Course on Artificial Intelligence and Intelligent Systems

Natural language analysis
with DCG and CHR:

Examples and exercises

Henning Christiansen
Roskilde University, Computer Science Dept.
© 2008 Version 2 oct 2008

PRELIMINARY VERSION; EXERCISES TO BE ADDED BY 7 OCT

This note gives some examples on the recommended literature, and gives
some examples of grammars and exercises. Chapters 7 and 8, minus 7.2.3
and 8.1.3 of the text [1], gives an introduction to Definite Clause Grammars;
we will not repeat the basics here.

This note adds a few comments, examples and exercises.

1 Definite clause grammars

Most Prolog systems include the popular Definite Clause Grammar notation,
colloquially DCG, which makes it very easy to implement simple language
analyzers. DCGs have been used for fragments of natural language as well as
programming languages, mostly for analysis and translation, but it is inter-
esting to notice that they can be used also for generation of text. However,
in the course we are mostly interested in analysis.

You should be aware that DCGs only take care of part of what normally
is expected for a language processing system. There is no straightforward
way to have a text file analyzed; if that is what you want, you need to do a
lot of programming yourself. A DCG works on Prolog lists which in principle
can contain arbitrary elements, but in typical applications they are constant
symbols (in Prolog terminology: atoms). For example, if you have written a
little DCG for simple sentences, having a nonterminal called sentence, the
following example query may show how you can activate analysis.

7- phrase(sentence, [logic,programming,is,fun]).

yes

(Here we used the SICStus convention using the phrase predicate; some
systems may do it in another way.)

Most textbooks on Prolog has a chapter on DCG, and in this course we
use chapters 7 and 8 of [1] which is available online.

Comments on the text

Many introductions to DCG, including chapter 7 of [1], tend to explain
DCGs in terms of their implementation which may not be that smart from
a pedagogical point of view. A better way (in the present writers view) will
be to explain DCGs in terms of example grammars and then leaving the
implementation principles to an appendix.

In [1], the authors start explaining that you can do language analysis
by means of the append predicate, then they explain you that this is not a
good idea. Next they explain a technique called difference lists and conclude
that this is a better way to implement language analysis (difference lists are
smart, but it may be difficult for the novice to see this). Finally, they show
you the grammar notation. At the KIIS course, we are interested in the
applications of DCGs and very little in the implementation. However, [1]
is fairly easy to read, so it is suggested that you read the chapters 7 and 8
from the beginning. In fact, the only things you really need to care about
the concerning the implementation of DCGs are the following:

e A top-down, left-to-right parsing strategy is used.

e Backtracking is applied in order to find the rules that should be ap-
plied.

e In case of an ambiguous grammar, you’ll get the alternative analyses
by backtracking (e.g., typing semicolon).

e If your grammar rules are left-recursive, it will most likely run into
infinite loops.

2 A first DCG

The following program is copied from [1] and shows a DCG without extra
arguments. Available on file dcgl.

np --> det,n.

vp --> v,np.
vp > v.

det --> [the].

det --> [a].

n -—> [woman] .

n --> [man].

v --> [shoots].

3 Adding extra arguments

The following program is copied from [1] and shows a DCG with extra
arguments in order do describe how he-him and she-her should be applied

correctly. Available on file dcg2.

S --> np(subject) ,vp.
np(_) -—> det,n.

np(X) --> pro(X).

vp --> v,np(object).
vp -—=> V.

det --> [thel.

det --> [a].

n --> [woman] .

n --> [man].
pro(subject) --> [he].
pro(subject) --> [she].
pro(object) --> [him].
pro(object) --> [her].

v --> [shoots].

Exercise 1

The grammar should be extended so that it includes plural-singular distinc-
tion. The grammar above has only singular, so to make it interesting, add
the following:

e NouUNs men, women,

e pronouns they, them,

e verb shoot.

