Logic programming as a framework for
Knowledge Representation and Artificial Intelligence
Addendum: Definite Clause Grammars

Henning Christiansen
Roskilde University
© 2010

Contents

1 Definite Clause Grammars in Prolog
1.1 Afirst DCG o o e
1.2 Adding attributes L
1.3 Adding extra conditions

1 Definite Clause Grammars in Prolog

Most available Prolog systems include a grammar notation for Definite Clause Grammars, DCGs.
You can write your own grammars for, say, natural language (such as Danish, Latin, etc.), pro-
gramming languages, or (prototype versions) of user interface languages. You can write DCG rules
in your Prolog source programs without referring to special libraries, and DCGs are implemented
as a kind of syntactic sugar in the sense that they are compiled into Prolog rules when the program
file is read in.

Some Prolog versions, such as SICStus [16], include facilities that make it straightforward to
implement new notation that can be used in source texts and is translated into Prolog in a way
similar to DCG. We will not go into these details here; interested readers may look up the predicate
term_expansion in the manual [16].

DCGs process Prolog lists which means that you need to do some extra work in order to read
in a text file and have it analyzed using your grammar. This phase, often called lexical analysis
or tokenization, consists here of reading the file character by character and converting it into a
list of Prolog constants. So if, for example, you have a text file saying “logic programming is
fun”, you should write the code that converts to the list [logic,programming,is,fun]; this is a
straightforward exercise that we do not consider here.

For small experiments, we can ignore the reading-from-file problems by stating the strings to
be analyzed as Prolog lists. Assuming you have written the right grammar for a language that
includes this sentence, you may have it analyzed by calling the built-in predicate phrase as follows.

7- phrase(sentence, [logic,programming,is,fun]).
yes

In the following we introduce DCGs by a series of more and more advanced examples.

1.1 A first DCG

Here is shown a little context-free grammar that recognizes simple sentences such as “the man eats
the apple”. Nonterminals in this grammar are sentence, noun_phrase, verb_phrase, determiner,
noun, and verb; terminal symbols are those that appear inside square brackets in the grammar
rules.

sentence --> noun_phrase, verb_phrase.
noun_phrase --> determiner, noun.
verb_phrase --> verb.

verb_phrase --> verb, noun_phrase.
determiner --> [the].

noun --> [man].
noun --> [men].
noun --> [woman] .
noun --> [women].
noun --> [apple].
noun --> [apples].

verb --> [eats].
verb --> [eat].
verb --> [loves].
verb —-—> [love].
verb --> [sings].
verb --> [sing].

Notice that a grammar rule is distinguished from a usual Prolog rule by using “-->” instead of
“:=”. This signifies to the Prolog systems, that is should run the DCG compiler for each rule to
produce a Prolog rule which, then, is treated in the usual way.

Nonterminals are used in the grammar in a way similar to predicates in usual Prolog rules, and
we will see later that nonterminals can have additional arguments. The compilation to Prologs
adds to arguments to each nonterminal. As an example, the rule for noun phrases is compiled into
the following Prolog rule.

noun_phrase(S0,32) :- determiner(S0,S1), noun(S1,S2).

In principle, we could have used just one argument to hold the list to be analyzed, so that, e.g., an
instance of a noun_phrase held a list such as [the,man], and then split the string using append.
However, it can be shown, that such an application would become very inefficient due to immense
backtracking as the append predicate will generate all possible splittings of a list until the right
one is found.

The technique used for DCG is know as difference lists, which makes it possible to take one
symbol off the list one by one. If, for example, the list [the,man,eats,the,apple] is analyzed
with the grammar, the noun_phrase predicate would be called (for the first noun phrase in the
sentence) with the following arguments

noun_phrase([the,man,eats,the,applel],_)

When this call has finished, the second argument has become instantiated to the list representing
what remains when the noun phrase has “consumed” its symbols.

noun_phrase([the,man,eats,the,apple], [eats,the,apple])

This remaining list will the be given to the continuation which, in this case is the call for analyzing
a verb phrase which goes on to a call to verb. The rule for the verb “eats” can be compiled into
the following Prolog clause.!

verb([eats|S], S).

Similar to what we saw above, we may expect it to be called with the list [eats,the,apple] as first
argument, and when it has finished, the second argument has been given the value [the,apple],
which is given to the continuation which is the analysis of the final noun phrase. The following
examples shows some queries and answers.

1Some Prolog systems uses an auxiliary predicate called c (for “connects” defined by clause c(X, [X18],S). In
that case, the verb rule is compiled into verb(S0,S1) :- c(eats,S0,S1).

7- phrase(sentence, [the,man,eats,the,apples]).
yes
?- phrase(sentence, [the,duck,ducks,the,duck]).
no

However, this grammar accepts also sentences with number disagreement such as the following.

7- phrase(sentence, [the,women,eats,the,apple]).
yes

In addition there is no semantics involved, so the grammar accepts also nonsense sentences as this
one.

7- phrase(sentence, [the,man,sings,the,applel).
yes

The inclusion of semantics to handle the last sort of requires linguistically grounded models that
we shall avoid for the moment. However, the number agreement can included in the grammar as
shown in the following section.

1.2 Adding attributes

Arguments can be added to nonterminals exactly as arguments to predicates in a Prolog rule; in
the case of grammars, these additional arguments are often called attributes or features. In the
following grammar, we have added attributes corresponding to grammatical number to the relevant
nonterminals; we expect them to take values singular or plural.

sentence --> noun_phrase (Number), verb_phrase(Number).
noun_phrase (Number) --> determiner (Number), noun(Number) .
verb_phrase (Number) --> verb(Number) .

verb_phrase (Number) --> verb(Number), noun_phrase(_).
determiner(_) --> [the].

noun(singular) --> [man].

noun(plural) --> [men].
noun(singular) --> [woman].
noun(plural) --> [women].
noun(singular) --> [apple].
noun(plural) --> [apples].

verb(singular) --> [eats].

verb(plural) --> [eat].
verb(singular) --> [loves].
verb(plural) --> [love].
verb(singular) --> [sings].
verb(plural) --> [sing].

