
1

CHAPTER 3

IMPLEMENTING CLASSES

2

Chapter goals

• To become familiar with the process of implementing classes
• To be able to implement simple methods
• To understand the purpose and use of constructors
• To understand how to access instance fields and local variables
• (To appreciate the importance of documentation comments)
• (To implement classes for drawing graphical shapes)

3

Levels of abstraction: A car example
• Users of a car do not need to understand how black boxes work
• Interaction of a black box with outside world is well-defined

– Drivers interact with car using pedals, buttons, etc.
– Mechanic can test that engine control module sends the right

firing signals to the spark plugs
– For engine control module manufacturers, transistors and

capacitors are black boxes produced by a manufacturer
• Encapsulation leads to efficiency:

– Mechanic deals only with car components (e.g. electronic
control module), not with sensors and transistors

– Driver worries only about interaction with car (e.g. putting
gas in the tank), not about motor or electronic control module

4

Levels of abstraction: Software design

• Old times: computer programs manipulated primitive
types such as numbers and characters

• Manipulating too many of these primitive quantities is
too much for programmers and leads to errors

• Solution: Encapsulate routine computations to software
black boxes

• Abstraction used to invent higher-level data types
• In object-oriented programming, objects are black boxes
• Encapsulation: Programmer using an object knows about

its behavior, but not about its internal structure

5

Software design (cont.)

• In software design, you can design good and bad
abstractions with equal facility; understanding what
makes good design is an important part of the
education of a programmer

• First, define behavior of a class; then, implement it

6

Specifying the public interface of a class

Behavior of bank account (abstraction):
– deposit money
– withdraw money
– get balance

7

Specifying the public interface of a class:
Methods

Methods of BankAccount class:
– deposit

– withdraw

– getBalance

We want to support method calls such as the following:
harrysChecking.deposit(2000);
harrysChecking.withdraw(500);
System.out.println(harrysChecking.getBalance());

8

Specifying the public interface of a class:
Method definition

Access specifier (such as public)
– return type (such as String or void)
– method name (such as deposit)
– list of parameters (double amount for deposit)
– method body in { }

Examples:
– public void deposit(double amount) { . . . }
– public void withdraw(double amount) { . . . }
– public double getBalance() { . . . }

9

Syntax 3.1: Method definition
accessSpecifier returnType methodName(parameterType

parameterName, . . .)
{

method body
}

Example:
public void deposit(double amount)
{

. . .
}

Purpose:
To define the behavior of a method.

10

Specifying the public interface of a class:
Constructor definition

• A constructor initializes the instance fields
• Constructor name = class name

public BankAccount()
{

// body--filled in later
}

• Constructor body is executed when new object is created
• Statements in constructor body will set the internal data of the

object that is being constructed
• All constructors of a class have the same name
• Compiler can tell constructors apart because of different parameters

11

Syntax 3.2: Constructor definition
accessSpecifier ClassName(parameterType parameterName, . . .)
{

constructor body
}

Example:
public BankAccount(double initialBalance)
{

. . .
}

Purpose:
To define the behavior of a constructor.

12

Public interface of BankAccount class
The public constructors and methods of a class form its public interface.

public class BankAccount
{

// Constructors
public BankAccount()
{

// body--filled in later
}
public BankAccount(double initialBalance)
{

// body--filled in later
}

13

BankAccount class (cont.)
// Methods
public void deposit(double amount)
{

// body--filled in later
}
public void withdraw(double amount)
{

// body--filled in later
}
public double getBalance()
{

// body--filled in later
}
// private fields--filled in later

}

14

Syntax 3.3: Class definition
accessSpecifier class ClassName
{

constructors
methods
fields

}

Example:
public class BankAccount
{

public BankAccount(double initialBalance) {. . .}
public void deposit(double amount) {. . .}
. . .

}

Purpose:
To define a class, its public interface, and its implementation details.

