
— 1 —

ROBOT: Software architectures for robot programming, 2009
Henning Christiansen, 9-mar-2009

Notes on the forthcoming written assignments:

Work on a particular software architecture

1 Introductory remarks

We have now become familiar with leJOS, and most student groups are approaching the
point where they know how to establish a Bluetooth connection between the NXT
and a laptop. Some students actually succeeded in this at the course March 4; if you need
inspiration, look at the uploads on the course’s bscw server. You may also contact
Donald Axel who has been so kind to help us.

Understanding the basic principles of behavioural robotics, how it is implemented, and
how to communicate with the robot is important for the rest of the course.

2 The rest of the course

In the rest of the course we will mainly work on detailed smaller assignments, where each
group agrees with the course teacher on a specific task. The purpose with this is not to
compete on produced the most fancy, humanlike, sophisticated and fault free robot — the
selection of sensors and mechanical actuators that we have available are anyhow too
limited for this. These assignments should instead take the form of an investigation of a
particular software architecture which you test and experiment with through the
construction of a simple robot. We may extend the course curriculum if interesting
articles of common interest shows up.

Student groups are expected to make presentation of the intermediate stages of their
work. It is highly appreciated if the groups help each other with technical problems, as
many difficult, although in principle trivial, obstacles that will arise (as you have noticed
already).

It will depend on the choices of topics for the assignments, but we will try to split the
work smaller assignments so that you don’t have to write a report about everything the
last week of the course.

We may choose totally independent assignments for 2–4 students each, but it could be
also be interesting if we can define a common project to which all groups could
contribute. In the latter case, we may either have each smaller group produce its
particular robot for a common purpose, or we create a larger design together and split by
software modules. — If it turns up that you have chosen a topic that turns out to be too
easy, we can extend it along the way to include more interesting aspects.

— 2 —

Outline of a time schedule

March 11: Continue the fight with the communication parts. Students who have got
small programs working that send Bluetooth messages back and forth, should explain
how they did to the others. And we may have Donald Axel available to help us also.
Secondly, we will take a longer brainstorm with your ideas, and aiming at making a
decision of a common task, or otherwise which detailed task that each group should work
on.
March 18: Each group will give an overview of the (sub-) task, they want to solve and
which technical challenges they expect, and how to solve them; if possible, present the
overall structure of the software architecture that you aim at.
March 25 at latest: You teacher gives exact deadlines and requirements for the
assignments to be given in.
The following weeks: Working on the assignments. We work together in the same room
each Wednesday. Each group may give short statement of how fare they got and which
problems they have been facing.
April 11: Each group presents and demonstrates its solution, and if we are working on a
common project, we demonstrate the entire cooperating machinery :)

3 Possible topics for the assignments

Here are some possible ideas that you may elaborate on, but you are also more than
welcome to search for and suggest other ideas. The proposals are more and less detailed,
so you may also take them as patterns that you may apply to other tasks or architectures.

Producing a map of a room
The Lego robots have quite restricting limitations concerning orientation. They have no
sense of where they are and no idea of the direction. However, within shorter periods of
time, it is possible to get some approximate knowledge about this by keeping track of
how far each motor has moved, but after a while, the accumulated inaccuracy (sliding on
the floor, etc) has grown to far. So how can we make reliable maps?

Well, here is an idea: You may use the ultrasound sensor as a kind of radar; it may rotate
on top of the robot or the robot can rotate as a whole. The sensor can measure if it points
towards an object, and it can register the distance to an object, although with some
inaccuracy. For each rotation of the “radar” (let us assume it can rotate 120 degrees and
then must rotate back and so forth), it can register a vector of readings,

<object, distance, angle relative to robots orientation>
As the robot moves along, it gets a long series of such vectors, and with a bit of
programming it should be possible to assemble a 2D map from these vectors.
Furthermore, from the part of a map that the robot has learned at a given time, it should
be able (sometimes) to recognize where it is at a given moment.

This task may be implemented by a client-server architecture where a laptop takes care of
assembling the map from the vectors and of commanding the robot to search in regions of
the room where it has not been before. The robot itself should have some sort of
behavioural program that makes it possible for it to move around, avoid obstacles etc.

— 3 —

while also being able to take the servers directives into account. Sending messages back
and forth is an important part of getting this to work.

With more students in the project, it may also be interesting to have some of you make a
graphical interface so that the map under construction is displayed continually with more
and more details.

Behavioural programming on your own computer?
The examples and exercise we have worked with until assumes that the behavioural
program resides on and is executed onboard the robot. However, we could also reduce the
robot to a dumb slave which only executes instructions received from the server and
sends sensor data back. It seems possible that you can use Java (with leJOS) on the server
and program the robot’s dumb program in either leJOS or Lego’s graphical language (or
try both). What are the advantages and disadvantages of this shift of where control is
performed?

Cooperating robots
A very challenging theme is to have robots to cooperate on a task. We may suggest that
each robot is running its own behaviours that are designed in such a way that each robot
will do what it can to synchronize its actual behaviour with its companion(s). The task
may be more or less advanced; here are some ideas:
• Make two fork-lift truck robots that try to locate a special item that is too heavy or too

long for one robot to lift; when they have found it, they lift it and move it together (your
teacher has no idea how this can be done with the primitive sensors that we have
available, but you can probably learn a lot from producing even a solution that does not
work).
• A multi-robot version of the room-mapping problem. You may experiment changing

how much synchronization is done robot-to-robot, how much by a server, or perhaps by
behaviours without explicit synchronization that just happen to sum the right way.

Traffic simulation using robots — is an instance of the cooperating robots, but requires
many robots and can benefit from having several groups working on the same project.
• Motorway driving. Robots are moving along parallel lanes, they may have different

preferences for speed, and they may shift lane for overtaking or for giving room for a
faster vehicle. We can imagine robots that resemble different profiles of
vehicles/drivers. Equip each robot with behaviours, find a place that you declare is a
motorway and set the robots free!
• Motor race. It is a bit like the one above, but here we must combine cooperative and

competitive behaviours. The goal of each one is to drive faster that the others, e.g.,
watching for possibilities to overtake the guy in front in case he as too much speed
when entering a turn. On the other hand, there are things you must not do even in a
motor race!

Simulating social behaviour as an exercise in virtual archaeology — is an instance of
the cooperating robots related to the above. You can imagine the robot playing the role of
inhabitants of a village, and each has a task to do, e.g., some goes on shopping and others
are traders on the market. A robot may great other robots that it meets on its way, etc.,
and should avoid bumping into other robots. (Due to the limited sensor capabilities, this
may be too difficult, but now the idea is given).

