
Part of CONTEXT’11:
The 7th International and Interdisciplinary Conference on
Modeling and Using Context 2011

6th International Workshop, CSLP 2011

Constraints and
Language Processing

Karlsruhe, Germany, 27 September 2011

Proceedings

Editors:

Philippe Blache

Henning Christiansen

Verónica Dahl

Jørgen Villadsen

2

Preface

This collection constitutes the Proceedings of CSLP 2011, the 6th International
Workshop on Constraints and Language Processing, which takes place together
with CONTEXT ’11, the 7th International and Interdisciplinary Conference on
Modeling and Using Context 2011, on September 27, 2011.

The CSLP 2011 workshop addresses the question of constraints and language
processing from an interdisciplinary perspective. Constraints are widely used in
linguistics, computer science, and psychology. How they are used, however, varies
widely according to the research domain: natural language processing, knowledge
representation, cognitive modelling, problem solving mechanisms, etc. These dif-
ferent perspectives are complementary, each one adding a piece to the puzzle. For
example, linguistics proposes in-depth descriptions implementing constraints in
order to filter out structures by means of description languages, constraint rank-
ing, etc. The constraint programming paradigm, on the other hand, shows that
constraints have to be taken as a systematic whole and can thus play a role
in building the structures (or can even replace structures). Finally, psycholin-
guistics experiment have been made, investigating the role of constraint systems
for cognitive processes in comprehension and production, as well as addressing
how they can be acquired. The years’ collocation with the CONTEXT’11 con-
ference underlines the application of constraints for context comprehension and
discourse modelling.

Previous CSLP workshops were held in 2008 (with ESSLLI, in Hamburg,
Germany), 2007 (with Context07, in Roskilde, Denmark), 2006 (with COLING-
ACL, Sydney, Australia), 2005 (with ICLP, Sitges, Spain), and in 2004 (as a
separate event, Roskilde, Denmark). After a pause of three years, CSLP 2011
aims to gather a new overview of the field and, once again, provide a forum for
a dialogue across disciplines, creating a potential for new research cooperations.

We want to thank all authors who submitted their very interesting papers,
the program committee for its in-depths reviews, and not least the organizers of
CONTEXT 2011, especially its workshop chair, Robert J. Ross, and the leader
of the local organization, Hedda R. Schmidtke, for hosting the workshop.

Roskilde Philippe Blache
September 2011 Henning Christiansen

Verónica Dahl
Jørgen Villadsen

3

Program Committee

Philippe Blache, CNRS & Université de Provence, France
Henning Christiansen, Roskilde University, Denmark
Verónica Dahl, Simon Fraser University, Canada & Tarragona, Spain
Barbara Hemforth, Université Paris Descartes, France
Helen de Hoop, Radboud University Nijmegen, Netherlands
Denys Duchier, Université d’Orléans, France
M. Dolores Jimenez-Lopez, Universitat Rovira i Virgili, Spain
Detmar Meurer, Universität of Tübingen, Germany
Patrick McCrae, Hamburg University, Germany
Véronique Moriceau, Université Paris XI, France
Gerald Penn, Universities of Toronto and Trinity College, Canada
Kiril Simov, Bulgarian Academy of Sciences, Bulgaria
Jørgen Villadsen, Technical University of Denmark

4

Table of Contents

Evaluating Language Complexity in Context: New Parameters for a
Constraint-Based Model . 7

Philippe Blache

Approaching the Chinese Word Segmentation Problem with CHR
Grammars . 21

Henning Christiansen and Bo Li

Cross-framework Grammar Engineering using Constraint-driven
Metagrammars . 32

Denys Duchier, Yannick Parmentier and Simon Petitjean

Situated Propositions with Constraints and Restricted Parameters 44
Roussanka Loukanova

Pairing Model-Theoretic Syntax and Semantic Network for Writing
Assistance . 56

Jean-Philippe Prost and Mathieu Lafourcade

5

6

Evaluating Language Complexity in Context:
New Parameters for a Constraint-Based Model

Philippe Blache

Laboratoire Parole et Langage
CNRS & Université de Provence

blache@lpl-aix.fr

Abstract. Language processing can be more or less difficult for human
subjects. It is then important to identify what are the complexity factors
not only to better understand cognitive mechanisms, but also in the
perspective of more realistic NLP tools. The problem is that existing
models have been experimented on very small examples, on written texts.
We present in this paper new parameters adapted to the description
of the processing difficulty in natural situations: spoken language, con-
versations, etc. These parameters account for the fact that information
comes from different modalities and that the form of the input in such
situations can be very variable, even ill-formed.
These parameters have been integrated into a constraint-based formal-
ism, making it possible to quantify them directly. The result is a compu-
tational difficulty model, opening the way to new investigation towards
a better understanding of language processing and acquisition.

Keywords: Difficulty, complexity, language processing, computational
model, constraints, Property Grammars

1 Introduction

Language processing is a complex task, both for human and machines. However,
we still do not know precisely what are the complexity factors explaining the fact
that some phenomena are more difficult to process, to understand or to acquire
than others. Unfortunately, language complexity studies rely until now on very
partial models, usually elaborated and validated with highly controlled linguistic
material. Very recently, some experiences have been done, trying to validate
models on medium-size corpora (see for example [Demberg08]). One conclusion
of such experiences is that a broad-coverage model has to bring together several
complexity parameters in order to cover more phenomena.

The problem is that these approaches only deal with written material. We
explore in this paper the possibility of elaborating a complexity model for lan-
guage in natural situation (typically conversational speech). In this perspective,
we propose first to specify new complexity parameters, adequate for spoken lan-
guage. We present then a way to implement these parameters as well as classical
ones into an constraint-based model. This approach renders possible to propose a
quantification of complexity, opening the way to new kinds of experimentations.

7

Before exploring these question, preliminary definitions are necessary. In the
following, we propose to distinguish subdivide complexity into two separate prob-
lems: language complexity and difficulty, specified as follows:

1. Language complexity : competence level
– Concerns general properties of language
– Depends on the system, brings together all parameters

2. Difficulty : performance level
– Concerns concrete realizations (text, speech)
– Two levels of difficulty
• Global Difficulty: interpretation difficulty of a sentence or an utter-

ance
• Local Difficulty: processing difficulty of a word or a given construction

Generally speaking, complexity is made of these two notions. In the following,
we only focus on difficulty. The difficulty model we propose is then part of a more
general complexity model.

2 Different Complexity Models

Linguistic complexity have been first studied in linguistic typology, in order
to compare different languages by means of several parameters. For example,
[Parkvall08] proposes a set of criteria taken from the World Atlas of Language
Structures1 and assigns the criterion a numerical value according to an empirical
complexity scale. Each language receive a complexity index which is a function
of the criteria values. However, this method is not precise enough, the criteria
being too general, leading to contradictory results (cf. [Nichols09]).

Psycholinguistics is the other domain that propose in-depth studies on this
question. Psycholinguists try to identify and quantify complexity parameters in
order to explain language processing and acquisition. These works usually rely
on the analysis of two mechanisms for sentence processing that can be source of
complexity: integration (insertion of a new element into an existing structure)
and storage (number of incomplete dependencies). We present in the remaining
of this section some classical approaches to this question.

The Incomplete Dependency Hypothesis (cf. [Gibson98]) evaluates com-
plexity in terms of incomplete structures to store. Example (1b) bears an em-
bedded constituent (the relative clause) separating the noun from the verb it
complements. The example (1c), which has two such constructions, is consid-
ered to be too complex to be interpretable. At the opposite, (1d) which has the
same lexical material and the same number of relatives is considered to be more
simple because without any break between the nouns and the verbs they are
subject of.

(1) a. The reporter disliked the editor.

1 http://wals.info/

8

b. The reporter [who the senator attacked] disliked the editor.
c. #The reporter [who the senator [who John met] attacked] disliked the editor.
d. John met the senator [who attacked the reporter [who disliked the editor]].

Dependency Locality Theory is a more complete approach (see [Gibson00]).
It describes the complexity in terms of referential objects occurring between two
syntactic structures, the latter to be integrated to the former. DLT takes into
account discourse referents, their integration and memory costs.

Discourse referents can have different impact in the processing according to
their status. A referent can be “new ” (typically introduced by a pronoun or a
proper noun) or “accessible” (already given, but indirectly). New referents (noted
DRn) require more processing costs.

– Integration costs: defined in DLT as the distance between a head and its
governor. It is approximated by the number of DRn between these two heads,

– Storage costs: the minimal number of syntactic heads needed in order to
build a complete well-formed sentence. For example, after a subject , a verb
is required to form a sentence.

Some works (cf. [Vasishth03]) propose that the kinds of costs described in
DLT can be counterbalanced by the Activation of a word. When a given word
(or category) is more predictable thanks to the context, it becomes easier to
integrate it in the structure. For example, the sentence (2b) is shown experimen-
tally to be processed more rapidly than (2a), contrarily to what is predicted by
the IDH or DLT:

(2) a. The rat the cat saw died.
b. The rat the cat briefly saw died.

In (2b), the presence of the adverb activates the first verb. Other experiments
show that this is regularly the case with pre-modifiers that always activate the
head. Comparable results are shown in [Hawkins10] that makes use of the number
of unsatisfied properties or rules at a given point: structures with more properties
satisfied early in the sentence are preferred.

Today, most experimental works in this domain use Surprisal (cf. [Hale01])
which relies on lexical and syntactic criteria. This parameter provides a possibil-
ity to identify locus of complexity into a sentence and gives an indication of the
overall complexity of the sentence in summing these values. This technique, sim-
ple and efficient, can be enriched in including other features such as semantics
(cf. [Landauer97], [Pynte08]).

Surprisal is however not fully adequate when dealing with natural speech for
mainly two reasons: information is multimodal (typically results from prosody,
syntax and gestures interaction) and utterances are often syntactically ill-formed
or non-canonical (see [Blache06]).

9

3 Information Complexity in Natural Interaction

As seen above, language complexity can have consequences at different levels, in
particular interpretation: a message is more or less complex to understand de-
pending on several parameters. Among them, the amount of available informa-
tion plays an important role. Our hypothesis is that lack of information renders
a message difficult to understand whereas redundancy (which comes to a large
amount of information) facilitates interpretation.

When dealing with language in natural situation, we know that information
comes from different sources (verbal and non verbal): taking into account only
one source comes to decrease the amount of information. The following example
illustrates this phenomenon for an interacting situation between two speakers.

The first figure shows an abstract of the information coming from the morpho-
syntactic analysis of a short utterance, made of two words. Without any other
context, each word bears some information represented by a feature structure.

[Speaker B] “him no”

phon him

SS | cat

hd Pro

index 1

per 3
gen masc
num sing

case dat

phon no

SS | cat
[
hd Adv
content | neg +

]

The content of each word defines a set of possible discourse referents: him
specifies a subset of possible referents (singular masculine). Se also know that
this referent will occupy an object position in the syntactico-semantic relation.
The adverb no brings the information that this relation will be negated.

The set of possible referents is very large, rendering the interpretation very
ambiguous and the difficult:

– him =
∑

DRobject[masc, sing]
– no =

∑
DRevent[negated]

In this situation, no other information being given (in particular the semantic
relation), no direct interpretation of the entire utterance is then possible.

The second figure illustrates the situation when prosodic information is ac-
cessible: a raising occurs with him, no being associated with a flat contour:

[Speaker B] “him no”
LH∗ LL

The prosody is typical to a binary topic/comment construction: we tell some-
thing about him, this event being negated. One important information brought
by prosody is that both items belong to a single construction, reducing the set
of possible interpretations:

– x ∈ DRhim ∧ y ∈ DRno ∧ x ; y

10

phon

[
him
accent rising

]

SS | cat

hd Pro

index 1

per 3
gen masc
num sing

inf-str | topic 1

phon

[
no
accent falling

]

SS | cat
[
hd Adv
content | neg +

]
inf-str | comment 2

The last figure illustrates the case when the entire situation is accessible, two
speakers interacting, speaker A showing by means of a deictic a person (let’s caul
him Paul) to speaker B, asking him a question (indicated by the final prosodic
contour):

[Speaker A] “do you appreciate him”
LH∗

[Speaker B] “him no”
LH∗ LL

These two utterances bring together information coming from lexicon and
morpho-syntax, prosody, gestures and the context (the fact that Paul is in the
scene), making it possible to build an interpretation. In this case, the set of
possible referent is reduced to one element, Paul, thanks to the synchronization
between a pronoun, a deictic gesture and a possible referent in the scene. The
following structure represents the different pieces of information and their links
indicated by means of coindexation.

phon him no

cont | sem 2

rel appreciate
agent speaker_B
patient 1

neg +

dtr | SS

cat

[
hd Pro
index 1

]
context 1

gesture

[
type deictic
ref 1 Paul

]

dtr | SS | cat
[
hd Adv
content | neg +

]

inf-str

[
topic 1

comment 2

]

Each piece of information in this example works as a constraint reducing the

set of possible referents, the final result being a unique referent, allowing unam-
biguous interpretation. This constraint-based process is exactly what we want to

11

implement in our model: as for problem solving, each new constraint facilitates
the interpretation by reducing the search space. In terms of difficulty modeliza-
tion, it is then necessary to integrate this aspect: more constraints means more
information, more information comes to difficulty minimization.

This aspect becomes clear when representing the corresponding examples by
means of graphs. In the situation where the transcription and the prosody are
accessible, but not the context neither the gestures, the only semantic relation
on top of which interpretation can be built is a topic/comment one:

At the opposite, when the entire context is accessible, a richer graph can be
built, leading to a single interpretation as follows:

Such a representation shows a possibility to evaluate the quantity of infor-
mation in terms of graph density. A high density semantic graph, bearing more
information, is easier to interpret than a low density one.

4 Ill-formedness and Difficulty

Besides multimodality, a difficulty model of natural speech has to take into
account ill-formedness and non canonical constructions, frequent in spoken lan-
guage. Several studies have shown that constraint violations are subject to a
cumulative effect (see for example [Keller00]): sentences can be ranked into a
grammaticality scale according to the number of violated constraints (some con-
straints being more important than others). Sentences with low grammaticality
ranking can also be judged as more difficult than others (this effect being also ob-
served in language acquisition (see [Sorace05]). More recently, some studies have
shown that constraint violation can be counterbalanced by other phenomena,
among them the quantity of positive information available (see [Blache06]).

We propose to integrate these aspects to the difficulty model by evaluating
precisely the different effects of constraint satisfaction/violation.

4.1 A Constraint-Based Representation

We briefly present in this section an approach making it possible to describe and
quantify the effects mentioned above by means of constraints. In this approach

12

(see [Blache05]), all information can be represented by means of a constraint.
They are of different types, implementing linear order, dependency, cooccur-
rence restrictions, arity, etc. The following table gives an example of constraints
describing properties of different phrases in French:

Constraint type Operational Seman-
tics

Example

Constituency Set of possible con-
stituents

Const(NP) = {Det, N, AP, PP, Rel, ...}

Linear Precedence (≺) Linear order between
constituents

Det ≺ N

Cooccurrency (⇒) Mandatory coooc-
currencies

V[ppass] ⇒ aux[fin]

{le, être[fin, acci]} ⇒ reflexive[acci]
Exclusion (⊗) Impossible coooccur-

rencies
reflexive ⊗ lui

lui ⊗ y
Uniqueness Constituents that

cannot be repeated
Uniqueness(NP) = {Det, N, PP, Rel, ...}

Dependency (;) Relations with the
head

NP ; V P

Adjacency (⊕) Constituents that
have to be in an
adjacent position

AP ⊕N

Table 1. Constraint types

In this approach, each linguistic information is represented by a constraint.
Parsing a sentence comes to evaluate the set of constraints, the result of the
parse being the set of satisfied constraints. In case of ill-formed or non-canonical
constructions, some constraints can be violated. In such situation, the result of
the parse is made of satisfied and violated constraints.

The interest of this approach is that it becomes possible to quantify the
result of the parse thanks to different values (number of satisfied and violated
constraints, their weights, etc.).

4.2 Compensation Effects

Constraints can be represented in terms of relations between the different con-
stituents. The result of a parse is then equivalent to a graph. The following
example shows a partial constraint graph for the sentence “John gave Mary a
book.” . This graph shows the main constraints (in particular linearity and de-
pendency):

13

Let’s take now the case where a constraint is violated such as in the example
“John gave Mary book.”. In this sentence, the lack of determiner generates a
constraint violation: the obligation constraint between the common noun and
the determiner is not satisfied. This situation is illustrated by the following
graph, showing a NP containing one violated constraint:

“John gave Mary book.”

Let’s analyze now the situation where an AP is realized before the noun in
the second NP in the sentence “John gave Mary red book.”. In this case, the
obligation constraint is still violated, but new other constraints, describing the
relation between the AP and the noun head are satisfied:

This sentence is considered by users as more acceptable than the previous.
Such effect is predicted by the fact that new constraint are satisfied in the ill-
formed NP, counterbalancing in a certain sense the effect of the violation. The
same effect can be observed when other complements or adjuncts are realized
such as in the following example, with a relative clause:

14

In these examples, new adjuncts bring more information in the NP both at
the syntactic and the semantic levels. The NP correspond to a more specific
referential object and then becomes more easily accessible. In a certain sense,
adding more information facilitates the interpretation and partly compensate
ill-formedness. This phenomenon is observed in many different situations, it
comes to a positive cumulativity, besides the negative one: sentences with a large
amount of satisfied constraints are more easily processed than others containing
less information. Moreover, the amount of satisfied constraints can compensate
constraint violation.

5 New Parameters for Difficulty Modelization

An integrated model of difficulty has to take into account various difficulty pa-
rameters. As seen above, sparseness and ambiguity play an important role in the
modelization, they have been shown, through surprisal, to be good predictors of
difficulty. However, example taken from natural situations (as presented in the
previous section) show that information can be more or less precise, with direct
consequence on interpretation difficulty.