You will need to add an extra argument to some of the nonterminals to hold
the number which should be one of sing, plu (for singular and plural).
Write the grammar in such a way that it only accepts grammatical cor-
rect sentences such as “the women shoot the men”, “she shoots the man”,
but not “she shoot the man”.
Implement it on the computer and test it.

Exercise 2

Extend the grammar so that it will accept sentences such as the following.
He shoots her with a water pistol.
A woman shoots him with a gun.

The linguists call such addition “with a water pistol” a prepositional phrase,
where “with” is the preposition.

It is suggested that you write the grammar so that you can accept any
np after with. So, for example, the following sentence will be syntactically
legal although semantically problematic.

The water pistol shoots the gun with a woman.

4 Adding extra conditions

The following grammar describes the command language for a simplistic
robot that can walk along a straight line. The grammar uses the curly-
bracket notation in order to assign a “meaning” to a command sequence,
which is the final position of the robot (assuming that it starts at position
0).

Curly brackets are useful for conditions that cannot be expressed in an
easy way using unification of arguments only.

The grammar is available at file trip. Notice that there are two nonter-
minals called trip, but they differ in the number of arguments.

trip(To) --> trip(0,To).
trip(Here,Here) --> [].

trip(From,To) -->
step (HowMuch) ,
{NewFrom is From + HowMuch},
trip(NewFrom,To) .

step(1) -—> [forward].
step(-1) --> [back].

step(0) --> [think].
The following shows a query and answer for this grammar.

?- phrase(trip(N), [forward,forward,think,back,think,forward,forward]).
N=3

Exercise 3

Calculate by hand how the Prolog system got to this answer in the example
above.

Exercise 4

The robot in the example above is now modified so that it walks in a 2D
space. Extend the command language in the previous example with com-
mands up and down, and (using two arguments, one for = and one for y
coordinates) modify the grammar so that it determines the final position in
the 2D space.

5 Discourse analysis as abduction with CHR

As we have seen, CHR adds a global store to Prolog’s execution state that
we can use for abductive reasoning. Recalling that a DCG is just a spe-
cial kind of Prolog program, we can apply the same principle for natural
language analysis. We consider the text to be analyzed as observable and
the explanations produced as an interpretation of the text. Consider an
over-simplistic example.

:— chr_constraint problem/O0.
sentence —--> [help], {problem}.

The rule reads, that problem must be true for help to be produced as an
acceptable sentence. The other way round, we can express the same by
saying that the sentence help has an explanation, namely problem (and in
this very little grammar, this is the only explanation).

A discourse means a longer sequence of sentences that is considered as
a whole, and an interpretation is then a representation of the knowledge
contained in that discourse. Discourse analysis differs from single-sentence
analysis since the interpretation of one sentence may depend on the inter-
pretation of previous sentences; we may also refer to this interpretation as

the context for the discourse. As we will see, CHR is well suited for describ-
ingsuch context dependencies.

The formulation of discourse interpretation as abduction was expressed
in [6], and the application of CHR for this purpose was described by [5, 2, 3].

Example

We show first a simple abductive DCG in which uses CHR to collect the
meaning of the different sentences, but not yet with any CHR rules. It is
available at the course website as a file name discoursel.

:- use_module(library(chr)).

:— chr_constraint at/2, see/2.

story -=> [1 ; s, [’.’], story.

s ——> np(X), [sees], np(Y), {see(X,Y)}.

s ——> np(X), [isyat] }) np(E), {at(E9X)}-
s ——> np(X), [is,on,vacation], {at(vacation,X)}.

np (peter) --> [peter].
np (mary) -=> [mary].
np(jane) --> [jane].
np(ruc) --> [ruc].

np(kiis) --> [the,kiis,course].

Exercise 5

Consider the following queries to the grammar shown above above.

phrase(story, [peter,is,at,ruc,’.’]).
phrase(story, [mary,is,at,the,kiis,course,’.’]).
phrase(story, [peter,sees,mary,’.’]).

phrase(story, [peter,sees,mary,’.’, peter,sees,jane,’.’,
peter,is,at,ruc,’.’, mary,is,at,the,kiis,course, ’.’,
jane,is,on,vacation,’.’]).