The following queries and answers indicates that now the grammar suppresses sentences with
number problems.

7- phrase(sentence, [the,man,eats,the,apple]).
yes

7- phrase(sentence, [the,man,eat,the,apple]).
no

7- phrase(sentence, [the,man,sings,the,applel).
yes

This additional argument is included by the DCG compiler as an argument of the corresponding
predicate symbol together with the two arguments that are used for the string.

noun_phrase (Number,S0,S2) : - determiner (Number,S0,S1), noun(Number,S1,S2).

As for other Prolog programs, we may use the in several directions and a grammar can often be
used for generation of language. The following query generates on backtracking (when user types
a lot of semicolons), the 126 different sentences that are possible in our little language.

?7- phrase(sentence, S).
S = [the, man, eats];
S = [the, man, loves]:

S = [the, man, loves, the, woman];

S = [the, man, loves, the, women];

S = [the, man, loves, the, applel;

S = [the, man, loves, the, apples];

S = [the, man, sings, the, man];

S = [the, apples, sing, the, women];
S = [the, apples, sing, the, applel;
S = [the, apples, sing, the, apples];
no

1.3 Adding extra conditions

Finally, we can add arbitrary Prolog code to the bodies of grammar rules which is useful when
the attributes in the rule depend on each other in complicated ways. This may be relevant, for
example, when semantic descriptions are added to a grammar such as the one shown above. Here
we will take a simpler example.

The following little grammar describes the command language for a little robot that can walk
along a straight line. The grammar uses the curly-bracket notation in order to assign a “meaning”
to a command sequence, which is the final position of the robot (assuming that it starts at position
0).

Curly brackets are useful for conditions that cannot be expressed in an easy way using unification
of arguments only.

The grammar is available at file trip. Notice that there are two nonterminals called trip, but
they differ in the number of arguments.

trip(To) --> trip(0,To).
trip(Here,Here) --> [].

trip(From,To) -->
step (HowMuch),
{NewFrom is From + HowMuch},
trip(NewFrom,To) .

step(1) -—> [forward].
step(-1) --> [back].
step(0) --> [think].

The following shows a query and answer for this grammar.

7- phrase(trip(N), [forward,forward,think,back,think,forward,forward]).
N=3

References

1]
[2]

[3]

CHR Grammars; official web pages. http://www.ruc.dk/ “henning/chrg

The programming language CHR, Constraint Handling Rules; official web pages.
http://www.cs.kuleuven.ac.be/"dtai/projects/CHR/

Slim Abdennadher and Henning Christiansen. An experimental CLP platform for integrity
constraints and abduction. In Proceedings of FQAS2000, Flexible Query Answering Systems:
Advances in Soft Computing series, pages 141-152. Physica-Verlag (Springer), 2000.

Slim Abdennadher and Thom Frithwirth. FEssentials of Constraint Programming. Springer,
2003.

Ivan Bratko and Stephen Muggleton. Applications of inductive logic programming. Commun.
ACM, 38(11):65-70, 1995.

H. Christiansen and V. Dahl. Meaning in Context. In Anind Dey, Boicho Kokinov, David
Leake, and Roy Turner, editors, Proceedings of Fifth International and Interdisciplinary Con-
ference on Modeling and Using Context (CONTEXT-05), volume 3554 of Lecture Notes in
Artificial Intelligence, pages 97-111, 2005.

Henning Christiansen. Teaching computer languages and elementary theory for mixed audi-
ences at university level. Computer Science Education Journal, 14, 2004. To appear.

Henning Christiansen. CHR Grammars. Int’l Journal on Theory and Practice of Logic Pro-
gramming, 5(4-5):467-501, 2005.

Henning Christiansen and Veronica Dahl. Assumptions and abduction in Prolog. In Elvira Al-
bert, Michael Hanus, Petra Hofstedt, and Peter Van Roy, editors, 3rd International Workshop
on Multiparadigm Constraint Programming Languages, MultiCPL’04; At the 20th International
Conference on Logic Programming, ICLP’04 Saint-Malo, France, 6-10 September, 2004, pages
87-101, 2004.

Henning Christiansen and Verénica Dahl. HYPROLOG: A new logic programming language
with assumptions and abduction. In Maurizio Gabbrielli and Gopal Gupta, editors, ICLP,
volume 3668 of Lecture Notes in Computer Science, pages 159-173. Springer, 2005.

Peter A. Flach and Antonis C. Kakas, editors. Abduction and Induction: FEssays on their
relation and integration. Kluwer Academic Publishers, April 2000.

Thom Frithwirth. Theory and practice of constraint handling rules, special issue on constraint
logic programming. Journal of Logic Programming, 37(1-3):95-138, October 1998.

A.C. Kakas, R.A. Kowalski, and F. Toni. The role of abduction in logic programming. Handbook
of Logic in Artificial Intelligence and Logic Programming, vol. 5, Gabbay, D.M, Hogger, C.J.,
Robinson, J.A., (eds.), Oxford University Press, pages 235-324, 1998.

Michael Negnevitsky. Artificial Intelligence, A Guide to Intelligent systems. Addison-Wesley,
2nd edition, 2004.

[15] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of Inductive Logic
Programming, volume 1228 of Lecture Notes in Computer Science. Springer, 1997.

[16] Swedish Institute of Computer Science. SICStus Prolog user’s manual, Version 3.12. Most
recent version available at http://www.sics.se/isl, 2006.