Moreover, new difficulty models also need to be experimented against large
amount of data. A first step in this end has been experimented in [Demberg08]
which proposes to compare on a large corpus surprisal prediction with eye-
tracking results. Such experiences requires robust methods able to deal with
large corpora. Moreover, the study of difficulty in language processing has now
to take into account natural language interaction. This means two requirements,
to integrate to a model:

– necessity to take into account different sources of information, coming from
different domains and modalities

– necessity to deal with non-canonical constructions

This general ideas can be formulated into new parameters to be integrated
into the model:

1. Information density (noted ID)

15

– ID is the quantity of evaluable properties, measuring the graph density.
– ID has consequence on difficulty: high ID reduces search space and fa-

cilitates interpretation.
– ID is a global difficulty parameter (takes into account the entire utter-

ance).

2. Cumulativity
– Ill-formed constructions increase difficulty, the more constraints (or prop-

erties) are violated, the highest the difficulty is: there is a negative cu-
mulativity effect.

– The importance of linguistic properties present (or satisfied) in the utter-
ance can compensate negativity: this is the positive cumulativity effect.

– Cumulativity is a local difficulty parameter.
– Cumulativity is a symbolic model for surprisal.

Information density implements multimodality in taking into account all
kinds of properties, from any domain. On its side, cumulativity describes ill-
formedness, but also compensation aspects occurring in natural situations. These
parameters render quantifiable high-level information in a symbolic manner pro-
vided that the different linguistic properties can be represented and evaluated.

6 A Computational Model

We propose to integrate different parameters in our difficulty model. These pa-
rameters can be evaluated thanks to the constraint-based approach presented
above. The idea consists in quantifying the different parameters on the basis of
the set of evaluated constraints. The interest of such a set (also called charac-
terization set), is that both density, cumulativity as well as grammaticality can
be easily quantified.

We propose in this section a quantification method for different parameters
relying on the analysis of the state of the constraint system after the parse.
More precisely, we propose a method implementing each complexity parameter
in terms of constraints: starting from the characterization set C (containing for a
given sentence the set of satisfied and violated constraints), different procedures
are presented in order to assign the corresponding parameter a value.

Incomplete Dependency: This parameter relies on the number of elements
between the head and a complement. Two constraints identifies this situation:
dependency and linearity. For a given category Ci, the incomplete dependency
value is the number of dependency relations coming from categories preceded by
Ci and going to Ci or categories that precede Ci. It can be defined as follows2:

ID[Ci] = |{Ck ; Cj | (Cj � Ci) ∧ (Ci ≺ Ck)}| (1)
2 This simple definition has been suggested by an anonymous reviewer, as well as the
operational semantics of the Dependency Locality rule (next paragraph).

16

Dependency Locality: Integration costs of DLT rely on the referents between
a head and its dependent before it. The parameter value is the number of such
referent. The following rule has a logical left-hand side and a side-effecting right-
hand side, indicating that RHS has to be executed for every solution of the LHS
in the characterization.

[(Ci ; Cj) ∧ (Ci ≺ Cj)] ∧ [@k | (Ck ; Cj) ∧ (Ck ≺ Ci)]⇒ DLT [j]← |DRn[i,j]|
(2)

with DRn[i,j] = {Cl[+ref] | i ≤ l ≤ j}

This constraint identifies the leftmost dependent Ci of a head Cj . The DLT
value is the cardinality of the set of the discourse reference between these two
categories.

Activation: The activation degree of a category Ci can be evaluated as the
weight of all the relations with other categories Cj that precedes it. The following
function quantifies this activation in identifying for a given category Ci at a
position i the number of constraints that takes Ci as an argument. It consists
in traversing the set of constraints and selecting the constraints between two
categories, Ci being the last.

Activation(Ci) =
∑

Weight(PCi) with PCi = {P (x,Ci) | (xtCj)∧(Cj ≺ Ci)}
(3)

The set of constraints activated for Ci is noted PCi , a constraint is noted
P (x,Ci) with P representing the constraint type and x a constraint argument.
When x unifies with a category preceding Ci and entering into a constraint rela-
tion with Ci, the corresponding constraint is added to PCi

. In order to take into
account the relative importance of each constraints, their weights are summed.
Finally, a category is highly activated when it is the target of a high number of
constraints.

In our model, activation is a facilitation parameter, it is then inversely pro-
portional to difficulty.

Information Density: The first parameter describing density relies on the
number of constraints used in the parse, taking into account the number of
categories. In terms of graph, this ratio represents the density of the graph:

Density =
nb of constraints

nb of categories
(4)

In our hypothesis, a dense graph represents a sentence (or an utterance)
for which a lot of constraints can be evaluated. Let’s remind the fact that in
a complete description, these constraints are properties coming from all the

17

different domains (prosody, syntax, semantics, but also discourse, pragmatics,
gestures, etc.). High density means a lot of information. Moreover, having more
constraints means the possibility to reduce the search space and then facilitate
the interpretation. In conclusion, density is inversely proportional to difficulty.

Density has to be completed with another information about the theoretical
maximal density. Each category is described in the grammar by a certain number
of constraints. In some cases, very few constraints are necessary for a complete
description (e.g. adverbial phrases). Inversely, some other constructions require a
lot of constraints. It is then necessary to know whether a construction description
uses all or only part of the possible constraints describing it in the grammar.
We propose for this a completeness ratio indicating for a given constituent (or
construction) the proportion of possible constraints used for its parse. We call
this ration Completeness:

Completeness =
nb of evaluated constraints

nb of relevant constraints
(5)

In the same way as density, completeness also facilitates interpretation in
reducing ambiguity. It is inversely proportional to difficulty.

Cumulativity: As shown above, dealing with unrestricted linguistic material
(in particular spoken language) requires to implement robust methods. In our
constraint-based approach, constraint relaxation makes it possible to build a
parse whatever the form of the input. However, it is necessary to evaluate the
overall quality of the parse. For a given constituent, when all evaluated con-
straints are satisfied, its interpretation will be facilitated. Reciprocally, a lot of
violated constraints increases difficulty. We propose to measure this aspect with
the following ratio:

Satisfaction =
nb of satisfied constraints

nb of evaluated constraints
(6)

Finally,it is necessary to take into account positive as well as negative cumu-
lativity. Moreover, each constraint can have different importance, represented
by different weights. We propose a Quality ratio accounting for these aspects.
It relies on the sum of the weights of constraints that are satisfied in the parse
(noted W+) and the that of the violated ones (noted W−). The following ratio
proposed a normalized quantification of this information:

Quality =
W+ −W−

W+ +W−
(7)

The table 2 recaps the relative contribution of each parameter to the difficulty
model, some of them being proportional, some others inversely proportional to
difficulty.

A general computational model of complexity consists in bringing together
these different parameters and to complete them with other indications such as
the size of the description (i.e. Kolmogorov complexity) or surprisal.

18

Parameter Proportional Inversely proportional

Incomplete Dependency +
Dependency Locality +
Activation +
Density +
Completeness +
Satisfaction +
Quality +

Table 2. Contribution of Parameters to the Difficulty

7 Conclusion

Different difficulty models for language processing exist for written material. It
is now necessary to propose models accounting for uses in natural situations
(typically conversational speech). Such models have to account for specific phe-
nomena: information is spread over different modalities, utterances can be ill-
formed, interpretation can be rendered difficult due to ambiguity in reference
resolution, etc.

We have analyzed in this paper some of these specificities and proposed new
parameters. In particular, we have described the relations between information
density and difficulty: a lot of information, despite the fact that they require
more resources to be processed, facilitates the interpretation and then decreases
difficulty. In the same way, the utterances to parse are often ill formed or non
canonical, but not necessarily difficult to process. We have explained this fact
by compensation mechanisms: violated constraints can be conterbalanced by the
importance of the satisfied one.

Finally, the constraint-based representation we propose makes it possible to
quantify directly these different parameters, opening the way to an integrated
model of difficulty for language processing in natural context. This computa-
tional model renders possible new experimentations in language processing and
acquisition: all kinds of utterances can be evaluated and their difficulty quanti-
fied. We have now to validate the model in verifying that it is a good predictor
for human processing.

References

[Blache05] Blache P. (2005), “Property Grammars: A Fully Constraint-Based Theory”,
in Constraint Solving and Language Processing, H. Christiansen & al. (eds), LNAI
3438, Springer

[Blache06] Blache P. , B. Hemforth, & S. Rauzy (2006) “Acceptability prediction by
means of grammaticality quantification”, in proceedings of COLING/ACL 2006.

[Demberg07] Demberg V. & F. Keller (2007) “Eye-tracking evidence for integration
cost effects in corpus data”, in Proceedings of the 29th annual conference of the
cognitive science society

19

[Demberg08] Demberg V. & F. Keller (2008) “Data from eye-tracking corpora as evi-
dence for theories of syntactic processing complexity”, in Cognition, 109

[Gibson98] Gibson E. (1998) “Linguistic complexity: Locality of syntactic dependen-
cies”, in Cognition vol. 68 (1).

[Gibson00] Gibson, E. (2000) “The dependency locality theory: A distance-based the-
ory of linguistic complexity”. In A. Marantz, Y. Miyashita, & W. O?Neil (Eds.),
Image, language, brain: Papers from the first mind articulation project symposium,
MIT Press.

[Hale01] Hale J. (2001) “A probabilistic Earley parser as a psycholinguistic model”, in
proceedings of ACL-2001

[Hawkins01] Hawkins J. (2001) “Why are categories adjacent”, in Journal of Linguistics,
37.

[Hawkins10] Hawkins J. (2010) “Processing efficiency and complexity in typological
patterns”, in Oxford Handbook of Linguistic Typology, Oxford University Press.

[Kusters08] Kusters W. (2008) “Complexity in Linguistic Theory, Language Learning
and Language Change”, in Language Complexity, Miestamo et al. (eds), John Ben-
jamins.

[Keller00] Keller F. (2000) Gradience in Grammar. Experimental and Computational
Aspects of Degrees of Grammaticality, Phd Thesis, University of Edinburgh.

[Keller10] “Cognitively Plausible Models of Human Language Processing” in proceed-
ings of ACL-2010

[Landauer97] Landauer, Thomas K. and Susan T. Dumais (1997) “A solution to Plato’s
problem: The latent se- mantic analysis theory of acquisition, induction and repre-
sentation of knowledge”, in Psychological Review 104(2)

[Lindstrom08] Lindstrňöm E. (2008) “Language complexity and interlinguistic diffi-
culty”, in Language Complexity, Miestamo et al. (eds), John Benjamins.

[Miestamo09] Miestamo M. (2009) “Implicational hierarchies and grammatical com-
plexity”, in Language Complexity as an Evolving Variable, Sampson et al. (eds), Ox-
ford University Press.

[Nichols09] Nichols J. (2009) “Linguistic complexity: a comprehensive definition and
survey”, in Language Complexity as an Evolving Variable, Sampson et al. (eds), Ox-
ford University Press.

[Parkvall08] Parkvall M. (2008) “The simplicity of creoles in a cross-linguistic perspec-
tive”, in Language Complexity, Miestamo et al. (eds), John Benjamins.

[Pynte08] Pynte J., B. New and A. Kennedy (2008) “On-line contextual influences dur-
ing reading normal text: A multiple-regression analysis”, in Vision Research 48(21)

[Sorace05] Sorace A. & F. Keller (2005) “Gradience in Linguistic Data", in Lingua,
115.

[Vasishth03] Vasishth S. (2003) “Quantifying processing difficulty in human sentence
parsing: The role of decay, activation, and similarity-based interference”, in Proceed-
ings of Eurocogsci 03: The European Cognitive Science Conference 2003

20

Approaching
the Chinese Word Segmentation Problem

with CHR Grammars

Henning Christiansen and Bo Li

Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies

Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: {henning, bol}@ruc.dk

Abstract. Written Chinese text does not include separators between
words, as do European languages using space characters, and this cre-
ates the Chinese Word Segmentation Problem: given a text in Chinese,
divide it in a correct way into segments corresponding to words. Cor-
rectness means how a competent Chinese language user would do this.
CHR Grammars (CHRG) is an implemented grammar system that al-
lows highly flexible bottom-up analyses using rule-based constraint solv-
ing techniques. We demonstrate how different approaches to the problem
can be expressed in CHRG in a highly concise way, and how different
principles can complement each other in this paradigm. We do not claim
to have provided any improvement with methods currently in use, our
aims are a) to forward a way for further experimentation with solutions
to the problem, and b) to show how CHRG gives rise to succinct and
executable specifications of such methods. We present here some prelim-
inary and promising experiments tested on simple examples.

1 Introduction

Chinese text is written without explicit separation between the different words
and it is up to the reader to make this separation; however, periods are un-
ambiguously delineated using the special character “ ” which serves no other
purpose. The Chinese language presents the same collection of problems as any
other language with respect to automatic analysis, including syntactic (lexi-
cal, structural) and semantic ambiguities, unknown words, etc. Compared with
European languages, written Chinese exposes further problematic issues, most
notably the lack of word separators which is further emphasized by that fact that
most single characters, seen in isolation, may form a word, and quite many pairs
of two characters also form words. As in other languages, analysis is also made
difficult by the fact that certain parts may be left out of a sentence; as opposed
to most European languages, even the verb may be left out when obvious from
the context, though mostly verbs corresponding to “have” or “be”. Also, Chi-
nese has almost no inflectional markers. These facts make it even more difficult
to use syntactic constraints or cues to guide or validate a given segmentation.

21

The recent textbook [1] contains a good introduction to these difficulties also for
non-Chinese speakers.

Good solutions to the Chinese Word Segmentation Problem, henceforth re-
ferred to as CWSP, are evidently in demand for different kinds of digital process-
ing of Chinese text, ranging from simple type-setting (breaking text into lines),
over web search engines (text indexing and query processing), to (front-ends for)
different sorts of deep analysis. As Chinese is one of the most used languages on
the Internet,1 the problem has attracted much research attention; proceedings
of the CIPS-SIGHAN Joint Conferences on Chinese Language Processing since
2002 and previous workshops provide a good overview of the history and state of
the art of such methods [2]. Lexicon-based approaches, complemented by differ-
ent heuristics and statistical-based methods are dominating; see, e.g., [1, 3] for
overview. Controlled competitions between different Chinese word segmentation
systems have been arranged together with the CIPS-SIGHAN conferences. The
report from the 2010 competition [4] shows precision and recall figures up to
around 0.95 for tests on selected corpora. This seems quite impressive and indi-
cate only little room for improvement; on the other hand it is not obvious that
the reported results will hold on arbitrary unseen (types of) text.

Some general systems for Internet search such as Google2 and Baidu3 use
their own word segmentation algorithms which are not publicly available; [3]
provides some tests and discussion of these approaches.

CHR Grammars [5] is a grammar formalism and implemented system that
adds a grammar notation layer on top of the programming language of Con-
straint Handling Rules [6, 7], CHR, analogous to the way Definite Clause Gram-
mars [8] are added on top of Prolog. CHR itself was introduced in early 1990es
as a rule-based, logical programming language for writing constraint solvers for
traditional constraint domains such as integer or real numbers in a declarative
way, but has turned out to be a quite general and versatile forward-chaining rea-
soner suited for a variety of applications, including language processing through
CHRG. CHR, often in the shape of CHRG, have been used for a variety of
language processing tasks until now, but to our knowledge, not to Chinese be-
fore; see, e.g., [9–15]. In this paper we present the first, early experiments in
approaching CWSP using CHRG, and our experience so far is very promising in
that different principles for (partly) solving CWSP can be expressed in very ele-
gant ways. This should be seen in contrast to the difficulties and comprehensive
amount of detailed programming that would be necessary if similar experiments
and prototype implementations were made using a traditional programming lan-
guage such as Java or C.

In the following, we start giving a brief overview of CHRG in section 2. Sec-
tion 3 shows how a lexicon can be represented in a CHRG and demonstrates it for

1 Chinese is currently the secondly most used language on the Internet after English,
and, based on the current growth rate, it may very well be the most used in a few
years; consult, e.g., http://www.internetworldstats.com/stats7.htm.

2 http://www.google.com
3 http://www.baidu.com; the biggest Chinese web search engine.

22

a rudimentary CWSP method based on the so-called maximum match principle,
and 4 shows how two simple CHRG rules can split a text into smaller portions,
called maximum ambiguous segments, which can be analyzed separately. In sec-
tion 5, we discuss further principles that we would like to experiment with in
CHRG, and section 6 gives a short summary and a conclusion.

2 Brief Overview of CHR Grammars

We assume the terminology and basic concepts of CHR and Prolog to be known,
but the following introduction of CHR Grammars may also provide sufficient
insight to readers with a broader background. These grammars are implemented
as an additional layer of syntax on top of a Prolog-based CHR system and are
automatically compiled into CHR rules when loaded. The CHRG system and a
comprehensive Users’ Guide are available [16].

The basic idea is that grammar symbols (terminals and nonterminals) are
represented as constraints, decorated with integer numbers, that refer to posi-
tions in the text and in this way maintain the usual sequential order. Rules work
bottom up: when certain patterns of grammar symbols are observed in the store,
a given rule may apply and add new grammar symbols. Consider the following
example of a grammar given as its full source text.

:- chrg_symbols noun/0, verb/0, sentence/0.

[dogs] ::> noun.

[cats] ::> noun.

[hate] ::> verb.

noun, verb, noun ::> sentence.

end_of_CHRG_source.

Given the query

?- parse([dogs,hate,cats])

constraints corresponding to the three terminal symbols will be entered; the
three “lexical” rules will apply and add new grammar symbols representing the
recognition of two nouns and a verb in a suitable order such that the last rule
can apply and report the recognition of a sentence. The answer is given as the
final constraint store which will include the following constraint; notice that the
positions (or boundaries) in the string, that were invisible in the grammar, are
shown.

sentence(0,3).

