF F
		FT F	FT T	FT T
		FF F	FFF	FF T

Thereby any compound formula can be given a truth-table

(Greek letters ϕ , ψ , θ , ... stand for arbitrary formulas)

Examples of truth-tables

Alternative to truth-tables

- $-\phi$ is true if and only if ϕ is not true
- $\phi \wedge \psi$ is true if and only if ϕ is true and ψ is true
- $\phi \lor \psi$ is true if and only if ϕ is true or ψ is true
- $\varphi \Rightarrow \psi$ is true if and only if φ is true imples that ψ is true

Such <u>truth-conditions</u> contain the same information as the truth-tables

A couple of definitions

A formula is a <u>tautology</u> if and only if it is true whatever truthvalues the involved propositional symbols are assigned

Two formulas are <u>logically equivalent</u> if and only if they have the same truth-table

(That is, the formulas φ and ψ are logically equivalent if and only if the formula $(\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$ is a tautology)

Examples

P is equivalent to ¬¬p

p∨¬p is a tautology

 $\neg p \lor q$ is equivalent to $\neg (p \land \neg q)$ (and also to $p \Rightarrow q$)

(Se earlier slides)

A tautology is true exclusively due to its form

Linguistically, a tautology corresponds to a sentence that is true exclusively due to its grammatical form

Examples

If r symbolizes the sentence

"The sun is shining"

then rv - r symbolizes

"The sun is shining or the sun is not shining"

Such a sentence does not give any information

Another definition

The formula φ is a <u>logical consequence</u> of the formulas ψ_1 , ..., ψ_m if and only if φ is true for all assignments of truth-values where ψ_1 , ..., ψ_m are all true

(That is, if and only if the formula $(\psi_1 \land ... \land \psi_m) \Rightarrow \phi$ is a tautology)