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Uncertainty modelled using Probability,
applications of Bayes formula for conditional prob.

Introduction to Bayesian Networks
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Program of today

• Uncertainty, AI, and probability theory

• Probability: Short intro + exercises

• Bayes’ formula and applications: Short intro +
exercises

• Bayesian networks: Short intro + exercises
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Uncertainty?

• (Our knowledge about) reality is very seldom 100%
certain

• Lack of knowledge, imprecise knowledge, making
judgment from partial knowledge, thus conclusion
cannot be exact but may express "degree of"
(un)certainty of alternative conclusions

• The best known, and scientifically most well-
founded background is Probability Theory

• Here, only time to very brief introduction and few
applications in AI

• (there are other, more or less ad-hoc weighting
mechanisms applied in expert systems, etc. ...)
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Probability theory

• Random variables (here: discrete; can also be continuous)

• Can take one out of a set of values as result of an
experiments or observation (“event”)

• Variable V may take values {x1, x2, ..., xn}

• Each value has a certain probability, P(V=xi) ! [0,1]

• By definition P(V=x1)+...+P(V=xn) = 1.

• Important: Probability function P(V=...) is a mathematical
definition, which has nothing to do with “average of ...”

• However: Probabilities should reflect reality, e.g., be defined
from statistics.... which is a different matter!
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Operations on events: # and "

Corresponds to set operations on events

P(V=x1 # V=x2) = P(V=x1)+p(V=x2) if x1"x2

P(V=x1 " V=x2) = 0 if x1"x2, ... not interesting

More interesting when applied for different rand. var’s

P(V=x " W=y)

requires joint distribution given (as math. def.).

We could (but do not) write as P(VW=(x,y)).

Important: No a priori relationship

P(V=x " W=y) = P(V=x) ???? P(W=y)
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Conditional probabilities

Informally P(A|B) means probability of event A given
that B has occurred (been observed)

Example: P(red-haired | girl) which abbreviates

P(V=red-haired | W=girl)

where possible values are W!{boy,girl}, V ! {...}

Definition:

P(A|B) = P(A " B) / P(B)

Fits with intuition of Prob ! Relative Frequency:

P(rh | g) ! (#(rh"g) / #(b#g))/(#g / #(b#g))
= #(rh"g) / #g
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Dependent and independent events

Definition: Random variables V and W are indep't if

P(V=x " W=y) = P(V=x) $ P(W=y) for all x, y

Proposition: Two ran. var's V and W are indep't iff

P(V=x | W=y) = P(V=x) for all x, y

Example: What do the following mean intuitively?

P(red-haired " girl) = P(red-haired) $ P(girl)

P(red-haired | girl) = P(red-haired)

Definition: Two random variables are
dependent if the are not independent ;-) 
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Now you do the work

Exercises in section 2.1 + 2.2 of the note

"Examples and exercises for conditional
probabilities and Bayesian reasoning"

If you have no done it already, start reading text
of section 2.1

NB: Notice also new concept of "exhaustive set of
events" and Bayes' formula (3.11), plus sum
versions 3.12–13.
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Bayesian reasoning

Bayes' formula: Twisting conditional probabilities

Splitting up p(B) in two cases, conditioned with A
and ¬A:

Example with A=woman, B=read-haired ....
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An example ...

A red-haired person is seen running away from
scene of crime...

Police has two suspects in custody, both red-
haired, a man and a woman.

Who did it (probably):

Well, if we know P(man), P(woman), how many
men are typically red-haired and do. for
women...

Some definitions and clarification: ...
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Prior and posteriory probabilities

Probabilities P(A) and P(¬A) are called prior
probabilities as they refer to probabilites that
are given before any event has been observed

Probability P(A|B) and P(¬A|B) are called
posteriory probabilities as they are calculated
after some event has been observed

Back to the example ...
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Consider again:

We may have P(woman)=0.6 and P(man)=0.4.