The rules shown above are propagation rules, which add new grammar symbols
to the existing ones; when the arrow in a rule is replaced by <:>, the rule becomes
a simplification rule which will remove the symbols matched on the letfhand side;
there is also a form of rules, called simpagations, that allow to remove only some
of the matched symbols which will be shown below.

23

Notice that when simplification rules are used, the actual result of a parsing
process may depend on the procedural semantics of the underlying CHR system
(which rules are applied when), and a knowledge about this is needed for those
who want to exploit the full power of CHRGs. However, these properties imply
a natural handling of ambiguity: when propagation rules are used, all possible
analysis are generated in the same constraint store, while simplification rules
may be applied for pruning or sorting out among different solutions.

In some cases, it may be relevant to order the application of rules into phases
such that firstly all rules of one kind apply as much as possible, and then a next
sort of rules is allowed to apply. This can be done by embedding non-grammatical
constraints in the head of grammar rule, declared as ordinary CHR constraints.
We can illustrate this principle by a modification of the sample grammar above.

...

:- chr_constraint phase2/0.

{phase2}, noun, verb, noun ::> sentence.

Notice the special syntax with curly brackets, which is inspired by Definite Clause
Grammars [8]. This means that, in this rule, the constraint phase2 does not
depend on positions in the text, but must be present for the rule to apply. The
query for analysis should then be changed as follows.

?- parse([dogs,hate,cats]), phase2.

This means that first, the lexical rules will apply as long as possible (as they
are not conditioned by the constraint phase2), and when they are finished, the
sentence rule is allow to be tried. In this particular example, this technique will
in fact not change the result, but we give examples below where it is essential.

CHRG rules allow an extensive collection of patterns on the lefthand side for
how grammar symbols can be matched in the store: context-sensive matching,
parallel matching, gaps, etc.; these facilities will be explained below when they
are used in our examples. As in a Definite Clause Grammar [8], grammar symbols
may be extended with additional arguments that may store arbitrary information
of syntactic and semantic kinds.

CHRG runs under SICStus Prolog 4 [17] and SWI Prolog [18], which are
both capable of handling UNICODE characters, so Chinese characters and text
can be represented directly.

3 Representing Lexicon in a CHR Grammar;
Lexicon-Based Methods

The simplest way to represent a lexicon in a CHRG is a by sequence of short
rules as those we indicated as lexical rules above. For our first experiments with
CWSP, we represent a lexicon classifying words only. The following example
rules provide the lexicon for examples to follow.

24

Notice that the grammar contains two rather large words that look like com-
pounds, but which will be included in any dictionary as words as they are known
and fixed terms with fixed meanings.

The word grammar symbol may of course be extended with syntactic tags,
but for now we will do with the simplest form as shown.

A simple Lexicon-Based Method for CWSP, Maximum Matching

A first naive idea for CWSP may be to generate all possible words from the
input, followed by an assembly of all possible segmentations that happens to
include the entire input, and then a final phase selecting a best segmentation
according to some criteria. Obviously, this is of exponential or worse computa-
tional complexity and thus more efficient heuristics have been developed. One
such heuristics is the maximum matching method, which has been used in both
forward and backward versions; here we show the forward method (see [1] for
background). The sentence is scanned from left to right, always picking the
longest possible word; then the process continues this way until the entire string
has been processed.4

Three CHRG rules are sufficient to implement this principle. The first one,
which needs some explanation, will remove occurrences of words that are proper
prefixes of other word occurrences.

!word(_) $$ word(_), ... <:> true.

The “$$” operator is CHRG’s notation for parallel match: the rule applies when-
ever both of the indicated patterns match grammatical constraints in the store
for the same range of positions (i.e., substring). The symbol “...” refers to a
gap that may match any number of positions in the string, from zero and up-
wards, independently of whatever grammar symbols might be assiciated with
those positions.5 In other words, the pattern “word(), ...” matches any sub-
string that starts with a word. So when this is matched in parallel with a single

4 In theory, this may fail to capture the entire string, but as most single characters
can represent a word, this will be extremely rare.

5 In fact, gaps themselves are not implemented by matching, but affect how its neigh-
bouring grammar symbols are matched, putting restrictions on their word bound-

25

word, it can apply in exactly those cases where two words occur, one being a
(not necessarily proper) prefix of the other. Finally, the exclamation mark in
front of the first word indicates, in a rule having the <:> arrow (which other-
wise signifies simplification), a simpagation rule. The meaning is that here only
grammar symbols and constraints marked with “!” are kept in the store. The
true on the righthand side stands for nothing, meaning that no new constraints
or grammar symbols are added.

So when a string is entered, this rule will apply as many times as possible,
each time a lexicon rule adds a new word, and thus keeping only longest words.

In a second phase, we compose a segmentation from left to right, starting
from the word starting after position 0. The first rule applies an optional notation
in “:(0,)”, which makes the word boundaries explicit, here used to indicate
that this rule only applies for a leftmost word. The compose constraint is used
as described above to control that these rules cannot be applied before all short
words have been removed by the rule above.

{!compose}, word(W):(0,_) <:> segmentation(W).

{!compose}, segmentation(Ws), word(W) <:> segmentation(Ws/W).

Assuming the lexicon given above, we can query this program as follows, shown
also with the answer found (with constraints removed that are not important
for our discussion).

Here the method actually produces the right segmentation, meaning “The Cen-
tral People’s Government of the People’s Republic of China”; the “of” being
implicit in the Chinese text. Notice that there is actually a word spanning over
the split, namely the word for high-school. This example showed also the advan-
tage of combining the maximum match principle with having common terms or
idioms represented as entries in the lexicon.

We can show another example that demonstrates how maximum matching
easily can go wrong, with a suggestion for a repair. We extend the lexicon with
the following rules.

aries. In the example shown, it must hold that r1 ≥ r2 for the rule to apply where r1
and r2 designate the right boundary of the first, resp., the second word in the rule
head.

26

The sample sentence we want to check is “ ”, which can
be translated into English as “Li Ming is really considering the future things”
corresponding to the correct segmentation

.

Querying the maximum matching program as shown above for this sentence
gives the segmentation

that does not give sense to a Chinese reader. The problem is that the first two
characters are not seen as a unit, but the first character is taken as a single
word and thus the second and third second character are taken as a word, and
so on. In the middle of the sentence, the program accidentally gets on the right
track again and gets the remaining words right. Due to the high frequency of
two-character words in Chinese, it is easy to produce quite long sentences where
one wrong step in the beginning makes everything go wrong for the maximum
matching method.

If instead, in the example above, the two characters for the personal name
Li Ming are treated as one unit, everything would go right. This could suggest
that a specialized algorithm for identifying personal names might be useful as
an auxiliary for CWSP, as has been suggested among others by [19]. We can
simulate such a facility by adding a rule for this specific name as follows.

Finally, we mention that combinations of forward and backward maximum seg-
mentation have been used, and in those regions where the two disagree, more
advanced methods are applied; see, e.g., [20].

4 Identifying Maximum Ambiguous Segments

Another principle that may be used in algorithms for CWSP is to run a first
phase, identifying the maximum ambiguous segments of a text. We have distilled

27

the principle from a variety of methods that apply similar principles; we have
not been able to trace it back to a single source, but [1] may be consulted for an
overview and [2] for detailed contributions.

An ambiguous segment is defined as a contiguous segment s in which

– any two contiguous characters are part of a word,
– there are at least two words that overlap, and
– the first and last character are each part of a word entirely within s.

For example, if abcd and def are words, then the substring abcdef will form an
ambiguous segments, but not necessarily cdef or abcdefg. An ambiguous segment
is maximal, a MAS, whenever it cannot be expanded in any direction to form
a larger ambiguous segment. For example, if abc, cde, def, defg are words, then
the substring abcdefg may form a maximal ambiguous segment.

In other words, if no unknown words occur in a text, the splits between
the MASs will be definitive. Except in construed cases, the length of the MASs
are reasonable, which means that we can apply more expensive methods subse-
quently within each MAS, perhaps even with exponential methods that enumer-
ate and evaluate all possible segmentations.

Identifying these MASs can be done by very few CHR rules. For simplicity,
we introduce a grammar symbol maxap which covers MASs as well as single
words that can only be recognized as such. Assuming a lexicon defined as shown
above, which identifies any possible word in the text, the following two CHRG
rules and an additional Prolog predicate are sufficient to identify the maxaps.

word(W) ::> maxap.

maxap:R1, ... $$..., maxap:R2 <:> overlap(R1,R2) | maxap.

overlap((A1,B1),(A2,B2)):- A1 < B2, A2 < B1.

The second rule uses the auxiliary Prolog predicate overlap as a guard. The
presence of a guard, between the arrow and the vertical bar, means that the rule
can only apply in those cases where the guard is true. The overlap predicate
tests, as its name indicates, whether the two segments in the string occupied
by the two input maxaps do overlap. This grammar rule will gradually put to-
gether ambiguous segments and, via repeated applications, merge together so
only maximum ones remain.

We can test this program for the previous example, “Li Ming is really ...” as
follows.

This corresponds to splitting the sequence into the substrings

28

,

which then can be separately analyzed.

5 Further extensions

Our main sources on CWSP research [1, 2] report also statistically based methods
of different sorts, possibly combining with part-of-speech tagging. While part-of-
speech tagging is straightforward to add via the lexicon rules, CHRG is currently
not supported by machine-learning techniques to produce useful statistics. How-
ever, it is straightforward to integrate probabilities and other weighting schemes
in a CHRG: each constituent has an associated weight, and when a rule applies,
it calculates a new weight for the compound. Additional rules can be added that
prune partial segmentations of low weight. Comprehensive statistics concerning
ambiguity phenomena in Chinese text is reported by [21], which appears to be
very useful for further research into CWSP.

Furthermore, we can extend the CHRG rules with particular knowledge about
the Chinese language. For example, the sign “ ” (pronounced “de”) normally
serves as a marker that converts a preceding noun into an adjective; in fact, most
adjectives are constructed in this way from nouns which often have no direct
equivalent in European languages, e.g., adjective “red” is constructed from a
noun for “red things”. Thus, what comes before “ ” should preferably be a
noun.6 There are of course lots of such small pieces of knowledge that can be
employed and should be employed, and we may hope that the modular rule-based
nature of CHR can make it possible to add such principles in an incremental
way, one by one.

We did not yet approach the out-of vocabulary (OOV) problem, but one
direction to follow is to identify specific patterns in the way that a CHRG-based
analyzer attempts to solve the problem with a limited dictionary, including which
grammatical constraints that might be broken in this process. OOV words are
often proper names and it is obvious that a module for recognizing proper names
should be included. We have already referred to [19] that suggests an approach to
recognize person names, and [1] lists several characteristics than may be applied
in identifying also place names, transcription of foreign names, etc. We may
also refer to an interesting approach to OOV in CWSP that incorporate web
searches [22]. In [3] a method is suggested that involves web searches to evaluate
alternative suggestions for segmentations which also may improve performance
in case of OOV.

6 Conclusion

We have presented the first steps of experimentations using CHR Grammars to
approach the Chinese Word Segmentation Problem. This problem has a high

6 There are few additional usages of “ ” (where it is pronounced “di”), but these are
in special words that are expected to be included in any Chinese dictionary.

29

demand for efficient and precise solutions due to the high presence of the Chi-
nese language on the Internet, as well as for Chinese language processing in
general. It is also an interesting test case for the versatility of CHR Grammars.
We have demonstrated very concise and succinct contributions to solutions in
terms of CHR Grammar rules, which we take as a preliminary evidence for the
suitability of CHR Grammars as an experimental platform for the Chinese Word
Segmentation Problem.

We do not believe scaling to be a big issue for our approach:

– Periods in Chinese are always delimited in an unambiguous way, which puts
an upper limit to the length of the texts that need to be treated as a hole.

– The straightforward lexicon-as-grammar-rules approach that we have ap-
plied here, which is perfect for small prototypes, does not scale well to full
dictionaries. However, it is easy to get around this problem using an exter-
nal dictionary, so that a text is entered into the CHR Grammar system as a
character sequence (as shown here) together with constraints that represent
all possible word occurrences in the text.

Then CHR Grammars’ flexibility may be utilized to handle lots of special cases,
perhaps ordered into layered phases, as demonstrated in our examples. An im-
portant next step is to incorporate methods for handling OOV words.

Acknowledgements. This work is supported by the project “Logic-statistic mod-
elling and analysis of biological sequence data” funded by the NABIIT program
under the Danish Strategic Research Council.

References

1. Wong, K.F., Li, W., Xu, R., Zhang, Z.S.: Introduction to Chinese Natural Language
Processing. Morgan and Claypool publishers (2010)

2. ACL Anthology: A Digital Archive of Research Papers in Computational Lin-
guistics: Special Interest Group on Chinese Language Processing (SIGHAN) We-
barchive with all articles of CIPS-SIGHAN Joint Conference on Chinese Lan-
guage Processing 2010, Proceedings of the nth SIGHAN Workshop on Chinese
Language Processing, n = 1, . . . , 6, 2002–2010, Second Chinese Language Process-
ing Workshop. 2000. http://www.aclweb.org/anthology/sighan.html. Link checked
July 2011.

3. Li, B.: Research on Chinese Word Segmentation and proposals for improvement.
Master’s thesis, Roskilde University, Computer Science Studies, Roskilde, Denmark
(2011)

4. Zhao, H., Liu, Q.: The CIPS-SIGHAN CLP 2010 Chinese Word Segmentation
Bakeoff. In: Proceedings of the Joint Conference on Chinese Language Processing,
Association for Computational Linguistics (2010) 199–209

5. Christiansen, H.: CHR Grammars. Int’l Journal on Theory and Practice of Logic
Programming 5(4-5) (2005) 467–501

6. Frühwirth, T.W.: Theory and practice of Constraint Handling Rules. Journal of
Logic Programming 37(1-3) (1998) 95–138

30

7. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (August
2009)

8. Pereira, F.C.N., Warren, D.H.D.: Definite clause grammars for language analysis -
a survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence 13(3) (1980) 231–278

9. Christiansen, H., Dahl, V.: Logic grammars for diagnosis and repair. International
Journal on Artificial Intelligence Tools 12(3) (2003) 227–248

10. Bavarian, M., Dahl, V.: Constraint based methods for biological sequence analysis.
Journal of Universal Computing Science 12(11) (2006) 1500–1520

11. Dahl, V., Voll, K.D.: Concept formation rules: An executable cognitive model of
knowledge construction. In Sharp, B., ed.: NLUCS, INSTICC Press (2004) 28–36

12. Dahl, V., Blache, P.: Extracting selected phrases through constraint satisfaction.
In: Constraint Solving and Language Processing; Proceedings of the 2nd Interna-
tional Workshop. Volume 104 of Datalogiske skrifter, Roskilde University. (2005)
3–17

13. Christiansen, H., Have, C.T., Tveitane, K.: From use cases to UML class diagrams
using logic grammars and constraints. In: RANLP ’07: Proc. Intl. Conf. Recent
Adv. Nat. Lang. Processing. (September 2007) 128–132

14. Dahl, V., Gu, B.: A CHRG analysis of ambiguity in biological texts. In: CSLP ’07:
Proc. 4th Intl. Workshop on Constraints and Language Processing. Volume 113 of
Computer Science Research Report. (August 2007) 53–64 Extended Abstract.

15. Hecksher, T., Nielsen, S.T., Pigeon, A.: A CHRG model of the ancient Egyp-
tian grammar. Unpublished student project report, Roskilde University, Denmark
(December 2002)

16. Christiansen, H.: CHR Grammar web site; released 2002.
http://www.ruc.dk/˜henning/chrg (2002)

17. Swedish Institute of Computer Science: SICStus Prolog Website (checked 2012)
http://www.sics.se/isl/sicstuswww/site/index.html.

18. SWI Prolog Organization: SWI Prolog Website (checked 2012)
http://www.swi-prolog.org/.

19. Chen, Y., Jin, P., Li, W., Huang, C.R.: The Chinese persons name disambiguation
evaluation: Exploration of personal name disambiguation in Chinese news. In:
CIPS-SIGHAN Joint Conference on Chinese Language Processing 2010. (2010)
Online proceedings, http://aclweb.org/anthology/W/W10/W10-4152.pdf.

20. Zhai, F.W., He, F.W., Zuo, W.L.: Chinese word segmentation based on dictio-
nary and statistics. Journal of Chinese Computer Systems, 9(1) (2009) (No page
numbers given)

21. Qiao, W., Sun, M., Menzel, W.: Statistical properties of overlapping ambiguities
in Chinese word segmentation and a strategy for their disambiguation. In Sojka,
P., Horák, A., Kopecek, I., Pala, K., eds.: TSD. Volume 5246 of Lecture Notes in
Computer Science., Springer (2008) 177–186

22. Qiao, W., Sun, M.: Incorporate web search technology to solve out-of-vocabulary
words in Chinese word segmentation. In: Proceedings of 11th Pacific Asia Confer-
ence on Language, Information and Computation (PACLIC’2009). (2009) 454–463

31

Cross-framework Grammar Engineering using

Constraint-driven Metagrammars

Denys Duchier, Yannick Parmentier, and Simon Petitjean

LIFO, Université d’Orléans, F-45067 Orléans Cedex 2, France,
firstname.lastname@univ-orleans.fr,

WWW home page: http://www.univ-orleans.fr/lifo/

Abstract. In this paper, we present an abstract constraint-driven for-
malism for grammar engineering called eXtensible MetaGrammar and
show how to extend it to deal with cross-framework grammar engineer-
ing. As a case study, we focus on the design of tree-adjoining, lexical-
functional, and property grammars (TAG / LFG / PG).
A particularly interesting feature of this formalism is that it allows to
apply specific constraints on the linguistic structures being described.

Keywords: computational linguistics, formal grammar, metagrammar,
constraint solving.