Predict the answers you would expect for each of them, and explain what
these answers mean intuitively. Then test the queries on the computer.

Exercise 6

MODIFY THE EXAMPLE!!!

Example with context dependent interpretation

The following abducible DCH extends the previous one with CHR rules that
describe context dependencies.! It is available at the course website as a file
name discoursel.

:— use_module(library(chr)).

:— chr_constraint at/2, in/2, see/2, skypes/2.

at(ruc,X) ==> in(roskilde,X).

in(Loc1,X) \ in(Loc2,X) <=> Locl=Loc2.

at(kiis,X) ==> at(ruc,X).

at(vacation,X) ==> in(Loc,X), diff(Loc,roskilde).

see(X,Y) ==> true | (in(L,X), in(L,Y)
; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

story --> [1 ; s, [’.°], story.

s ——> np(X), [sees], np(Y), {see(X,V)}.

s —=> np(X), [is,at], np(E), {at(E,X)}.

s ——> np(X), [is,on,vacation], {at(vacation,X)}.

np (peter) --> [peter].
np (mary) -=> [mary].
np(jane) --> [jane].
np(ruc) --> [ruc].

np(kiis) --> [the,kiis,course].

Exercise 7

Explain the intuitive meaning of each of the CHR rules in the grammar
above. Consider again the queries of exercise 5, but now in relation to the

!The predicate diff/2 is an alternative version of SICStus Prolog’s built-in dif/2; it
basically does the same thing, but when used together with other CHR rules, in gives
a nicer looking output. It can be implemented as follows; the 7= predicates is a special
sicstus device.

:— chr_constraint diff/2.
diff(X,X) <=> fail.

diff(A,B) \ diff(A,B) <=> true.
diff(A,B) \ diff(B,A) <=> true.
diff(A,B) <=> ?=(A,B) | true.

new grammar; explain what do they mean intuitively and test them on the
computer.

Exercise 8

MODIFY THE EXAMPLE!!!

References

[1] Patrick Blackburn, Johan Bos, and Kristina Strieg-
nitz. Learn Prolog Nowl!, 2005. Online document,
http://www.coli.uni-saarland.de/ kris/learn-prolog-now/;
also available as pdf,
http://www.coli.uni-saarland.de/ kris/learn-prolog-now/html/prolog-notes.pdf

[2] H. Christiansen and V. Dahl. HYPROLOG: a new approach to logic pro-
gramming with assumptions and abduction. In Maurizio Gabbrielli and
Gopal Gupta, editors, Proceedings of Twenty First International Con-
ference on Logic Programming (ICLP 2005), Lecture Notes in Computer
Science, 2005. To appear.

[3] H. Christiansen and V. Dahl. Meaning in Context. In Anind Dey, Boi-
cho Kokinov, David Leake, and Roy Turner, editors, Proceedings of Fifth
International and Interdisciplinary Conference on Modeling and Using
Context (CONTEXT-05), volume 3554 of Lecture Notes in Artificial In-
telligence, pages 97-111, 2005.

[4] Henning Christiansen. User’s guide to the HYPROLOG system:
A logic programming language with assumptions and abduction.
http://www.ruc.dk/ henning/hyprolog/HyprologUsersGuide.html,
2005.

[5] Henning Christiansen and Veronica Dahl. Assumptions and abduction
in Prolog. In Elvira Albert, Michael Hanus, Petra Hofstedt, and Peter
Van Roy, editors, 3rd International Workshop on Multiparadigm Con-
straint Programming Languages, MultiCPL’0/; At the 20th International
Conference on Logic Programming, ICLP’04 Saint-Malo, France, 6-10
September, 2004, pages 87-101, 2004.

[6] Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, and Paul A. Martin.
Interpretation as abduction. Artificial Intelligence, 63(1-2):69-142, 1993.