But add now "80% of all criminal are men"...

changes P(woman)=0.2 and P(man)=0.8, so

with new prior probabilities, new posteriori are
calculated...
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Now you do the work

Exercises in section 3 of the note

"Examples and exercises for conditional
probabilities and Bayesian reasoning"

If you have not done it already, start reading text
of section 3

1. Work with the red-haired woman/man example

2. More natural example about medical tests
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Bayesian networks

• Conditional prop’s ! logical rules

• P(effect|cause) !   effect :- cause.

• easier to measure than P(cause|effect)

• Bayesian network: Graph (DAG) of cause-effect
relationships

! a logic program

• with limited structure and no arguments

• but with probabilities

• Here: Discrete BNs
• examples even binary = boolean

• but any finite no. of possible outcomes of each random
variables
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Example (Charniak)

abducibles fo/0, bp/0.

lo:- fo.

do:- fo.

do:- bp.

hb:- do.

______

?- hb.

...

?- hb, lo.

family-out (fo)

light-on (lo) dog-out (do)

bowel-problem (bp)

hear-bark (hb)

(This and another figure copied from slides by J.-C. Latombe; found at http://www.cs.ualberta.ca/~lindek/366/)
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Purpose of BN

• Statistically based, abductive reasoning, i.e.,
reasoning from “observed effect” to “(hidden)
causes” with probabilities

• Based on conditional probabilities and Bayes’
theorem ! a way of “reasoning backwards” in
conditional probs.
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Assumption of independence

a not necessarily indept. of d
and e!!

... but cond. prob. are:

P(a|b,c) = P(a|b,c,d,e)

Intuitively:

a depends on actual values of b
and c, but not on why b and
c

a

b

c

d

e

You may try to read def. of

“d-connected”, but you’re not expected

to be able to reproduce it ;-)
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Adding conditional probabilities

Notice:

• P(lo|fo) stands for P(lo=true|fo=true)

• P(lo|fo)=0.6 indicates implicitly

P(not lo|fo)=P(lo=false|fo=true)=0.6

family-out (fo)

light-on (lo) dog-out (do)

bowel-problem (bp)

hear-bark (hb)

P(fo)=.15 P(bp)=.01

P(lo | fo)=.6 

P(lo | ¬fo)=.05

P(do| fo, bp)=.99 

P(do| fo, ¬bp)=.90 

P(do| ¬fo, bp)=.97 

P(do| ¬fo, ¬bp)=.3

P(hb | do)=.7 

P(hb | ¬do)=.01
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A little exercise

• Given fo=true and bp=false, calculate
probability for P(hb=true)

family-out (fo)

light-on (lo) dog-out (do)

bowel-problem (bp)

hear-bark (hb)

P(fo)=.15 P(bp)=.01

P(lo | fo)=.6 

P(lo | ¬fo)=.05

P(do| fo, bp)=.99 

P(do| fo, ¬bp)=.90 

P(do| ¬fo, bp)=.97 

P(do| ¬fo, ¬bp)=.3

P(hb | do)=.7 

P(hb | ¬do)=.01
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Another little exercise

• Given P(hb=true), calculate probabilities for fo,
bp

family-out (fo)

light-on (lo) dog-out (do)

bowel-problem (bp)

hear-bark (hb)

P(fo)=.15 P(bp)=.01

P(lo | fo)=.6 

P(lo | ¬fo)=.05

P(do| fo, bp)=.99 

P(do| fo, ¬bp)=.90 

P(do| ¬fo, bp)=.97 

P(do| ¬fo, ¬bp)=.3

P(hb | do)=.7 

P(hb | ¬do)=.01

A trivial but cumbersome

manipulation using Bayes’ formula.

You are welcome to try, but let

us wait until next week and

use the computer
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You exercise:

Exercise 4.1 in the note for today

• design a Bayesian network for the familiar power
supply example

Exercise 4.2 (discussion; if time)

• on “intelligent” but annoying systems
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