1 Introduction

Many grammatical frameworks have been proposed over the last decades to
describe the syntax of natural language. Among the most widely used, one may
cite Tree-Adjoining Grammar (TAG) [1], Lexical-Functional Grammar (LFG)
[2], or Head-driven Phrase Structure Grammar (HPSG) [3]. These frameworks
present theoretical and practical interests. From a theoretical point of view, they
provide a formal device for the linguist to experiment with her/his theories.
From a practical point of view, they make it possible to automatically process
natural language in applications such as dialog systems, machine translation, etc.
They differ in their expressivity and complexity. Some reveal themselves more
adequate for the description of a given language than others. Still, for many of
these frameworks, large resources (i.e., grammars) have been designed, at first
by hand, and later via dedicated tools (e.g., integrated grammar environments
such as XLE for LFG [4]). In this paper, we are concerned with this complex task
of grammar engineering, keeping in mind the two above-mentioned theoretical
and practical interests.

Several approaches have been proposed for a computer-aided grammar engi-
neering, mainly to reduce the costs of grammar extension and maintenance. The
main approaches are 1. the automatic acquisition from treebanks (see e.g., [5]
for LFG), 2. systems based on an abstract description of the grammar, either via
transformation rules, also known as metarules (see e.g, [6] for TAG) or via a de-
scription language, sometimes called metagrammar (see e.g., [7] for TAG). The

32

advantage of the description-based approach (and especially metagrammars1)
over the automatic acquisition approach lies in the linguistic control it provides.
Indeed, these descriptions capture linguistic generalizations and make it possible
to reason about language at an abstract level. Describing language at an abstract
level is not only interesting for structure sharing within a given framework, but
also for information sharing between frameworks and / or languages.

This observation was already made by [9,10]. In their papers, the authors
showed how to extend an existing metagrammar for TAG so that both a TAG
and an LFG could be generated from it. They annotated TAG metagrammati-
cal elementary units (so-called classes) with extra pieces of information, namely
(i) LFG’s functional descriptions and (ii) filtering information to distinguish
common classes from classes specific to TAG or LFG. The metagrammar compi-
lation then generated an extended TAG, from which LFG rules were extracted.
To maximize the structure sharing between their TAG and LFG metagrammars,
the authors defined classes containing tree fragments of depth one. These frag-
ments were either combined to produce TAG trees or associated with functional
descriptions to produce LFG rules. This cross-framework experiment was ap-
plied to the design of a French / English parallel metagrammar, producing both
a TAG and a LFG. This work was still preliminary. Indeed (i) it concerned
a limited metagrammar (the target TAG was composed of 550 trees, and the
associated LFG of 140 rules) (ii) more importantly, there is no clear evidence
whether a generalization to other frameworks and / or languages could be pos-
sible (metagrammar implementation choices, such as tree fragment depth, were
not independent from the target frameworks).

Here, we chose to adopt a more generalized approach by designing an extensi-
ble metagrammatical language, that can handle an arbitrary number of distinct
target frameworks. The linguist can thus use the same formalism to describe dif-
ferent frameworks and grammars. Nonetheless, if one wants to experiment with
multi-formalism, e.g., by designing a parallel TAG / LFG grammar, nothing
prevents her/him from defining “universal” classes, which contain metagram-
matical descriptions built on a common sublanguage. Rather than designing a
new metagrammatical language from scratch, we propose to extend an existing
formalism, namely eXtensible MetaGrammar (XMG) [11], which seems particu-
larly adequate thanks to its modularity and extensibility.

The paper is organized as follows. In section 2, we briefly introduce TAG,
as well as the redundancy issues raising while developing large TAG grammars
(which motivated metagrammars). We then introduce the XMG metagrammat-
ical language and show how it can be used to design TAG grammars. In sec-
tion 3, we briefly introduce LFG and present an extension of XMG to describe
LFG grammars. In section 4, we introduce Property Grammar (PG) [12], and
present a second extension of XMG to generate PG grammars. In section 5, we
will generalize over these two extensions, and define a layout for cross-framework
grammar engineering. Finally, we conclude and give perspectives in section 6.

1 In rule-based descriptions, one has to carefully define the ordering of the applications
of rules [8], which makes it hard to design large grammars.

33

2 eXtensible Meta Grammar: generating Tree-Adjoining

Grammars with a metagrammar

2.1 Tree-Adjoining Grammar

TAG2 is a tree rewriting system, where elementary trees can be combined via
two rewriting operations, namely substitution and adjunction. Substitution con-
sists in replacing a leaf node labelled with ↓ with a tree whose root has the same
syntactic category as this leaf node. Adjunction consists in replacing an internal
node with a tree where both the root node and one of the leaf nodes (labelled
with ⋆) have the same syntactic category as this internal node. As an illustra-
tion, consider Fig. 1 below. It shows (i) the substitution of the elementary tree
associated with the noun John into the elementary tree associated with the verb
sleeps, and (ii) the adjunction of the elementary tree associated with the adverb
deeply into the tree associated with sleeps.

S

NP↓ VP VP

NP V VP⋆ ADV

John sleeps deeply

→

S

NP VP

John VP ADV

V deeply

sleeps

(derived tree)

Fig. 1. Tree rewriting in TAG

Basically, a real size TAG is made of thousands of elementary trees [14,15].
Due to TAG’s extended domain of locality, many of these trees share common
sub-trees, as for instance the relation between a canonical subject and its verb,
as shown in Fig. 2. To deal with this redundancy, the metagrammar approach
(in particular XMG) proposes to describe large TAG grammars in an abstract
and factorized way.

2.2 eXtensible MetaGrammar (XMG)

XMG is a metagrammatical language inspired by logic programming. The idea
behind XMG is that a metagrammar is a declarative logical specification of what
a grammar is. This specification relies on the following three main concepts:

• several dimensions of language (e.g. syntax, semantics) can be described;
• for each of these dimensions, descriptions are made of non-deterministic com-

binations of elementary units;
• for some of these dimensions, descriptions must be solved to produce models.

2 For a detailed introduction to TAG, see [13].

34

S

N↓ V⋄ N↓

Jean mange une pomme
John eats an apple

N

N⋆ S

C

que

S

N↓ V⋄

La pomme que Jean mange
The apple that John eats

Fig. 2. Structural redundancy in TAG

XMG’s extensibility comes from the concept of dimensions. These allow to
describe an arbitrary number of types of linguistic structures. Non-determinism
allows for factorization, and description solving for assembly and validation (i.e.,
well-formedness of the description according to some target framework). Here-
after, we will first use XMG to describe TAG. Then, we will apply XMG’s exten-
sibility to the description of other frameworks, namely LFG and PG. Eventually,
we will generalize over these applications.

When describing TAG trees with XMG, one defines both (i) tree fragments
and (ii) constraints that express how these fragments have to be combined to
produce the grammar. Two languages are thus used: a description language LD to
specify fragments, and a control language LC to specify combination constraints.

LD is based on the precedence and dominance relations. Furthermore, since
TAG allows for the labelling of syntactic nodes with feature structures, so does
LD. A description in LD is a formula built as follows:

Desc := x → y | x →+ y | x →∗ y | x ≺ y | x ≺+ y | x[f :E] | x(p:E) |

Desc ∧ Desc

where x, y refer to node variables, → (resp. ≺) to the dominance (resp. prece-
dence) relation, and + (resp. ∗) are used to denote the transitive (resp. reflexive
and transitive) closure of this relation. The square brackets are used to associate
a node variable with some feature structure. Parenthesis are used to associate a
node variable with some property (such as the TAG ⋆ property seen in Fig. 1).
Note that node variables are by default local to a description. If a node variable
needs to be accessed from outside its description, it is possible to use some ex-
port mechanism. Once a variable is exported, it becomes accessible using a dot
operator. For instance, to refer to the variable x in the description Desc, one
writes Desc.x. Here is an illustration of a fragment description in XMG (on the
right, one can see a minimal model of this description):

(x [cat : S] → y [cat : V]) ∧
(x → z (mark : subst) [cat : N]) ∧
(z ≺ y)

x [cat:S]

z ↓ [cat:N] y [cat:V]

LC offers three mechanisms to handle fragments: abstraction via parameter-
ized classes (association of a name and zero or more parameters with a content),

35

conjunction (accumulation of contents), and disjunction (non-deterministic ac-
cumulation of contents). A formula in LC is built as follows:

Class := Name[p1 , . . . , pn] → Content

Content := Desc | Name[. . .] | Content ∨Content | Content ∧ Content

As an illustration of LC , let us consider different object realizations. One
could for instance define the 4 fragments: (i) canonical subject, (ii) verbal mor-
phology, (iii) canonical, and (iv) relativized object, and the following combina-
tions, thus producing the two trees of Fig. 2:

Object → CanObj ∨ RelObj

Transitive → CanSubj ∧ VerbMorph ∧ Object

Metagrammar compilation. To produce a grammar from an XMG metagrammar,
we let the logical specification generate, in a non-deterministic way, descriptions.
In other words, the combination constraints are processed to generate descrip-
tions (one per dimension). For some dimensions, descriptions need to be solved
to produce models. This is the case for TAG, a constraint-based tree descrip-
tion solver is thus used to compute trees [11]. Note this solver actually checks
several types of constraints [16]: tree well-formedness constraints, TAG-related
constraints (e.g., unique node labelled ⋆), and language-related constraints (e.g.,
uniqueness and order of clitics in French).

As one of the first ambitions of XMG is multi-formalism, dimensions are an
efficient way to define different types of description language adapted to target
frameworks. Let us see how to define dimensions for LFG and PG.

3 Generating Lexical-Functional Grammars with a

metagrammar

3.1 Lexical-Functional Grammar

A lexical-functional grammar (LFG) consists of three main components: 1. context-
free rules annotated with functional descriptions, 2. well-formedness principles,
and 3. a lexicon. From these components, two main interconnected structures
can be built3: a c(onstituent)-structure, and a f(unctional)-structure. The c-
structure represents a syntactic tree, and the f-structure grammatical functions
in the form of recursive attribute-value matrices. As an example of LFG, con-
sider the Fig. 3 below. It contains a toy grammar and the c- and f-structures for
the sentence “John loves Mary”. In this example, one can see functional descrip-
tions labelling context-free rules (see (1) and (2)). These descriptions are made
of equations. For instance, in rule (1), the equation (↑ SUBJ) =↓ constrains the
SUBJ feature of the functional description associated with the left-hand side
of the context-free rule to unify with the functional description associated with

3 This connection is often referred to as functional projection or functional mapping.

36

the first element of the right-hand side of the rule. In other words, these equa-
tions are unification constraints between attribute-value matrices. Nonetheless,
these constraints may not provide enough control on the f-structures licensed by
the grammar, LFG hence comes with three additional well-formedness principles
(completeness, coherence and uniqueness) [2].

Toy grammar:

(1) S → NP VP
↑=↓ (↑ SUBJ) =↓ ↑=↓

(2) VP → V NP
↑=↓ ↑=↓ (↑ OBJ) =↓

(3) John NP, (↑ PRED) =′ JOHN ′, (↑ NUM) = SG, (↑ PRES) = 3

(4) Mary NP, (↑ PRED) =′ MARY ′, (↑ NUM) = SG, (↑ PRES) = 3

(5) loves V, (↑ PRED) =′ LOV E〈(↑ SUBJ) (↑ OBJ)〉′, (↑ TENSE) = PRESENT

c-structure: f-structure:
S

↑=↓

NP
(↑ SUBJ) =↓

VP
↑=↓

John
V

↑=↓
NP

(↑ OBJ) =↓

loves Mary

f1:

PRED ’LOVE
〈

(↑ SUBJ) (↑ OBJ)
〉

’

SUBJ f2:

PRED ’JOHN’

NUM SG

PERS 3

OBJ f3:

PRED ’MARY’

NUM SG

PERS 3

TENSE PRESENT

Fig. 3. LFG grammar and c-and f-structures for the sentence “John loves Mary”

3.2 Extending XMG for LFG

In the previous section, we defined the XMG language, and applied it to the
description of TAG. Let us recall that one of the motivations of metagrammars
in general (and of XMG in particular) is the redundancy which affects grammar
extension and maintenance. In TAG, the redundancy is higher than in LFG. Still,
as mentioned in [9], in LFG there are redundancies at different levels, namely
within the rewriting rules, the functional equations and the lexicon. Thus, the
metagrammar approach can prove helpful in this context. Let us now see what
type of language could be used to describe LFG.4

To describe LFG at an abstract level, one needs to describe its elementary
units, which are context-free rules annotated with functional descriptions (e.g.,
equations) and lexical entries using attribute-value matrices. Context-free rules

4 A specification language for LFG has been proposed by [17], but it corresponds more
to a model-theoretic description of LFG than to a metagrammar.

37

can be seen as trees of depth one. Describing such structures can be done in
XMG using a description language similar to the one for TAG, i.e., using the →
(dominance) and ≺ (precedence) relations. One can for instance define different
context-free backbones according to the number of elements in the right-hand
sides of the LFG rules. These backbones are encapsulated in parameterized XMG
classes, where the parameters are used to assign a syntactic category to a given
element of the context-free rule, such as in the class BinaryRule below.

BinaryRule[A,B,C] → (x[cat : A] → y[cat : B]) ∧ (x → z[cat : C]) ∧ (y ≺+ z)

exports 〈x, y, z〉

We also need to annotate the node variables x, y, z with functional descriptions.
Let us see how these functional descriptions FDesc are built:5

Fdesc := ∃(g FEAT) | ¬(g FEAT) | (g ∗ FEAT) | (g FEAT) CONST V AL |

Fdesc ∨ Fdesc | (Fdesc) | Fdesc ∧ Fdesc

where g refers to an attribute-value matrix, FEAT to a feature, V AL to a
(possibly complex) value, CONST to a constraint operator (= for unification, =c

for constraining unification, ∈ for set membership, 6= for difference), (FDesc) to
optionality, and ∗ to LFG’s functional uncertainty. Note that g can be complex,
that is, it can correspond to a (relative – using ↑ and ↓ – or absolute) path
pointing to a sub-attribute-value matrix.

To specify such functional descriptions, we can extend XMG in a straightfor-
ward manner, with a dedicated dimension and a dedicated description language
LLFG defined as follows:

DescLFG := x → y | x ≺ y | x ≺+ y | x = y | x[f :E] | x〈Fd〉 |

DescLFG ∧ DescLFG

Fd := g | ∃g.f | g.f = v | g.f =c v | g.f ∈ v | ¬Fd | Fd ∨ Fd |

(Fd) | Fd ∧ Fd

g, h := ↑ | ↓ | h.f | f ∗ i

where g, h are variables denoting attribute-value matrices, f, i (atomic) feature
names, v (possibly complex) values, and 〈. . . 〉 corresponds to LFG’s functional
mapping introduced above. With such a language, it now becomes possible to
define an XMG metagrammar for our toy LFG as follows.6

Srule → br = BinaryRule[S, NP, VP] ∧ br.x〈↑=↓〉 ∧ br.y〈(↑ .SUBJ) =↓〉

∧ br.z〈↑=↓〉

V Prule → br = BinaryRule[VP, V, NP] ∧ br.x〈↑=↓〉 ∧ br.y〈↑=↓〉

∧ br.z〈(↑ .OBJ) =↓〉

5 We do not consider here additional LFG operators, which have been introduced in
specific LFG environments, such as shuffle, insert or ignore, etc.

6 Here, we do not describe the lexical entries, these can be defined using the same
language as the LFG context-free rules, omitting the right-and-side.

38

In this toy example, the structure sharing is minimal. To illustrate what can be
done, let us have a look at a slightly more complex example taken from [9]:

V P → V (NP) PP (NP)
↑=↓ (↑ OBJ) =↓ (↑ SecondOBJ) =↓ (↑ OBJ) =↓

Here, we have two possible positions for the NP node, either before or after the
PP node. Such an situation can be described in XMG as follows:

V Prule2 → br = BinaryRule[VP, V, PP] ∧ u[cat : NP] ∧ br.y ≺+ u

∧ br.y〈↑=↓〉 ∧ br.z〈(↑ .SecondOBJ) =↓〉 ∧ u〈(↑ .OBJ) =↓〉

Here, we do not specify the precedence between the NP and PP nodes. We
simply specify that the NP node is preceded by the V node (denoted by y).
When compiling this description with a solver such as the one for TAG, two
solutions (LFG rules) will be computed. In other terms, the optionality can be
expressed directly at the metagrammatical level, and the metagrammar compiler
can directly apply LFG’s uniqueness principle.

In other words, the metagrammar here not only allows for structure sharing
via the (conjunctive or disjunctive) combination of parameterized classes, but
it also allows to apply well-formedness principles to the described structures.
In the example above with the two NP nodes, this well-formedness principle
is checked on the constituent structure and indirectly impacts the functional
structure (which is the structure concerned with these principles). If we see the
functional structures as graphs and equations as constraints on these, one could
imagine to develop a specific constraint solver. This would allow to turn the
metagrammar compiler into an LFG parser, which would, while solving tree
descriptions for the constituent structure, solve graph-labelling constraints for
the functional structure.

Note that a similar approach of structure sharing within an LFG through
combinations of elementary units has been proposed by [18]. In their paper, the
authors describe how to share information between LFG structures by defining
named descriptions, called templates. These templates can abstract over conjunc-
tion or disjunction of templates, they are thus comparable to our metagrammar
classes. The main difference with our approach, is that nothing is said about
an interpretation of these templates (they act in a macro-like fashion), while in
XMG, one could apply some specific treatments (e.g. constraint solving) on the
metagrammar classes.

4 Generating Property Grammars with a metagrammar

4.1 Property Grammar

Property Grammar (PG) [12] differs from TAG or LFG in so far as it does not
belong to the generative syntax family, but to the model-theoretic syntax one.
In PG, one defines the relations between syntactic constituents not in terms

39

of rewriting rules, but in terms of local constraints (the so-called properties).7

The properties licensed by the framework rely on linguistic observations, such
as linear precedence between constituents, coocurrency, mutual exclusion, etc.

