CHAPTER 3

IMPLEMENTING CLASSES

Chapter goals

"0 become familiar with the process of implementing classes
"0 be able to Implement simple methods

To understand the purpose and use of constructors

To understand how to access instance fields and local variables
(To appreciate the importance of documentation comments)
(To implement classes for drawing graphical shapes)

Levels of abstraction: A car example

» Usarsof acar do not need to understand how black boxes work
 Interaction of ablack box with outside world is well-defined
— Driversinteract with car using pedals, buttons, etc.
— Mechanic can test that engine control module sends the right
firing signals to the spark plugs
— For engine control module manufacturers, transistors and
capacitors are black boxes produced by a manufacturer

« Encapsulation leads to efficiency:

— Mechanic deals only with car components (e.g. electronic
control module), not with sensors and transistors

— Driver worries only about interaction with car (e.g. putting
gasin the tank), not about motor or electronic control module

3

Levels of abstraction: Software design

« Old times. computer programs manipulated primitive
types such as numbers and characters

e Manipulating too many of these primitive quantitiesis
too much for programmers and leads to errors

 Solution: Encapsulate routine computations to software
black boxes

 Abstraction used to invent higher-level datatypes
 |n object-oriented programming, objects are black boxes

« Encapsulation: Programmer using an object knows about
Its behavior, but not about its internal structure

Software design (cont.)

 |n software design, you can design good and bad
abstractions with equal facility; understanding what
makes good design is an important part of the
education of a programmer

» First, define behavior of aclass,; then, implement it

Specifying the public interface of aclass

Behavior of bank account (abstraction):
— deposit money
— withdraw money
— get balance

Speciftying the public interface of aclass:

Methods
Methods of BankAccount class:
— deposit
— withdraw
— getBalance

We want to support method calls such as the following:
harrysChecking.deposit (2000) ;

harrysChecking.withdraw (500) ;
System.out .println (harrysChecking.getBalance()) ;

Specifying the public interface of aclass:

Method definition

Access specifier (such aspublic)
— return type (such as String or void)
— method name (such asdeposit)
— list of parameters (double amount for deposit)
— method body in { }

Examples:
- public void deposit (double amount) { . . . }
- public void withdraw(double amount) { . . . }

- public double getBalance() { . . . }

Syntax 3.1: Method definition

accessJoecifier returnType methodName(parameter Type
parameterName, . . .)
{

}

method body

Example:
public void deposit (double amount)

{
}

Pur pose:
To define the behavior of a method.

Specifying the public interface of aclass:

Constructor definition

e A constructor initializes the instance fields

e Constructor name = class name
ublic BankAccount ()

/ / body--filled in later

« Constructor body is executed when new object is created

* Statements in constructor body will set the internal data of the
object that is being constructed

» All constructors of aclass have the same name
e Compiler can tell constructors apart because of different parameters

10

Syntax 3.2: Constructor definition

accessJoecifier ClassName(parameter Type parameterName, . . .)
{

}

constructor body

Example:
public BankAccount (double initialBalance)

{
}

Pur pose:
To define the behavior of a constructor.

11

Public interface of BankAccount class

The public constructors and methods of a class form its public interface.

public class BankAccount

{

// Constructors
public BankAccount ()

{
}

public BankAccount (double initialBalance)

{
// body--filled in later

} 12

// body--filled in later

BankA ccount class (cont.)

// Methods
public void deposit (double amount)

{
)

public void withdraw (double amount)

{
)

public double getBalance ()

{
)

// private fields--filled in later

// body--filled in later

// body--filled in later

// body--filled in later

13

Syntax 3.3: Class definition

accessYoecifier class ClassName
{

constructors
methods
fields

}

Example:
public class BankAccount

{

public BankAccount (double initialBalance) {. . .}
public void deposit (double amount) {. . .}

}

Pur pose;
To define aclass, its public interface, and its implementation detail s

| nstance fields

An object stores its data in instance fields
Field: atechnical term for a storage location inside a block of memory
Instance of a class. an object of the class

» The class declaration specifies the instance fields public class
BankAccount

{

private double balance;

}

15

| nstance fields

* Aninstance field declaration consists of the following:
— access specifier (usually private)
— type of variable (such as double)
— name of variable (such as balance)

» Each object of aclass hasits own set of instance fields
* You should declare all instance fields as private

16

| nstance fields

Figure 5

Instance Fields

Instance
fields

17

Syntax 3.4: Instance field declaration

accesspecifier class ClassName

{

accessSpecifier fieldType fieldName

}...

