
Henning Christiansen 
16 September 2008 

 

An exercise with Constraint Handling Rules 
 
We consider a constraint solver to be used in a system that produces knowledge bases 
from text in natural language. The example is taken from two papers [1, 2] which 
consider generation of UML diagrams from use case text; however, here we ignore 
the grammatical part and generation of diagrams, and consider only the constraint 
solver that governs the knowledge base. An implemented system is reported, 
implemented Prolog and CHR. 
 
Example 1: 
From “A dog has four legs and one tail”, the system generates to following 
constraints. 
 

class(dog), class(leg), class(tail), property(dog,leg:4), property(dog,tail:1) 
 
They are produced by grammar rules written in Prolog which “cast off” such 
constraints. What is interesting for us is what happens when there are different 
constraints about related entities, and this is where a constraint solver is needed. 
 
Example 2: 
From “Some cars have four wheels”, the following constraints are extracted. 
 

class(car), class(wheel), property(car,wheel:4) 
 
Continuing with “A few cars have three wheels”, we add 
 

property(car,wheel:3) 
 
and now the constraint solver should approach the two property constraints and 
change them into 
 

property(car,wheel:3..4) 
 
Continuing with “Other cars have 6 wheels” should add another constraint, and the 
constraint solver should combine the information and produce 
 

property(car,wheel:3..6) 
 
Example 3: 
From “John is a man”, the following constraints are extracted. 
 

class(man), object(john,man). 
 
Now, saying “John has a car” produces 
 

property(john,car:1) 
 
which the system hurries to convert to a constraint about the class rather than a 
particular object: 
 

property(man,car:1) 



 
For the following questions, a file ‘toolsCHRexercise.txt’ can be found via the 
course homepage. It contains some basic declarations plus predicates for finding the 
minimum and maximum of 2–4 numbers, which may be helpful for obtaining the 
solutions. 
 
 
Question 1 (warm up and refreshing Prolog) 
Informing you that Prolog has declared “:” as an infix operator, op(550, xfy,:), can 
you explain the effect of the following declaration: 
 

:- op(449,xfx,'..'). 
 
Question 2 (refresh CHR syntax) 
What do the following declarations in CHR mean: 
 

:- use_module(library(chr)). 
 

handler knowledge_manager. 
 

constraints class/1, 
              object/2, 

property/2. 
 
  
Question 3 
Write the Constraint Handling Rules that govern the collection of constraints of a 
class so that for there is only one constraint about a given property for given class; see 
example 1–3 above. You are welcome to apply the code fragments shown in 
questions 1 and 2 in your solution; test the solution by entering constraints as queries 
to Prolog (following “?-“). 
 
 
Question 4 
Extend with a rule that implements the conversion of properties-of-objects into 
properties-of-classes, cf. example 3. 
 
 
References 
 
[1] Henning Christiansen, Christian Theil Have, Knut Tveitane. From use cases to 
UML class diagrams using logic grammars and constraints. Proc. RANLP 2007, 
Recent Advances in Natural Language Processing; September 27-29, 2007, Borovets, 
Bulgaria. 2007 (to appear).  
 
[2] Henning Christiansen, Christian Theil Have, Knut Tveitane. Reasoning about Use 
Cases using Logic Grammars and Constraints. In [3]; pp. 40-52. 
 
[3] Henning Christiansen, Jørgen Villadsen (eds.). Proceedings of the 4th 
International Workshop on Constraints and Language Processing, CSLP 2007. 
Computer Science Research Report 113, Roskilde University, 2007.  