Here, we will consider the following 6 properties, that constrain the relations
between a constituent (i.e., the node of a syntactic tree), with category A and
its sub-constituents (i.e., the daughter-nodes of A):8

Obligation A : △B at least one B child
Uniqueness A : B! at most one B child
Linearity A : B ≺ C B child precedes C child
Requirement A : B ⇒ C if a B child, then also a C child
Exclusion A : B 6⇔ C B and C children are mutually exclusive
Constituency A : S children must have categories in S

In a real size PG, such as the French PG of [19], these properties are encapsulated
(together with some syntactic features) within linguistic constructions, and the
latter arranged in an inheritance hierarchy9. An extract of the hierarchy of [19]
is presented in Fig. 4 (fragment corresponding to basic verbal constructions).

V (Verb)

INTR

[

ID|NATURE
[

SCAT 1 .SCAT

]

]

const. : V :

1

[

CAT V

SCAT ¬ (aux-etre ∨ aux-avoir)

]

V-n (Verb with negation) inherits V

INTR

SYN

NEGA

[

RECT 1

DEP Adv-n

]

uniqueness :
Adv-ng
Adv-np !

requirement : 1 ⇒Adv-n

linearity : Adv-ng≺ 1

: Adv-ng≺Adv-np

: Adv-np≺ 1 .[MODE inf]

: 1 .[MODE ¬inf] ≺Adv-np

V-m (Verb with modality) inherits V ; V-n

INTR

SYN

INTRO

[

RECT 1

DEP Prep

]

uniqueness : Prep!
requirement : 1 ⇒Prep

linearity : 1 ≺Prep

Fig. 4. Fragment of a PG for French (basic verbal constructions)

Let us for instance have a closer look at the properties of the V-n construction
of Fig. 4. It says that in French, for verbs with a negation, this negation is made

7 An interesting characteristic of these constraints is that they can be independently
violated, and thus provide a way to characterize agrammatical sentences.

8 Here, we omit lexical properties, such as cat(apple) = N.
9 Note that this hierarchy is a disjunctive inheritance hierarchy, i.e., when there is

multiple inheritance, the subclass inherits one of its super-classes.

40

of an adverb ne (labelled with the category Adv-ng) and / or an adverb pas (or a
related adverb such as guère, labelled with the category Adv-np). These adverbs,
if they exist, are unique (uniqueness property), and linearly ordered (linearity
property). When the verb is an infinitive, it comes after these adverbs (e.g., ne
pas donner (not to give) versus je ne donne pas (I do not give)).

4.2 Extending XMG for PG

In order to describe PG, we need to extend the XMG formalism with linguistic
constructions. These will be encapsulated within XMG’s classes. As for LFG, we
extend XMG with a dedicated dimension and a dedicated description language
LPG. Formulas in LPG are built as follows:

DescPG := x | x = y | x 6= y | [f :E] | {P} | DescPG ∧ DescPG

P := A : △B | A : B! | A : B ≺ C | A : B ⇒ C | A : B 6⇔ C | A : B

where x, y correspond to unification variables, = to unification, 6= to unification
failure, E to some (possibly complex) expression to be associated with the feature
f , and {P} to a set of properties. Note that E and P may share unification
variables. With this language, it is now possible to define the above V, V-n and
V-m constructions as follows:

V class → [INTR : [ID|NATURE : [CAT : X.SCAT]]] ∧ (V : X)

∧ (X = [CAT : V, SCAT : Y]) ∧ (Y 6= aux−etre) ∧ (Y 6= aux−avoir)

V−n → V class ∧ [INTR:[SYN:[NEGA:[RECT:X,DEP:Adv−n]]]]

∧ (V : Adv−ng!) ∧ (V : Adv−np!) ∧ (V : X ⇒ Adv−n)

∧ (V : Adv−ng ≺ X) ∧ (V : Adv−ng ≺ Adv−np)

∧ (V : Adv−ng ≺ Y) ∧ (V : Z ≺ Adv−np)

∧ (Y = inf) ∧ (Y = X.mode) ∧ ¬(Z = inf) ∧ (Z = X.mode)

V−m → (V class ∨ V−n) ∧ [INTR:[SYN:[INTRO:[RECT:X,DEP:Prep]]]]

∧ (V : Prep!) ∧ (V : X ⇒ Prep) ∧ (V : X ≺ Prep)

Note that the disjunction operator from XMG’s control language LC allows
us to represent [19]’s disjunctive inheritance. Also, compared with TAG and
LFG, there is relatively few redundancy in PG, for redundancy is already dealt
with directly at the grammar level, by organizing the constructions within an
inheritance hierarchy based on linguistic motivations.

As for LFG, the metagrammar could be extended so that it solves the proper-
ties contained in the final classes, according to a sentence to parse. This could be
done by adding a specific constraint solver such as that of [20] as a post-processor
of the metagrammar compilation.

41

5 Towards an extensible metagrammatical formalism

We have seen two extensions of the XMG formalism to describe not only TAG
grammars, but also LFG and PG ones, these rely on the following concepts:
• The metagrammar describes a grammar by means of conjunctive and / or dis-

junctive combinations of elementary units (using a combination language LC).
• The elementary units of the (meta)grammar depend on the target framework,

and are expressed using dedicated description languages (LD,LLFG,LPG).
When compiling a metagrammar, the compiler executes the logic program under-
lying LC (i.e., unfolds the combination rules) while storing the elementary units
of LD|LFG|PG in dedicated accumulators. The resulting accumulated descrip-
tions may need some additional post-processing (e.g., tree description solving
for TAG). Thus, to extend XMG into a cross-framework grammar engineer-
ing environment, one needs (i) to design dedicated description languages, and
(ii) to develop the corresponding pre/post-processing modules (e.g., metagram-
mar parsing / description solving).

A first version of XMG (XMG 1) was developed in Oz-Mozart.10 It imple-
ments the language described in section 2, and supports tree-based formalisms,
namely TAG and Interaction Grammar [21]. It has been used to design various
large tree grammars for French, English and German.11 The implementation
of a new version of XMG (XMG 2) has started in 2010, in Prolog (with bind-
ings to the Gecode Constraint Programming C++ library)12, with the goal of
supporting cross-framework grammar engineering as presented here.

6 Conclusion and perspectives

In this paper, we presented a metagrammatical formalism for cross-framework
grammar engineering. This formalism offers a collection of description languages,
making it possible to describe different types of linguistic structures (TAG’s syn-
tactic trees, LFG’s functional descriptions, PG’s linguistic constructions), these
structures being combined either conjunctively or disjunctively via a common
control language. The formalism also applies specific constraints on some of these
structures to ensure their well-formedness (e.g., rank principle for TAG).

Using a formalism that can describe several types of grammar frameworks
offers new insights in grammar comparison and sharing. This sharing appears
naturally when designing parallel grammars, but appears also when designing
distinct grammars (e.g., reuse of the combinations of elementary units).

The implementation of the formalism introduced here is a work in progress.
We aim to provide the linguist with an extensible formalism, offering a rich col-
lection of predefined description languages; each one with a library of principles,
and constraint solvers to effect specific assembly, filtering, and verifications on
the grammatical structures described by the metagrammar.

10 See http://sourcesup.cru.fr/xmg and http://www.mozart-oz.org.
11 These are available on line, see http://sourcesup.cru.fr/projects/xmg (reposi-

tory METAGRAMMARS) and http://www.sfs.uni-tuebingen.de/emmy/res-en.html.
12 See https://launchpad.net/xmg and http://www.gecode.org.

42

References

1. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of the
Computer and System Sciences 10 (1975) 136–163

2. Bresnan, J.: The passive in lexical theory. In Bresnan, J., ed.: The Mental Repre-
sentation of Grammatical Relations. The MIT Press, Cambridge, MA (1982)

3. Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. University of Chicago
Press, Stanford : CSLI Publications, Chicago (1994)

4. King, T.H., Dipper, S., Frank, A., Kuhn, J., Maxwell, J.: Ambiguity management
in grammar writing. In: Proceedings of the Workshop on Linguistic Theory and
Grammar Implementation, ESSLLI 2000, Birmingham, Great-Britain (2000)

5. Cahill, A.: Parsing with Automatically Acquired, Wide-Coverage, Robust, Proba-
bilistic LFG Approximations. PhD thesis, Dublin City University (2004)

6. Becker, T.: Patterns in Metarules for TAG. In: Tree Adjoining Grammars. For-
malisms, Linguistic Analysis and Processing. CSLI, Stanford (2000)

7. Candito, M.: A Principle-Based Hierarchical Representation of LTAGs. In: Pro-
ceedings of COLING 96, Copenhagen, Denmark (1996)

8. Prolo, C.: Systematic grammar development in the XTAG project. In: Proceedings
of COLING’02, Taipei, Taiwan (2002)

9. Clément, L., Kinyon, A.: Generating parallel multilingual LFG-TAG grammars
from a MetaGrammar. In: Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Sapporo, Japan (2003)

10. Clément, L., Kinyon, A.: Generating LFGs with a MetaGrammar. In: Proceedings
of LFG-03, Saratoga Springs, United States of America (2003)

11. Duchier, D., Le Roux, J., Parmentier, Y.: The Metagrammar Compiler: An NLP
Application with a Multi-paradigm Architecture. In: Proceedings of the 2nd Oz-
Mozart Conference, MOZ 2004, Charleroi, Belgium (2004)

12. Blache, P.: Constraints, Linguistic Theories and Natural Language Processing.
Lecture Notes in Artificial Intelligence Vol. 1835. Springer-Verlag (2000)

13. Joshi, A.K., Schabès, Y.: Tree adjoining grammars. In Rozenberg, G., Salomaa,
A., eds.: Handbook of Formal Languages. Springer Verlag, Berlin (1997)

14. XTAG Research Group: A lexicalized tree adjoining grammar for english. Technical
Report IRCS-01-03, IRCS, University of Pennsylvania (2001)

15. Crabbé, B.: Représentation informatique de grammaires fortement lexicalisées :
Application à la grammaire d’arbres adjoints. PhD thesis, Université Nancy 2
(2005)

16. Le Roux, J., Crabbé, B., Parmentier, Y.: A constraint driven metagrammar. In:
The Eighth International Workshop on Tree Adjoining Grammar and Related For-
malisms (TAG+8), Sydney, Australia (2006)

17. Blackburn, P., Gardent, C.: A Specification Language for Lexical Functional Gram-
mars. In: Proceedings of EACL’95, Dublin, Ireland (1995)

18. Dalrymple, M., Kaplan, R., King, T.H.: Lexical structures as generalizations over
descriptions. In: Proceedings of LFG 04, Christchurch, New Zealand (2004)

19. Guénot, M.L.: Éléments de grammaire du français pour une théorie descriptive et
formelle de la langue. PhD thesis, Université de Provence (2006)

20. Duchier, D., Dao, T.B.H., Parmentier, Y., Lesaint, W.: Property Grammar Parsing
Seen as a Constraint Optimization Problem. In: Proceedings of the 15th Interna-
tional Conference on Formal Grammar (FG 2010), Copenhagen, Denmark (2010)

21. Perrier, G.: Interaction Grammars. In: Proceedings of COLING 2000, Saarbrücken,
Germany (2000)

43

Situated Propositions with Constraints and
Restricted Parameters

Roussanka Loukanova

Abstract. The paper revises major situation-theoretical objects with
respect to potential applications, incl. systems with logic programming.
It introduces models of situated, partial, and parametric information.
The system of constrained objects is defined by mutual recursion. The
main contribution is the distinction between situated propositions and
situated factuality of the verified propositions.

1 Introduction

In 80’s, see Barwise and Perry [2], introduced Situation Theory with the ideas
that partiality, factual content and situatedness are crucial features of the mean-
ing concepts that involve mental states, incl. attitudes. Situation Theory models
partiality and the inherent relational and situational nature of information, in
general, not only linguistic, by diverging from the traditional possible-world se-
mantics and type theoretic settings. One of the most distinguished applications
of situation theory has been situation semantics for computational analysis of
human language. One of the first practical systems with the ideas of situation the-
ory and situation semantics is Head-driven Phrase Structure Grammar (HPSG),
see Pollard and Sag [14], and Loukanova [11]. From model-theoretic point, the
meta-theory of situation theory is set theory. This means that situation theory
has a complex, hierarchical system of abstract objects, which are set-theoretic
constructs, see Barwise and Perry [2] and Devlin [4]. Furthermore, the more
powerful versions of situation theory are distinguished by representing circular
pieces information, which are non-well-founded. The typical examples of such
circularity involves situations that carry information about mutual belief and
common knowledge shared by different agents. Such information units can be
represented in situation theory by objects that do not conform with the classic
axiom of foundation supporting cumulative hierarchy of sets. To accommodate
such non-well-founded circularity, situation theory uses hypersets that are based
on a version of non-well-founded set theory of Aczel [1]. Aczel’s non-well-founded
set theory replaces the foundation axiom, FA, of the standard axiom system
ZFC of axiomatic set theory, with an axiom of anti-foundation, AFA, which
was motivated by modeling non-well-founded situations in theory of processes.
Applications of situation theory, for which non-well-founded objects and sets
are not needed, use versions of situation theory based on standard ZFC of set
theory. For a recent application of situation theory in linguistics, to semantic
analysis of questions, see Ginzburg and Sag [6], and Lambalgen and Hamm [7].
A set-theoretic modeling of situation theory as an axiomatic system is Seligman

44

and Moss [16]. The model-theoretic objects in this paper presume variants of
such information structures handling partial, underspecified, and parametric in-
formation. Of particular interest are applications based on logic programming,
in areas that require relational structures with partiality. The presented formal
system is especially useful for modeling context and resource situations that
provide information about restricted parameters, see [8, 10, 9].

Partiality, underspecification, restricted parameters. Computerized
information systems call for reliable, faithful representation of information. This
requires theory of information which is based on information models and in-
formation inferences that do not distort information, especially when it is par-
tial. Partiality can appear in various ways. For example, some objects have as
components partially defined functions or relations. Some of these partial func-
tions and relations may or may not be extended over some of the objects that
are not in their domains, regardless of circumstances. In other cases, informa-
tion is partial by missing pieces of information and components, which can be
added by updates or depending on the context of usage. Parametric informa-
tion is a very important kind of information, where information structure is
available, but various components present as parameters that are either totally
unrestricted (which is rarely the case), or vary within a broader type of objects,
or are restricted to vary within a narrow domain restricted by various conditions.
Naturally, such conditions are expressed by propositional constraints. Situation
theory is a information theory that targets namely such goals: representation
of information, which is relational and partial; it handles partially defined ob-
jects, parametric and otherwise underspecified information that are restricted to
satisfy constraints and vary depending on context.

The major topic of this paper are situational objects, such as situated propo-
sitions and parameters, that can be constrained. Situation theory takes the stand
that information is dependent on situations. Objects can be situation indepen-
dent, but typically, propositions and their component objects are dependent on
situations, and that dependence can be on more than one situation. The inno-
vative element, contributed by the paper, is the distinction between a situated
proposition, which is a semantic object that can be true or false, and the se-
mantic object that expresses factuality of the verified proposition, by a situation
that supports the informational content of the proposition. Section 2 provides an
introduction to a version of situation theory, and Section 3 defines the notions
of propositions and restricted parameters with constraints.

2 Fundamental Situation Theoretical Notions

This section introduces situation theoretical notions and objects that are fun-
damental for representation of information. Informally, the basic informational
pieces, called infons, are composite objects carrying information about relations
and objects filling the arguments of the relations, at certain time and space lo-
cations. Recursively, infons can be primitive or complex. Infons are the ground,
informational content of the situated propositions (introduced in Section 3). In-

45

fons are facts when supported by actual situations, e.g., in real or virtual worlds,
theoretical models, or computerized models. Situation theory takes some set-
theoretic objects as its basic objects. These basic objects then are used in the
construction of more complex situation theoretic objects.

Primitive individuals. A collection (typically, a set) AIND is designated
as the set of primitive individuals of the situation theory: AIND = {a, b, c, . . .}
The objects in AIND are set-theoretic objects, but they are considered as prim-
itives, not as complex situation-theoretic constructions. In various versions of
situation theory, designated for specific applications, some of the individuals in
AIND may be parts of other individuals in AIND , and as such can be in respective
part-of relations. Space-time locations. Simplified versions of situation theory
use a collection (typically, a set) ALOC of space-time points and regions units:
ALOC = {l, l0, l1, . . .}. The collection ALOC is endorsed with relations of time
precedence ≺, time overlapping ◦, space overlapping @, and inclusion ⊆t, ⊆s, ⊆,
between locations. In some versions of situation theory, the space-tile locations
can be given by complex objects. E.g., a simple option (equivalent to the above)
is that space-time locations are pairs of two components, one for space locations,
and one for time points or periods. Primitive relations. Significantly, situation
theory has a collection (typically, a set) AREL of abstract, primitive objects that
are relations: AREL = {r0, r1, . . . , } The elements of AREL are abstract repre-
sentatives of real or virtual relations. For example, if situation theory is used
to model real world situations, these are abstract representatives of properties
of objects and relations between objects. Primitive types. A collection (typi-
cally, a relatively small set) of objects, which are called primitive or basic types:
BTYPE = {IND ,LOC ,REL,TYPE ,POL,PAR,ARG , INFON ,SIT ,PROP , |=
}, where IND is the type of individuals; LOC : of space-time locations; REL of
relations; TYPE : of basic and complex types; PAR: of parameters; POL: of two
polarity objects, e.g., presented by the natural numbers 0 and 1; ARG : of ab-
stract argument roles (primitive and complex); INFON : of situation-theoretical
objects that are basic or complex information units, defined later; PROP : of
abstract objects that are propositions; SIT : of situations; |= is a type called
“supports”. Primitive parameters (indeterminates). We consider situation
theory that has a collection (a set) of primitive parameters, for each of the basic
types IND ,LOC ,REL,POL,SIT : PIND = {ȧ, ḃ, ċ, . . .}, PLOC = {l̇, l̇0, l̇1, . . .},
PREL = {ṙ, ṙ0, ṙ1, . . .}, PPOL = {i̇, i̇0, i̇1, . . .}, PSIT = {ṡ, ṡ0, ṡ1, . . .}. Infor-
mally, given a type T (primitive or complex) and an object Θ, we write1:
T : Θ iff Θ is of type T . Primitive argument roles with and without ap-
propriateness constraints. Each relation and each type is associated with
a set of argument roles. We consider situation theory that has a collection
(a set) of primitive objects designated as primitive argument roles.: AARG =
{arg1, . . . , argn, . . . } Since each primitive relation has its own argument roles, it
may be more acceptable to model them by abstract primitive objects that are
uniquely distinctive for each primitive relation and type.