15

Instance fields
• An object stores its data in instance fields
• Field: a technical term for a storage location inside a block of memory
• Instance of a class: an object of the class
• The class declaration specifies the instance fields public class
BankAccount
{

. . .
private double balance;

}

16

Instance fields

• An instance field declaration consists of the following:
– access specifier (usually private)
– type of variable (such as double)
– name of variable (such as balance)

• Each object of a class has its own set of instance fields
• You should declare all instance fields as private

17

Instance fields

18

Syntax 3.4: Instance field declaration
accessSpecifier class ClassName
{

. . .
accessSpecifier fieldType fieldName
. . .

}

Example:
public class BankAccount
{

. . .
private double balance;
. . .

}

Purpose:
To define a field that is present in every object of a class.

19

Accessing instance fields

• The deposit method of the BankAccount class can access the private
instance field:
public void deposit(double amount)
{
double newBalance = balance+amount;
balance = newBalance;

}

20

Accessing instance fields (cont.)
• Other methods cannot:

public class BankRobber
{

public static void main(String[] args)
{

BankAccount momsSavings = new BankAccount(1000);
. . .
momsSavings.balance = -1000; // ERROR

}
}

• Encapsulation is the process of hiding object data and providing methods
for data access

• To encapsulate data, declare instance fields as private and define public
methods that access the fields

21

Implementing constructors
• Constructors contain instructions to initialize the instance fields

of an object
public BankAccount()
{
balance = 0;

}
public BankAccount(double initialBalance)
{

balance = initialBalance;
}

22

Constructor call example
• BankAccount harrysChecking = new BankAccount(1000);

– Create a new object of type BankAccount
– Call the second constructor (since a construction parameter is supplied)
– Set the parameter variable initialBalance to 1000
– Set the balance instance field of the newly created object to
initialBalance

– Return an object reference, that is, the memory location of the object, as
the value of the new expression

– Store that object reference in the harrysChecking variable

23

Implementing methods
• Some methods do not return a value

public void withdraw(double amount)
{
double newBalance = balance - amount;
balance = newBalance;

}

• Some methods return an output value
public double getBalance()
{
return balance;

}

24

Method call example
• harrysChecking.deposit(500);

– Set the parameter variable amount to 500
– Fetch the balance field of the object whose

location is stored in harrysChecking
– Add the value of amount to balance and store

the result in the variable newBalance
– Store the value of newBalance in the balance

instance field, overwriting the old value

25

Syntax 3.5: the return statement
return expression;
or
return;

Example:
return balance;

Purpose:
To specify the value that a method returns, and exit the method.
The return value becomes the value of the method call expression.

26

The BankAccount class
public class BankAccount
{

public BankAccount()
{

balance = 0;
}

public BankAccount(double initialBalance)
{

balance = initialBalance;
}

public void deposit(double amount)
{

double newBalance = balance + amount;
balance = newBalance;

}

27

The BankAccount class (cont.)
public void withdraw(double amount)
{

double newBalance = balance - amount;
balance = newBalance;

}

public double getBalance()
{

return balance;
}

private double balance;
}

28

Unit Testing

• Unit test: verifies that a class works correctly in
isolation, outside a complete program.

• To test a class, write a tester class.
• Test class: a class with a main method that contains

statements to test another class.
• Typically carries out the following steps:

– Construct one or more objects of the class that is
being tested

– Invoke one or more methods
– Print out one or more results

29

Unit Testing (cont.)

• Details for building the program vary. In most
environments, you need to carry out these steps:
– Make a new subfolder for your program
– Make two files, one for each class
– Compile both files
– Run the test program

30

The BankAccount test class

public class BankAccountTester
{

public static void main(String[] args)
{

BankAccount harrysChecking = new BankAccount();
harrysChecking.deposit(2000);
harrysChecking.withdraw(500);
System.out.println(harrysChecking.getBalance());
System.out.println("Expected: 1500");

}
}

31

Categories of variables

• Instance fields (balance in BankAccount)
• Local variables (newBalance in deposit method)
• Parameter variables (amount in deposit method)

32

Categories of variables (cont.)

• An instance field belongs to an object
• The fields stay alive until no method uses the object anymore
• In Java, the garbage collector periodically reclaims objects

when they are no longer used
• Local and parameter variables belong to a method
• Instance fields are initialized to a default value, but you must

initialize local variables