Example:
public class BankAccount

{

private double balance;

}

Purpose:

To define afield that is present in every object of aclass.

18

Accessing instance fields

e Thedeposit method of the BankAccount class can access the private
Instance field:

public void deposit (double amount)

{

double newBalance = balance+amount;
balance = newBalance;

19

Accessing Instance fields (cont.)

 Other methods cannot:
public class BankRobber

{

public static void main(String[] args)
BankAccount momsSavings = new BankAccount (1000) ;
momsSavings.balance = -1000; // ERROR

}
}

* Encapsulation isthe process of hiding object data and providing methods
for data access

* To encapsulate data, declare instance fields as private and define public
methods that access the fields

20

|mplementing constructors

Constructors contain instructions to initialize the instance fields
of an object

public BankAccount ()

{

balance = 0;

}

public BankAccount (double initialBalance)

{

balance = initialBalance;

}

21

Constructor call example

¢ BankAccount harrysChecking = new BankAccount (1000) ;
— Create a new object of type BankAccount
— Call the second constructor (since a construction parameter is supplied)
— St the parameter variable initialBalance to 1000

— St the balance instance field of the newly created object to
initialBalance

— Return an object reference, that is, the memory location of the object, as
the value of the new expression

— Storethat object reference inthe harrysChecking variable

22

|mplementing methods

 Some methods do not return avalue
public void withdraw (double amount)

{

double newBalance = balance - amount;
balance = newBalance;

)

e Some methods return an output value
public double getBalance ()

{

return balance;

)

23

Method call example

e harrysChecking.deposit (500) ;
— Set the parameter variable amount to 500

— Fetch the balance field of the object whose
location isstored in harrysChecking

— Add the value of amount to balance and store
theresult in thevariable newBalance

— Sorethevalue of newBalanceinthe balance
Instance field, overwriting the old value

24

Syntax 3.5: the return statement

return expresson;

or
return;

Example:
return balance;

Pur pose:
To specify the value that a method returns, and exit the method.
The return value becomes the value of the method call expression.

25

The BankAccount class

public class BankAccount

{

public BankAccount ()

{
}

balance = 0;

public BankAccount (double initialBalance)

{
}

balance = initialBalance;

public void deposit (double amount)

{

double newBalance = balance + amount;
balance = newBalance;

26

The BankAccount class (cont.)

public void withdraw (double amount)

{

double newBalance = balance - amount;
balance = newBalance;

}

public double getBalance ()

{

return balance;

}

private double balance;

27

Unit Testing

Unit test: verifies that a class works correctly in
Isolation, outside a complete program.

To test aclass, write atester class.

Test class: a class with aman method that contains
statements to test another class.

Typically carries out the following steps:

— Construct one or more objects of the classthat Is
nelng tested

— Invoke one or more methods

— Print out one or more results

28

Unit Testing (cont.)

e Detallsfor building the program vary. In most

environments, you need to carry out these steps.

— Make a new subfolder for your program
— Make two files, one for each class

— Compile both files

— Run the test program

29

The BankAccount test class

public class BankAccountTester

{

public static void main(Stringl[] args)
{
BankAccount harrysChecking =
harrysChecking.deposit ()
harrysChecking.withdraw () ;

new BankAccount () ;

System.out .println (harrysChecking.getBalance()) ;

System.out.println ("Expected: 1500") ;

30

Categories of variables

nstance fields (balance in BankAccount)
_ocal variables (newBalance in deposit method)

Parameter variables (amount In deposit method)

31

Categories of variables (cont.)

An instance field belongs to an object
Thefields stay alive until no method uses the object anymore

In Java, the garbage collector periodically reclaims objects
when they are no longer used

Local and parameter variables belong to a method

Instance fields are initialized to a default value, but you must
Initialize local variables

32