1 An alternative notation resembles classic type systems, such as Montague’s IL: for
any given type T and any object Θ, Θ : T iff Θ is of type T .

46

Definition 1 (Assignment of primitive argument roles). A set of argu-
ment roles is assigned to each of the primitive relations and each of the primi-
tive types by a function Args with the domain and range of which are such that:
Dom(Args) = AREL ∪BTYPE , and Range(Args) ⊆ AARG .

For example, we can associate relations, such as smile, read , give, respectively de-
noted by the lexemes smile, read, give, etc., with arguments roles:2 Args(smile) =
{smiler}, Args(read) = {reader , read-ed}, Args(give) = {giver , receiver , given}.
Another option is to use a common set of shared primitive objects for argument
roles: AARG = {arg1, . . . , argn, . . . }. We can use as many argument roles as
needed, e.g.: Args(give) = {arg1, arg2, arg3} Note that there is no implicit order
over the argument roles. Which role is for what in a relation depends on the
actual modeling3 of the relations and their arguments in the abstract theoretic
constructions. Similarly to relations, each type is associated with a set of argu-
ment roles. If a type T has a single argument role, we call it a unary type, or
a property type. In particular, IND , LOC , POL, PAR, TYPE , are unary types,
each with one argument role, that can be declared as filled only by elements of
the corresponding sets:

IND : ξ, for each ξ ∈ AIND ∪ PIND (1a)

LOC : ξ, for each ξ ∈ ALOC ∪ PLOC (1b)

REL : ξ, for each ξ ∈ AREL ∪ PREL (1c)

and for each complex relation ξ (introduced later)

POL : ξ, for each ξ ∈ {0, 1} ∪ PPOL (1d)

PAR : ξ, for each ξ ∈ PIND ∪ PLOC ∪ PREL ∪ PPOL ∪ PSIT (1e)

and for each complex parameter ξ (introduced later)

TYPE : ξ, for each ξ ∈ BTYPE (1f)

and for each complex type ξ (introduced later)

The argument roles of both relations and types can be associated with types
as constraints for their appropriate filling.

Definition 2 (Argument roles with appropriateness constraints). A set
of argument roles is assigned to each of the primitive relations and to each of the
primitive types by a function Args with its domain and range of values such that:
Dom(Args) = (AREL ∪BTYPE), and Range(Args) ⊆ (AARG × TYPE), so that
for any primitive relation and any type γ ∈ AREL ∪ BTYPE with n-arguments:
Args(γ) = {〈arg i1 , Ti1〉, . . . , 〈arg in , Tin〉}, where T1, . . . , Tn are sets of types (ba-
sic or complex), which are specific for γ and are called basic appropriateness
constraints of the argument roles of γ.

2 In what follows, we shall follow a practice of naming the argument role of the object
that is read, by the “misspelled” notations read-ed and readed.

3 Another option, “intermediate” between the above two, is to accept a relatively small
set of common, abstract roles, which are similar to those in Θ-theory of Government
and Binding Theory (GBT).

47

Often, we shall use the notation: Args(γ) = {Ti1 : arg i1 , . . . , Tin : arg in}. For ex-
ample, Args(give) = {IND : giver , IND : receiver , IND : given}. For applications,
more complex constraints for appropriateness of arguments can be added and
expressed by complex types, Ti1 , . . . , Tin , such that TYPE : Ti1 , . . . ,TYPE : Tin .
For any relation or type (which can be primitive or complex), the objects that
fill its argument roles are restricted to satisfy the constraints associated with the
roles.

Definition 3 (Argument filling). For any given relation γ ∈ RREL and for
any given type γ ∈ Ttype associated with the set of argument roles Args(γ) =
{Ti1 : arg i1 , . . . , Tin : arg in}, an argument filling for γ is any total function θ
with Dom(γ) = {arg i1 , . . . , arg in}, which is set-theoretically defined by a set of
ordered pairs θ = {〈arg i1 , ξ1〉 . . . , 〈arg in , ξn〉}, so that its values, θ(arg i1) = ξ1,
. . . , θ(arg in) = ξn, satisfy the appropriateness constraints of the argument roles
of γ: Ti1 : ξ1, . . . , Tin : ξn.

Infons, State of Affairs (soas), Situations. Next, I shall give a mutually
recursive definition of several sets of situational objects:

– the set IINF , the elements of which are called infons, and are basic or complex
information units;

– the set RREL of all primitive and complex relations (complex relations are
defined later): AREL ⊂ RREL;

– the set TTYPE of all primitive and complex types: BTYPE ⊂ TTYPE ;
– the collection SSIT of situations.

The basic informational units are identified by a unique relation, an assign-
ment of its argument roles and a corresponding negative or positive polarity.

Definition 4 (Infons). The set IINF of all infons:

1. Basic infon is every tuple 〈γ, θ, τ, i〉, where γ ∈ RREL is a relation (primitive
or complex), LOC : τ , POL : i, and θ is an argument filling for γ, i.e.: θ =
{〈arg i1 , ξ1〉, . . . , 〈arg in , ξn〉}, for some situation-theoretical objects ξ1, . . . , ξn
satisfying the appropriateness constraints of γ.

2. Let BIINF be the set of all basic infons. BIINF ⊂ IINF.
3. Complex infons (for representation of conjunctive and disjunctive informa-

tion) are formed by the operators (i.e., primitive relations, for which locations
are irrelevant) conjunction and disjunction:
For any infons σ1, σ2 ∈ IINF, 〈∧, σ1, σ2〉 ∈ IINF and 〈∨, σ1, σ2〉 ∈ IINF.

In this paper, we adopt the traditional linear notations of the basic infons:

� γ, arg i1 : ξ1, . . . , arg in : ξn,LOC : τ ; i� (2a)

� γ, ξ1, . . . , ξn, τ ; i� (2b)

The notation (2a) does not assume any order over the argument roles of γ. On the
other hand, in case that γ has more than one argument roles, the notation (2b)
makes sense only by having some agreement about an order over the argument

48

roles of γ. Complex infons constructed by Definition 4.3 represent conjunctive
and disjunctive pieces of information. hey are denoted usually by (σ1 ∧ σ2) and
(σ1 ∨ σ2), sometimes without parentheses, without causing confusion.

Definition 5 (States of affairs, events, situations).

1. State of affairs (soa) is any set of infons that have the same location compo-
nent.

2. An event (course of event, coa) is any set of infons.
3. A situation is any set of infons.

Infons, states of affairs, and situations, in which some of the argument roles,
including the space-time location and polarity components, are filled by parame-
ters, are called, respectively, parametric infons, parametric soas, and parametric
situations. For example:

� read , reader : a, readed : b, l; 1� (3a)

� read , reader : ȧ, readed : ḃ, l̇; 1� (3b)

� read , reader : a, readed : ḃ, l̇; 1� (3c)

� read , a, b, l; i̇� (3d)

3 Situated Propositions, Constraints and Parameters

In the considered version of situation theory, I add a specialized primitive type
PROP ∈ BTYPE , with two argument roles: a type T ∈ TTYPE , and an appropri-
ate argument filling θ for T. I will use the type PROP for constructing abstract
objects (set-theoretic tuples) to model the abstract notion of a proposition, which
states that some given objects are of some given type, in the following way:

Definition 6 (Propositions). Proposition is any tuple 〈PROP ,T, θ〉 where
T ∈ TTYPE is a type that is associated with a set of argument roles

Args(T) = {Ti1 : arg i1 , . . . , Tin : arg in} (4)

and θ is an argument filling for T, i.e.: θ = {〈arg i1 , ξ1〉, . . . , 〈arg in , ξn〉}, for
some objects ξ1, . . . , ξn that satisfy the appropriateness constraints of T:

Ti1 : ξ1, . . . , Tin : ξn. (5)

We use the notation (T, θ) for 〈PROP ,T, θ〉. When 〈PROP ,T, θ〉 is true
(see later), we say that the objects ξ1, . . . , ξn are of type T with respect to the
argument role filling θ, and we write T : θ, or T : ξ1, . . . , ξn, in case it is clear which
roles are filled by which objects. I.e., propositions are the result of filling up the
argument roles of a type with appropriate objects. Now, we shall concentrate on
a special kind of propositions defined by the following Definition 7.

49

Definition 7 (Situated propositions).

1. The type “support”, |=, has two argument roles, one that can be filled by any
object that is of the type SIT of situations, and the other can be filled by any
object that is of the type INF of inforns:

Args(|=) = {〈argsit ,SIT 〉, 〈arg infon , INF 〉}, (6)

i.e.,
Args(|=) = {SIT : argsit , INF : arg infon}. (7)

2. Situated proposition is any proposition 〈PROP , |=, s, σ〉, where s ∈ PSIT

and σ ∈ IINF .
3. Often, we shall use the notation (s |= σ) and say “the proposition that σ

holds in s” or “the proposition that the situation s supports the infon σ”.

(s |=� read , reader : x, readed : b,Loc : l; 1� ∧ (8a)

� book , arg : b,Loc : l; 1�) (8b)

Situation theory uses an abstraction operator, which recalls the λ-abstraction
in functional λ-calculi, but, in situation theory, abstraction operator is different
and does not define functions. In situation theory, the abstraction operator re-
sults in complex types, with abstract argument roles.

Definition 8 (Complex appropriateness constraints and complex types).
Let Θ be a given proposition and {ξ1, . . . , ξn} be a set of parameters that occur
in Θ. Let, for each i ∈ {1, . . . , n}, Ti be the union of all the appropriateness
constraints of all the argument roles that occur in Θ and ξi fills up.

Then the object λ{ξ1, . . . , ξn}Θ ∈ TTYPE , i.e., λ{ξ1, . . . , ξn}Θ is a complex
type, with abstract argument roles denoted by [ξ1], . . . , [ξn] and corresponding
appropriateness constraints associated in the following way:

Args(λ{ξ1, . . . , ξn}Θ) = {T1 : [ξ1], . . . , Tn : [ξn]}. (9)

The type λ{ξ1, . . . , ξn}Θ is alternatively denoted by

[ξ1, . . . , ξn/Θ(ξ)] or [T1 : ξ1, . . . , Tn : ξn/Θ(ξ)]. (10)

Example 1. For example, (11a) is the type of situations and locations where the
specific individual a walks; (11b) is the type of individuals that walk in a specific
situation s and a specific location l; (11d) is the type of individuals that read
a specific book b, in a specific situation s and a specific location l; (11d) is the
type of situations, locations and individuals, where the individual reads a specific
book b:

λṡ, l̇ (ṡ |=� walk,walker : a,Loc : l̇; 1�) (11a)

λx (s |= � walk,walker : x,Loc : l; 1�) (11b)

λx (s |=� read, reader : x, readed : b,Loc : l; 1� ∧ (11c)

� book, arg : b,Loc : l; 1�)

λṡ, l̇, x (ṡ |=� read, reader : x, readed : b,Loc : l̇; 1� ∧ (11d)

� book, arg : b,Loc : l̇; 1�)

50

Notation. Given object α and a set of appropriateness constraints T , we write
T : α just in case α satisfy all the constraints in T .

Property 1. Let Θ be a given proposition and {ξ1, . . . , ξn} be a set of param-
eters that occur in Θ. Let, for each i ∈ {1, . . . , n}, Ti be the union of all the
appropriateness constraints of all the argument roles that occur in Θ and ξi fills
up. Given that α1, . . . , αn are objects that satisfy appropriateness constraints
T1 : α1, . . . , Tn : αn, we have:

1. by Definition 8, λ{ξ1, . . . , ξn}Θ ∈ TTYPE is a type, with argument roles
Args(λ{ξ1, . . . , ξn}Θ) = {T1 : [ξ1], . . . , Tn : [ξn]}.

2. Let θ be the total function that is set-theoretically defined by the set of
ordered pairs θ = {〈[ξ1], α1〉 . . . , 〈[ξn], αn〉},
(a) by Definition 3, θ is an argument filling for the type λ{ξ1, . . . , ξn}Θ.
(b) by Definition 6, (λ{ξ1, . . . , ξn}Θ : θ) is a proposition that the objects of

the filling θ are of the complex type λ{ξ1, . . . , ξn}Θ, i.e.:

(λ{ξ1, . . . , ξn}Θ : θ) ≡ 〈PROP , λ{ξ1, . . . , ξn}Θ, θ〉

ut

Abstractions over individuals in propositions result in complex types of in-
dividuals. In general, for any given proposition Θ and a parameter ξ for an
individual, i.e., IND : ξ, which occurs in Θ, the complex type λ{ξ1}Θ ∈ TTYPE ;
is the type of the individuals for which the proposition Θ(ξ1) is true.

Definition 9 (Denotational truth assignment for complex propositions).
Let s be either a situation or a parameter for a situation, and σ be an infon (pos-
sibly parametric). The proposition (s |= σ) is true iff there is some assignment
c of objects to the parameters in (s |= σ), such that c(s) |= σ(c).

Definition 10 (Denotational truth assignment for complex proposi-
tions). Given a complex type λ{ξ1, . . . , ξn}Θ ∈ TTYPE and an argument filling
for it,

θ = {〈[ξ1], α1〉 . . . , 〈[ξn], αn〉},
Then, the proposition 〈PROP , λ{ξ1, . . . , ξn}Θ, {〈[ξ1], α1〉 . . . , 〈[ξn], αn〉}〉 is true
iff the proposition Θ[ξ1 :≡ α1, . . . , ξn :≡ αn] is true where Θ[ξ1 :≡ α1, . . . , ξn :≡
αn] is obtained from Θ by simultaneous replacement of all occurrences of ξ1 with
α1, . . . , ξn with αn.

A particular case of the Definition 10 yields:

Property 2. Given a parameter PAR : ξ, the proposition ([ξ/Θ] : α) is true iff
the proposition Θ[ξ :≡ α] is true.

However, neither the types of individuals, nor propositions ([ξ/Θ] : α) rep-
resent per se individuals α constrained to satisfy the proposition Θ. But these
complex types are used in the definition of restricted parameters, which stand for
(e.g., by denoting) individuals constrained to satisfy conditions. The following
is part of the mutual recursion that defines the system of situational objects:

51

Definition 11 (Restricted parameters). Let Θ(ξ) be a proposition, and T
be the set of all the appropriateness constraints of all the argument roles in Θ(ξ)
that are filled by ξ4.

1. If τ : x is a parameter of type τ , and τ is compatible with the set T of con-
straints, then xλξ Θ(ξ) is also a parameter of type τ , which is called parameter
restricted by λξ Θ(ξ).
With the alternative denotation of the complex type [ξ/Θ(ξ)], the restricted
parameter is denoted by x[ξ/Θ(ξ)].

2. An assignment of situation-theoretic objects to the parameters of Θ(ξ) defines
a substitution function c over a situation theoretic object γ(x[ξ/Θ(ξ)]) iff the
proposition c(Θ(x)) is true.

The restrictions over parameters have a pressupositional effect on the parameter
assignment and argument fillings: The restricted parameters are the central ob-
jects in the formal definition of general contexts, and in particular, of linguistic
contexts, discourse situations, and resource situations, see Loukanova [10, 9].

Definition 12 (Coherency and Compatibility). A situation s (parametric
or not) is coherent iff

1. no infon and its dual are supported by s, i.e., it is not the case that both

s |=� γ, ξ1, . . . , ξn, τ ; 0� (12a)

s |=� γ, ξ1, . . . , ξn, τ ; 1� (12b)

2. Identity of indiscernibles: for any situation-theoretical objects ξ1 and ξ2,

if s |=� same, ξ1, ξ2, τ ; 0� then ξ1 = ξ2 (13)

3. no violation of Indiscernibility of identicals, i.e.,

s |=� same, ξ, ξ, τ ; 0�, for no object ξ (14)

4. Two propositions (s1 |= σ1) and (s2 |= σ2) are compatible iff there is a
common assignment of objects to the parameters that occur in them, such
that s1 |= σ1 and s2 |= σ2

5. Let Θ1 and Θ2 be situated propositions. Then the types λξ1Θ1 and λξ2Θ2

are compatible iff the propositions Θ1 and Θ2 are compatible.

4 Conclusions and Outlook

Situation theory models information that is typically situated, i.e., informa-
tional units are provided by world parts that we call situations. Technically,
most versions of situation theory are many sorted model theories of structured

4 I.e., ξ is a parameter that satisfies all the constraints in T : T : ξ. Then λξ Θ(ξ) is a
type.

52

information. It has many applications, in different stages of development, and
is promising for new ones with the demands of contemporary technologies for
handling partial situations, states, context and agents. I conclude with topics
that are in the focus of upcoming work.

Underspecification. Initially, some grammar formalisms took the stand
that all ambiguities in human language expressions should be casted out explic-
itly, either syntactically, as in Montague’s PTQ (see Montague [17]) or by some
other means, so that the process of parsing would render all alternative readings.
With the advance of language processing, it is already clear that in most cases,
except for some special purposes, it is not necessary for syntactic analyses to
render all the multiple “readings” (interpretations) straight away, especially in
the absence of sufficient information. However, language analysis is more useful
and adequate when it provides syntactic structure with corresponding rendering
into semantic representation. Such an analysis should provide all semantic infor-
mation that is explicitly carried by the analysed expression, which is the basis for
obtaining possible interpretations, when relevant context information becomes
available. This leads to two related tasks: underspecified semantic representation
and modeling contexts.

Modeling different kinds of semantic ambiguities is one of the major ideas of
situation theory, as well as modeling partiality of information, parametric infor-
mation, parameters with constraints, context dependency of information, mod-
eling context, and deriving specific interpretations from the parametric meaning
in given contexts. This makes situation theory a natural model theory for seman-
tics of various languages, especially of human languages. Situation semantics of
human language was the first such an application of situation theory. However,
both situation theory and situation semantics are in need of further development
to meet the advances of technologies. The topic of this paper is an initiation in
this direction. Situation theory supports partial and parametric theoretic objects
(presented in this paper), which can model context (see Barwise and Perry [2],
Devlin [4], and [8, 10, 9]), which is necessary for an adequate theory of meaning.
Currently, development of situation theory as a general theory of information,
including computational semantics, is largely open work.

Relational vs. functional structures. Relational models, like situation
theory, are more direct and natural for applications where the domains of ob-
jects are relational and include multiargument predication. Something more,
relational models are actually necessary with respect to adequateness, when the
domains include partial relations between objects. This is so because there may
not be faithful modeling of partial relations with functional encoding like the
currying in classic model-theoretic logics, with possible worlds, such as those
in the class of Gallin [5] and Montague [17] On the other hand, the seminal
works of Gallin and Montague continue to be important, firstly for the funda-
mental techniques they introduced for computational semantics. Secondly, there
are type-theoretic models and applications, which are more naturally based on
developments of functional type-logic systems, because the domains they rep-
resent are originally and naturally consisting of functional objects. This is why

53

works on rectifying and extending the class of Gallin and Montague formal sys-
tems are important for theoretical foundations of computation and semantics,
and for applications.

A very important current development of theory of computational systems,
with potentials for various applications, is type theory of recursion by Moscho-
vakis [12, 13].

Functional type theory is necessary for applications and computer systems
that are based on functional domains and functional programming. At the con-
temporary stage of advancements in computer and other technologies, it is im-
portant that there are computerized systems that are capable of handling either
both functional and relational structures, or are linked to systems that transfer
between two modes. This is especially important for systems that involve human
language processing, either by being solely human language processing system,
or by using such as a part of its functionality.

There are language processing systems for grammar development, which are
based on relational formalisms, in particular for semantic representation. For ex-
ample, LKB grammar system5 uses unification-based linguistic formalization and
can accommodate semantic representation that is either functional or strictly re-
lational. LKB can be used for writing CBLG of human languages, incl. categorial
grammars. LKB comes with possibility for semantic representation in grammat-
ical structures, by using Minimal Recursion Semantics (MRS), see Copestake et
al. [3]. MRS is a version of situation semantics. In grammars written by LKB,
when the grammar rules and lexicon include semantic representations in MRS,
by parsing a language expression A, LKB outputs the feature structure analysis
of A, which includes semantic representation of A in MRS. In addition, the fea-
ture structure of A renders a translation of the MRS representation into a Prolog
term. This makes LKB a potential system for linking it with other systems that
handle Prolog. On the other hand, there are grammar systems, that are in the
category of functional approaches. For example, GF Grammatical Framework,
see Ranta [15], is functional language for grammar writing, based on categorial
grammar formalism, with dependent types that are naturally functional. A for-
mal language, e.g., a version of the languages of recursion by Moschovakis [13],
can lend naturally for semantic representation in GF grammars. Suitable versions
of situation theory, may be employed in GF as well, by development standing at
Moschovakis recursion.

Information exchange and transfer. Computerized systems, both in sci-
ences and in daily applications, rely on representation of information, which is
usually structured depending on the domain of application. Such practical sys-
tems, as well as theoretical models in sciences, or interdisciplinary developments
of computational systems in sciences, vary with respect to natural and artificial
languages that are used in them for information representation. Automatic ex-
change and transfer of information within and between computational systems
should be without loss and distortion of information. This poses a renewed need
of new approach to theory of information that is language independent. This pa-

5 See <http://www.delph-in.net/lkb/>.

54

per has introduced a preview of situation theory, which is a relational approach
to modeling partial information.

References

1. P. Aczel. Non-well-founded Sets, volume 14 of CSLI Lecture Notes. CSLI Publica-
tions, Stanford, California, 1988.

2. J. Barwise and J. Perry. Situations and Attitudes. Cambridge, MA:MIT press,
1983.

3. A. Copestake, D. Flickinger, C. Pollard, and I. Sag. Minimal recursion semantics:
an introduction. Research on Language and Computation, 3:281–332, 2005.

4. K. Devlin. Situation theory and situation semantics. In D. Gabbay and J. Woods,
editors, Handbook of the History of Logic, volume 7, pages 601–664. Elsevier, 2008.

5. D. Gallin. Intensional and Higher-Order Modal Logic. North-Holland, 1975.
6. J. Ginzburg and I. A. Sag. Interrogative Investigations: The Form, Meaning, and

Use of English Interrogatives. CSLI Publications, Stanford, California, 2000.
7. M. V. Lambalgen and F. Hamm. The Proper Treatment Of Events. Wiley-

Blackwell, Oxford, 2004.
8. R. Loukanova. Russellian and strawsonian definite descriptions in situation seman-

tics. In A. Gelbukh, editor, Computational Linguistics and Intelligent Text Pro-
cessing, volume 2004 of Lecture Notes in Computer Science, pages 69–79. Springer
Berlin / Heidelberg, 2001.

9. R. Loukanova. Generalized quantification in situation semantics. In A. Gelbukh,
editor, Computational Linguistics and Intelligent Text Processing, volume 2276 of
Lecture Notes in Computer Science, pages 46–57. Springer Berlin / Heidelberg,
2002.

10. R. Loukanova. Quantification and intensionality in situation semantics. In A. Gel-
bukh, editor, Computational Linguistics and Intelligent Text Processing, volume
2276 of Lecture Notes in Computer Science, pages 32–45. Springer Berlin / Hei-
delberg, 2002.

11. R. Loukanova. An approach to functional formal models of constraint-based lexical-
ist grammar (CBLG). Fundamenta Informaticae. Journal of European Association
for Theoretical Computer Science (EATCS), to appear.

12. Y. N. Moschovakis. Sense and denotation as algorithm and value. In J. Oikkonen
and J. Vaananen, editors, Lecture Notes in Logic, number 2 in Lecture Notes in
Logic, pages 210–249. Springer, 1994.

13. Y. N. Moschovakis. A logical calculus of meaning and synonymy. Linguistics and
Philosophy, 29:27–89, 2006.

14. C. Pollard and I. A. Sag. Information-Based Syntax and Semantics, Part I. Num-
ber 13 in CSLI Lecture Notes. CSLI Publications, 1987.

15. A. Ranta. Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford, 2011. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-
7 (Cloth).

16. J. Seligman and L. S. Moss. Situation theory. In J. van Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, pages 239–307. Elsevier, Amsterdam,
1996.

17. R. H. Thomason, editor. Formal Philosophy: Selected Papers of Richard Montague,
ed. Richmond Thomason. Yale University Press, New Haven, Connecticut, 1974.
Edited, with an introduction, by Richmond H. Thomason.

55

Pairing Model-Theoretic Syntax and Semantic
Network for Writing Assistance

Jean-Philippe Prost and Mathieu Lafourcade

LIRMM – 161, rue Ada – 34095 Montpellier Cedex 5 – France
{Prost,Lafourcade}@lirmm.fr

Abstract. In this paper we investigate the possibility of a syntax–
semantics inferface between a framework for Model-Theoretic Syntax
on one hand and a semantic network on the other hand. We focus on
exploring the ability of such a pairing to solve a collection of grammar
checking problems, with an emphasis on cases of missing words. We dis-
cuss a solution where constraint violations are interpreted as grammar
errors and yield the re-generation of new candidate parses (partially un-
realised) through tree operations. Follows a surface realisation phase,
where missing words are filled through semantic network exploration.

1 Introduction

Model-Theoretic Syntax (MTS) refers to a family of frameworks for formal syn-
tax, which is grounded in the Model Theory — unlike Generative-Enumerative
Syntax (GES), such as the Chomskyan syntax, which originates from Proof The-
ory. In very general terms, an MTS framework considers that a (given) syntax
structure is a model of the grammar G, seen as a set of independent logical state-
ments, if and only if it meets every statement in G. For what we are interested in
in this paper, it is important to note that: (i) the two problems of model genera-
tion and model recognition are kept separate, and (ii) every grammar statement
may be evaluated independently from the rest of the grammar.

Many of the differences between the two families with respect to linguistic
knowledge representation have been discussed by Pullum and Scholz ([1]). The
ability of MTS, unlike GES, to represent linguistic information about quasi-
expressions1, that is, utterances which present grammar irregularities, is the
main point of interest here. As we are going to show it, that linguistic knowledge
which we have about the syntax of quasi-expressions directly serves the purpose
of error detection and correction.

Meanwhile, a drawback of MTS for phrase structure grammar is a lack of
syntax–semantics interface, which, beyond compositionality, would take advan-
tage of the fine-grained information made available next to the phrase structure.
To the best of our knowledge the work from Dahl and Gu ([2]) is the only ex-
ception. It extends Property Grammar (Blache [3]) with semantic predicates,
which further constrain the specification of categories as any other assertion.

1 Sometimes also referred to as non-canonical input in the literature.

56

Those semantic predicates essentially introduce different kinds of semantic rela-
tionships among lexical items. Those are mostly domain-specific, derived from
a biomedical ontology. A semantic form is built through the parsing process by
compositionality. Meanwhile, there seems to be no attempt to take advantage of
the linguistic knowledge embodied in every property satisfied or violated by the
parse tree.

In this paper, we address the same problem of the syntax–semantics inter-
face for Property Grammar (PG) but from a different angle; we investigate the
possibility to pair an MTS framework with a semantic network. We explore, es-
pecially, how such a pairing can serve the purpose of grammar error correction,
and focus on cases of missing words. We show how, beyond compositionality,
the constraints can interact with the phrase structure to build a more detailed
semantic representation than with the phrase structure alone. Starting from an
approximated parse for a quasi-expression missing a word, the process oper-
ates specific tree transformations according to the detected error, in order to
generate a new set of candidate corrected trees. The characterisation of those
candidate models let us build the messages with which the semantic network is
then queried, in search for the missing word.

In section 2 we present briefly the theoretical background we are working
with; in section 3 we detail how we adapt that theoretical framework to the
semantic roles required by the semantic network; then in section 4 we present
how an approximated parse is turned into a candidate corrected parse by re-
generation; finally, section 5 describes how to explore a semantic network in
order to fill missing words.

2 Property Grammar

The framework we are using for knowledge representation is Property Grammar
(Blache [3])2 (PG), for which a model-theoretical semantics was axiomatised by
Duchier et al. ([5]). Intuitively, a PG grammar decomposes what would be rewrite
rules of a generative grammar into atomic syntactic properties — a property
being represented as a boolean constraint. Take, for instance, the rewrite rule
NP→ D N. That rule implicitly informs3 on different properties (for French): (1)
NP has a D child; (2) the D child is unique; (3) NP has an N child; (4) the N
child is unique; (5) the D child precedes the N child; (6) the N child requires the
D child. PG defines a set of axioms, each axiom corresponding to a constraint
type. The properties above are then specified in the grammar as the following
constraints: (1) NP : 4D; (2) NP : D!; (3) NP : 4N; (4) NP : N!; (5) NP : D ≺ N; (6)
NP : N⇒ D. A PG grammar is traditionally presented as a collection of Categories
(or Constructions), each of them being specified by a set of constraints. Table 1
shows an example of categories.

2 Property Grammars closely follows from the 5P Paradigm introduced by Bès and
Blache ([4]).

3 The rule is assumed to be the only one for NP.

57

These constraints can be independently verified, hence independently satis-
fied or violated. The parsing problem is, thus, a Constraint Satisfaction Problem
(CSP), where the grammar is the constraint system to be satisfied. In the Model-
Theoretic (MT) axiomatisation the class of models we are working with is made
up of trees labelled with categories, whose surface realisations are the sentences
σ of the language. A syntax tree of realisation the expression (i.e well-formed
sentence) σ is a strong model for the PG grammar G iff it satisfies every pertinent
constraint4 in G.

The loose semantics also allows for constraints to be relaxed. Informally, a
syntax tree of realisation the quasi-expression (i.e. ill-sentence) σ is a loose model
for G iff it maximises the proportion of satisfied constraints in G with respect to
the total number of pertinent ones (i.e. evaluated) for a given category. Such a
loose model is called an approximated parse.

The set of all the satisfied constraints and all the violated ones for a modelM
is called the model’s characterisation. It provides fine-grained information about
every node in the model, which complements usefully the sole phrase structure.
The violated constraints, especially, naturally point out grammar errors.

On the downside, although the formal model is quite elegant in practice the
size of the search space makes the parsing problem blow up exponentially. As
emphasized by Duchier et al. ([6]), who implemented a parser as a genuine CSP
based on the MT axiomatisation, the practical issue is not so much finding the
best model (for which existing constraint programming techniques are quite ef-
ficient) as proving its optimality. The reason for that comes from the need to
explore the entire class of models in order to address the decision problem. Yet,
such an implementation does actually keep separate the generation of models
from their checking, which opens the door to different, and more efficient, per-
spectives.

One of them is to reduce the search space to the subset of models, which are
statistically the most significant. It can easily be achieved by any stochastic ro-
bust parser, or even a combination of them. That subset can even be completed
with models for which the statistical significance is unknown, but which were
generated by symbolic parser according to linguistic judgements. The Sygfran
parser (Chauché [7]), for instance, is one of the latter. Provided such a small sub-
set as search space the combinatorial explosion is avoided. Each model can, then,
easily be completed with its characterisation. Incidently, it is interesting to notice
that such an architecture makes it possible to overcome an important decision
problem met by statistical robust parsing with respect to the grammaticality of
sentence, and despite the fact that a parse tree is generated for it. That problem
makes authors such as Wagner et al. ([8]) or Wong and Dras ([9]), among others,
say that those robust parsers are too robust. Once the parses are characterised
the decision about the grammaticality of a sentence is straightforward.

4 As defined by Duchier et al. ([5]), a pertinent constraint is an instance of a property,
which verifies the pertinence predicate Pτ . Intuitively, an instance of a property (or
constraint) is pertinent at a node if the node’s category and those of its children are
in use in the property’s definition; the constraint is otherwise trivially satisfied.

58

Another incentive is that it makes it a framework for comparing different
parsers’ outcomes over the same corpus. This is particularly interesting when it
comes to quasi-expressions, for which there exists neither a linguistic theory nor
an empirical consensus as to what an approximated parse should be. Further
works should consider running such a comparison and addressing the question
of parse quality, more especially on a corpus with a large number of ill-sentences.

3 Functional and Semantic Roles

The Dependency property in PG is the (only) property meant to model a se-
mantic relationship between two constituents. According to the definition given
in Blache ([10]), the dependeny property5 c0 : c1 c2 holds for the parent con-
stituent of category c0 between two children constituents of categories c1 and
c2 if those two children constituents are semantically compatible. Intuitively, the
role of that property in the grammar (still in (Blache [10])) is first to specify the
existence of a predicative structure for the governor, and second to constrain the
argument structure through the constituents feature structures.

That rather permissive definition is unclear as how the semantic compatibility
between categories must be checked. The lack of conditional satisfaction makes
it a property which can not be violated: either it holds true for two constituents,
or it is non-pertinent, but it never fails. The rationale in Blache’s proposal for
such a semantics is to include in the characterisation of a sentence pieces of infor-
mation regarding the existence of dependency relationships among constituents.
VanRullen ([11]) takes a different perspective and defines for the Dependency
property a semantics where the dependency relation between two categories is
conditioned by feature agreement (e.g. in gender, number, person, . . .) through
feature unification.

In (Duchier et al. [6]) the Dependency property is not axiomatised due to that
lack of conditional satisfaction. Yet, the idea to combine phrase structure and
dependency structure within the same information structure is elegant and quite
convenient for interfacing syntax and semantics. Therefore we follow Blache’s
proposal on the Dependency property, which we modify slightly in order to be
able to specify functional roles within a sentence and the way they propagate
through the phrase structure. The property is conditioned either by the sole
existence of the governor and the modifier nodes, as in the original proposal, or by
feature values. Unlike in Blache, roles are feature values as opposed to features.
Predicate subcategorisation schemes, especially, may serve to specify different
arguments. The schemes for the verb plaider (to plead), given in Figure 1, come
from the LexSchem resource (Messiant [12]). Each argument category and role
is then propagated in the phrase structure through Dependency properties. This
way, it is possible to use the Dependency property to infer semantic roles from
functional ones. In Table 1, for instance, the VP category specifies a Dependency
between a V and an NP, where the NP’s semantic role is PAT (patient) whenever

5 We use the notation introduced by Duchier et al. ([5]).

59

phon
〈
plaider

〉
subcat

〈
arg

pos 0

role SUBJ

cat NP

〉

phon

〈
plaider

〉
subcat

〈
arg

pos 0

role SUBJ

cat NP

, arg
pos 1

role P-OBJ

cat pour-PP

〉

phon

〈
plaider

〉
subcat

〈
arg

pos 0

role SUBJ

cat NP

, arg
pos 1

role OBJ

cat NP

〉

Fig. 1. Subcategorisation schemes for the verb plaider (to plead).

the V expects an object. Note that this should be refined whenever possible
depending on the domain of values available for the semantic roles. A domain,
for instance, which would make a distinction between a patient and a recipient
role would benefit from a Dependency property where a P-OBJ (for-object) is
turned into a recipient role.

4 Re-generation and Completion Message

Given a quasi-expression, an approximated parse tree for it, and its characteri-
sation, is it possible to automatically infer candidate corrected syntax trees? To
address that question we consider that every constraint failure in the character-
isation can be interpreted positively either as a tree transformation operation or
as an operation over feature structures. Those operations can be seen as grammar
corrections.

Re-generation Take the example from Figure 2, where the constituent NP2

violates the constraint NP : N⇒ D (within an NP constituent an N requires a D).
In order for that constraint to be satisfied it is sufficient to transform the NP2

S

NP1

D

Les
The

N

employés
employees

VP

V

ont
have

V

rendu
delivered

*NP2

N

rapport
report

AP

Adv

très
very

A

complet
complete

PP

P

à
to

NP3

D

leur
their

N

employeur
employer

NP2′

D

X

N

rapport
report

AP

très complet
very complete

NP2′′

N

rapport
report

D

X

AP

. . .

NP2′′′

N

rapport
report

AP

. . .

D

X

Fig. 2. Approximated parse for quasi-expression, and re-generated sub-trees

node by insertion of a daughter node labelled with the category D. This operation
generates three sub-trees, illustrated in Figure 2. Three new candidate trees are
then obtained by replacement of the NP2 node by each of the three sub-trees.

60

S (Utterance)
Obligation : 4VP
Uniqueness : NP!

: VP!
Linearity : NP ≺ VP

Dependency : VP

role PRED

subcat

〈
arg

pos 0
role SUBJ

cat NP

〉
 NP[role AGT]

NP (Noun Phrase)

head N | NP
gend gend
num num
role role

Obligation : 4(N ∨ Pro)
Uniqueness : D!

: N!
: PP!
: Pro!

Linearity : D ≺ N
: D ≺ Pro
: D ≺ AP
: N ≺ PP

Requirement : N⇒ D
: AP⇒ N

Exclusion : N 6⇔ Pro

Agreement : N

[
gend 1

num 2

]
↔ D

[
gend 1

num 2

]
VP (Verb Phrase)

[
head V

subcat
〈
V.subcat

〉]
Obligation : 4V
Uniqueness : V[main past part]!

: NP!
: PP!

Linearity : V ≺ NP
: V ≺ Adv
: V ≺ PP

Requirement : V[past part] ⇒ V[aux]
Exclusion : Pro[acc] 6⇔ NP

: Pro[dat] 6⇔ Pro[acc]

Dependency : V

role PRED

subcat

〈
arg

[
role OBJ | P-OBJ | A-OBJ
cat NP

]〉 NP[role PAT]

: V

role PRED

subcat

〈
arg

[
role OBJ | P-OBJ | A-OBJ
cat PP

]〉 PP[role PAT]

Table 1. Example property grammar for French

The multiple results are not a problem in that case, since they can easily be
disambiguated through a new check of the grammar constraint system, that is,
through the characterisation of each of the three new models. The sub-tree NP2′

is the only one meeting all the grammar constraints.

The sets of candidate sub-trees are generated using the following tree oper-
ations, where τ is a tree, and c, c1, c2 are node labels (i.e. categories):

– Node insertion, denoted by τ ↓ c

– Node deletion, denoted by τ - c

– Node permutation, denoted by c1
τ↔ c2

61

After generalisation, every PG property corresponds to a transformation tree
operation:

Property Violated instances Tree operation

Requirement Iτ [[c0 : c1 ⇒ s2]] τ ↓ s2
Obligation Iτ [[c0 : 4c1]] τ ↓ c1

Linearity Iτ [[c0 : c1 ≺ c2]] c1
τ↔ c2

Uniqueness Iτ [[c0 : c1!]] τ - c1
Exclusion Iτ [[c0 : c1 6⇔ c2]] τ - c1 ∪ τ - c2

Completion Message After re-generation and re-characterisation partial phrase
structures are obtained, which contain underspecified nodes, including empty
leaves (denoted by X in our figures). Those correspond to lexical items to be
found through exploration of the semantic network. In the following, to illus-
trate the process we narrow down the scope of investigation and focus on cases
of missing predicate. Figure 3 illustrates a candidate re-generated model for the
quasi-expression *L’avocat le dossier de son client (*The lawyer his client’s file).
In order to complete the NP2’s surface realisation the exploration process of the

S

NP1

L’avocat

VP

V

X

NP2

NP3

le dossier

PP

de son client

Fig. 3. Candidate re-generated model for quasi-expression

semantic network is fed with messages about the semantic relationships the miss-
ing predicate is involved in. Those messages take the form of triples 〈a, :R, b〉,
where :R denotes an oriented semantic relation, and a and b its ordered elements.
Examples of relations in use in the rezoJDMFR network (Lafourcade and Jou-
bert [13]) are Agent, Patient, Instrument, Succession, . . . , though at this stage
we limit ourselves to the Agent and Patient ones. The messages are built from
gathering the relevant information in the model’s characterisation.

Following up with the example sentence from Figure 3, we know from VP

that NP2 is in a Patient relationship with the predicate V, which gives us a value
for R in message]1. NP2 takes its head from NP3 by propagation, which takes
its own from the noun dossier (file). That gives us a value for a in message
]1. The last message member is instantiated with the wildcard X, hence the
message]1: 〈X, :PAT, dossier〉. As for the members of message]2, they come

62

from the knowledge in S that NP1 is in an Agent relationship with VP, which by
inheritance let us instantiate b with the value avocat (lawyer). That gives us, for
message]2, 〈avocat, :AGT, X〉.

In the end we get the following list of messages:
{〈X, :PAT, dossier〉, 〈avocat, :AGT, X〉}.

5 Propagation

For our experiments, we make use of a lexical network that has been constructed
by means of a (serious) game available on the net : JeuxDeMots. A propagation
algorithm combining constraints and this network is presented.

5.1 A lexical network...

The structure of the lexical network we are building and using is composed
of nodes and links between nodes, as it was initially introduced in the end of
1960s by Collins and Quillian ([14]) (developed by Sowa ([15])), used in the
small worlds by Gaume et al. ([16]), and more recently clarified by Polguère
([17]). A node of the network refers to a term (or a multiple word expression),
usually in its canonical form (lemma). The links between nodes are typed and
are interpreted as a possible relation holding between the two terms. Some of
these relations correspond to lexical functions, some of which have been made
explicit by Mel’cuk ([18]) and Polguère ([17]). It would have been desirable the
network to contain all those lexical functions, but considering the principle of
our software JeuxDeMots, it is not reasonably feasible. Indeed, some of these
lexical functions are too much specialized; for example, Mel’cuk et al. ([18]) make
the distinction between the Conversive, Antonym and Contrastive functions.
They also consider refinements, with lexical functions characterized as wider
or more narrow. JeuxDeMots being intended for users who are simple Internet
users, and not necessarily experts in linguistics, such functions could have been
badly interpreted by them. Furthermore, some of these functions are too poorly
lexicalized, that is, very few terms possess occurrences of such relations; it is
for example the case of the functions of Metaphor or Functioning with difficulty.
More formally, a lexical network is a graph structure composed of nodes (vertices)
and links.

– A node is a 3-tuple : <name, type, weight>
– A link is a 4-tuple : <start-node, type, end-node, weight>

The name is simply the string holding the term. The type is an encoding
referring to the information holding by the node. For instance a node can be
a term or a Part of Speech (POS) like :Noun, :Verb. The link type refer to
the relation considered. A node weight is interpreted as a value referring to the
frequency of usage of the term. The weight of a relation, similarly, refers to the
strength of the relation.

JeuxDeMots possesses a predetermined list of relation types, and for now the
players cannot add new types. Relation types fall into several categories:

63

– Lexical relations: synonymy, antonymy, expression, lexical family These types
of relations are about vocabulary.

– Ontological relations: generic (hyperonymy), specific (hyponymy), part of
(meronymy), whole of (holonymy) . . . It is about relations concerning knowl-
edge in objects of the world.

– Associative relations: free association, associated feeling, meaning It is rather
about subjective and global knowledge; some of them can be considered as
phrasal associations.

– Predicative relations: typical agent, typical patient . . . They are about types
of relation associated with a verb and the values of its arguments (in a very
wide sense). Those are similar (if not identical) to semantic roles, which are
of primary interest for us in this article.

The types of relation implemented in JeuxDeMots are thus of several natures,
partially according to a distinction made by Schwab and Lafourcade ([19]): some
of them are part of knowledge of the world (hyperonymy / hyponymy, for ex-
ample), others concern linguistic knowledge (synonymy, antonymy, expression
or lexical family, for example). Most players do not make this distinction which
remains often vague for them. Here, the word relation has to be understood as
an occurrence of relation, and not as a type of relation. Let us note that between
two same terms, several relations of different types can exist.

5.2 ... a game for building it...

To ensure a system leading to quality and consistency of the base, it was de-
cided that the validation of the relations anonymously given by a player should
be made by other players, also anonymously. Practically, a relation is considered
valid if it is given by at least one pair of players. This process of validation is
similar to the one used by von Ahn et al. ([20]) for the indexation of images or
more recently by Lieberman et al.([21]) to collect common sense knowledge. As
far as we know, this was never done in the field of the lexical networks. In Nat-
ural Language Processing, some other Web-based systems exist, such as Open
Mind Word Expert (Mihalcea and Chklovski [22]) that aims to create large sense
tagged corpora with the help of Web users, or SemKey (Marchetti et al. [23])
that exploits WordNet and Wikipedia in order to disambiguate lexical forms to
refer to a concept, thus identifying a semantic keyword.

A game takes place between two players, in an asynchronous way, based on
the concordance of their propositions. When a first player (A) begins a game, an
instruction concerning a type of competence (synonyms, opposite, domains, . . .)
is displayed, as well as a term T randomly picked in a base of terms. This player
A has then a limited time to answer by giving propositions which, to his mind,
correspond to the instruction applied to the term T. The number of propositions
which he can make is limited inducing players not just type anything as fast as
possible, but to have to choose amongst all answers he can think of. The same

64

term, along the same instruction, is later proposed to another player B; the pro-
cess is then identical. To increase the playful aspect, for any common answer in
the propositions of both players, they receive a given number of points. The cal-
culation of this number of points (as explained by Lafourcade and Joubert ([13]))
is crafted to induce both precision and recall in the feeding of the database. At
the end of a game, propositions made by the two players are showed, as well as
the intersection between these terms and the number of points they win.

According to the JeuxDeMots Web site, at the time of the writing of this pa-
per, the lexical network contains more than 1100000 relations linking more than
230000 terms. Around 900000 games (with a mean of 1 minute per game) have
been played corresponding to approximately 13000 hours (about 550 days) of
cumulative play.

5.3 ... and a propagation algorithm

We devise a quite simple algorithm taking a set of constraints for input. A
constraint here takes a form that is similar to an unweighted relation, that is
to say a 3-tuple : <start-node, type, end-node>. One or both node can be
a free variable with or without information of their POS. This form is directly
mappable to relations in the lexical network. With the previous example, we
have :

– <X, :AGT, avocat> and <X, :AGT, dossier>

Our algorithm is inspired by Page et al. ([24]) and partially by the LexRank
algorithm (Bouklit and Lafourcade [25]). The simple idea is to activate nodes
of the lexical network that are involved in the constraints, and then to propa-
gate activations along the network. As in practice, the entire network would be
too large to be tractable, we reduce it only to the subset containing the first
neighbours (at distance 1). All links are copied with the original weight when
belonging to one of the constraints, or with weight equal to 1 otherwise. This
propagation approach has been proven be convergent with a power iteration
computing method. To be effective, the main hypothesis is that the set weight
linking a node to its neighbour is considered as representing a probability dis-
tribution.

In the above example, an activation of 1 is inited to the node avocat and dossier.
From avocat, all neighbours are copied with a link with a default value of 1, but
those linked by a:AGT link. The process is similar for the node dossier. The
spreading of the activation to a neighbour is done according to the ratio be-
tween this specific link weight. More precisely, the activation propagation from
a node A to B is equal to the activation of A times the ratio of the weight of the
link between A and B with the sum of the link weights from A). The output of
the algorithm is a set of activated terms. In the above example, two terms are
mostly activated: plaider and étudier. Furthermore, the proper specific meaning
of avocat>justice (as lawyer and not avocado) is activated.

65

RezoJDMFR

full lexical network

RezoJDMFR

subgraph

extraction

A
w2/W

step i step i+1

Fig. 4. Extraction of the lexical network subgraph and propagation of activation along
nodes according to link weights.

6 Conclusion

The near absence of syntax–semantics interface for the Property Grammar frame-
work is a serious impediment to its use for deep processing. Meanwhile, as a
constituency-based MTS framework PG offers formal properties, which make
it especially well-suited to address problems such as grammar error correction.
In this paper we have started exploring the possibility to address the problem
of the syntax–semantics interface through the pairing with a semantic network.
We have shown that the linguistic knowledge contained within PG constraints,
together with a deep phrase structure, allows for the construction of detailed
semantic information about a—possibly ill—sentence. Such semantic informa-
tion could not be gathered by compositional means only. We have also shown
how to use that information to explore a semantic network and find suitable
lexical items to complete a sentence missing words, with an emphasis on missing
predicates.

References

1. Pullum, G., Scholz, B.: On the Distinction Between Model-Theoretic and
Generative-Enumerative Syntactic Frameworks. In de Groote, P., Morrill, G.,
Rétoré, C., eds.: Logical Aspects of Computational Linguistics: 4th International
Conference. Number 2099 in LNAI, Springer Verlag (2001) 17–43

2. Dahl, V., Gu, B.: On semantically constrained property grammars. In: Constraints
and Language Processing. (2008) 20

3. Blache, P.: Les Grammaires de Propriétés : des contraintes pour le traitement
automatique des langues naturelles. Hermès Sciences (2001)

4. Bès, G., Blache, P.: Propriétés et analyse d’un langage. In: Proc. of the 1999 Conf.
on Traitement Automatique du Langage Naturel (TALN’99). (1999)

66

5. Duchier, D. and Prost, J.-P. and Dao, T.-B.-H.: A model-theoretic framework for
grammaticality judgements. In: Proc. of FG’09. Volume 5591 of Lecture Notes in
Artificial Intelligence., Springer (2009)

6. Duchier, D., Dao, T.B.H., Parmentier, Y., Lesaint, W.: Property Grammar Parsing
Seen as a Constraint Optimization Problem. In: Proceedings of the 15th Intl
Conference on Formal Grammar (FG 2010). (2010)

7. Chauché, J.: Un outil multidimensionnel de l’analyse du discours. In: Proc. of
the 10th Int’l Conf. on Computational Linguistics and 22nd annual meeting on
Association for Computational Linguistics, ACL (1984) 11–15

8. Wagner, J., Foster, J., van Genabith, J.: Judging grammaticality: Experiments in
sentence classification. CALICO Journal 26(3) (2009) 474–490

9. Wong, S., Dras, M.: Parser Features for Sentence Grammaticality Classification.
In: Australasian Language Technology Association Workshop 2010. (2011) 67

10. Blache, P.: Property Grammars: A Fully Constraint-based Theory. In Chris-
tiansen, H., Skadhauge, P.R., Villadsen, J., eds.: Constraint Solving and Language
Processing. Volume 3438 of LNAI. Springer (2005)

11. VanRullen, T.: Vers une analyse syntaxique à granularité variable. PhD thesis,
Université de Provence, Informatique (2005)

12. Messiant, C.: A Subcategorization Acquisition System for French Verbs. In: Proc.
of the ACL-08: HLT Student Research Workshop, ACL (2008) 55–60

13. Lafourcade, M., Joubert, A.: Détermination des sens d’usage dans un réseau lexical
construit à l’aide d’un jeu en ligne. In: Proc. of the Conférence sur le Traitement
Automatique des Langues Naturelles (TALN’08). (2008) 189–199

14. Collins, A., Quillian, M.R.: Retrieval time from semantic memory. Journal of
verbal learning and verbal behaviour 8(2) (1969) 240–248

15. Sowa, J.: Semantic networks. Encyclopedia of Artificial Intelligence. edited by S.C.
Shapiro, Wiley, New York (1992)

16. Gaume, B., Duvignau, K., Vanhove, M.: Semantic associations and confluences
in paradigmatic networks. In Vanhove, M., ed.: Typologie des rapprochements
sémantiques. Benjamins (2007)

17. Polguère, A.: Structural properties of lexical systems: Monolingual and multilingual
perspectives. In: Proc. of the Workshop on Multilingual Language Resources and
Interoperability (COLING/ACL 2006). (2006) 50–59

18. Mel’cuk, I.A., Clas, A., Polguère, A.: Introduction à la lexicologie explicative et
combinatoire. Ed. Duculot AUPELF-UREF (1995)

19. Schwab, D., Lafourcade, M.: Modelling, detection and exploitation of lexical func-
tions for analysis. ECTI Journal 2 (2009) 97–108

20. von Ahn, L., Dabbish, L.: Labelling images with a computer game. In: Proc. of
ACM Conf. on Human Factors in Computing Systems (CHI). (2004) 319–326

21. Lieberman, H., Smith, D.A., Teeters, A.: Common consensus: a web-based game for
collecting commonsense goals. In: Proc. of Int’l Conf. on Intelligent User Interfaces
(IUI’07). (2007)

22. Mihalcea, R., Chklovski, T.: Open mind word expert: Creating large annotated
data collections with web users’ help. In: Proc. of the EACL 2003 Workshop on
Linguistically Annotated Corpora (LINC 2003). (2003)

23. Marchetti, A., Tesconi, M., Ronzano, F., Rosella, M., Minutoli, S.: Semkey: A
semantic collaborative tagging system. In: Proc. of SemKey: A Semantic Collab-
orative Tagging System. (2007)

24. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking :
Bringing Order to the Web. Technical report, Stanford University (1998)

67

25. Bouklit, M., Lafourcade, M.: Propagation de signatures lexicales dans le graphe
du web. In: Proc. of RFIA’2006, Tours, France. (2006) 9

68

	0.pdf
	1
	2
	3
	4
	5

