
Experiences and directions for Abduction and Induction
using Constraint Handling Rules∗

POSITION PAPER

Henning Christiansen
Roskilde University, Computer Science Dept.,

P.O. Box 260, DK-4000 Roskilde, Denmark henning@ruc.dk

Abstract

Techniques for doing abduction in a combination of
Prolog and Constraint Handling Rules (CHR) are
reviewed, and the possible extension to combine
with induction is considered. While the indicated
implementation for abduction is very efficient, the
ideas for induction are at a much more experimental
stage. However, experimentation within CHR indi-
cates a logical semantics for the induction mech-
anisms under consideration and their offset in ab-
ductive logic programming.

1 Introduction
Our interest in natural language processing using Constraint
Handling Rules (CHR) has lead to interesting observations
and results concerning the realization of abduction and in-
duction within CHR.

In this paper, we give an overview of our present results,
and indicate new directions.

Our present work has established a very efficient and
straightforward implementation of abduction in Prolog by
means of CHR, and our thoughts on induction are at the time
of writing still at a speculative level.

2 Background
The language of Constraint Handling Rules, CHR, is an ex-
tension to Prolog intended as a declarative language for writ-
ing constraint solvers for CLP systems; here we give a very
compact introduction and refer to[Frühwirth, 1998] for de-
tails. CHR is now integrated in several major Prolog imple-
mentations and has gained popularity for a variety of appli-
cations due to its expressibility and flexibility, which goes
far beyond the traditional applications of constraint program-
ming (such as finite domains, arithmetic, etc.).

Constraints of CHR are first-order atoms whose predicates
are designated constraint predicates, and a constraint store is
a set of such constraints, possible including variables that are
understood existentially quantified at the outermost level. A

∗This work supported by the CONTROL project, funded by Dan-
ish Natural Science Research Council.

constraint solver is defined in terms of rules which can be of
the following two kinds.

Simplification rules:c1, . . . cn <=> Guard | cn+1, . . . , cm

Propagation rules:c1, . . . cn ==> Guard | cn+1, . . . , cm

The c’s are atoms that represent constraints, possible with
variables, and a simplification rule works by replacing in the
constraint store, a possible set of constraints that matches the
pattern given by theheadc1, . . . cn by those corresponding
constraints given by thebodycn+1, . . . , cm, however only if
the condition given byGuardholds. A propagation rule ex-
ecutes in a similar way but without removing the head con-
straints from the store. In addition, rule bodies and guards
may include equalities and other standard relations having
their usual meaning. The declarative semantics is hinted by
the applied arrow symbols (bi-implication, resp., implication
formulas, with variables assumed to be universally quanti-
fied) and it can be shown that the indicated procedural seman-
tics agrees with this. This is CHR explained in a nutshell.

Abduction in CHR was first proposed by[Abdennadher
and Christiansen, 2000]. They proposed a translation of ab-
ductive logic programs into CHR, so that the logic program
component as well as integrity constraints are written as CHR
rules with all predicates consider constraints. We explain a
later variation of the principle below in section 3.

Interestingly, the technique can be explained as a trans-
formation of abduction into deduction[Christiansen, 2002;
2005] and it is interesting to compare this with an early pa-
per [Consoleet al., 1991] (written at a time when CHR did
not exist) that pointed out an isorphism between a class of
abductive problems and deduction.

3 Abduction in Prolog with a few lines of
CHR

The first proposals[Abdennadher and Christiansen, 2000;
Christiansen, 2002; 2005] formulated everything in terms
pure CHR, and[Christiansen and Dahl, 2004; 2005a] have
applied the principles in a combination with Prolog that is
explained briefly here.

The basic mechanism is simple: abducible predicates are
declared as constraints and when called from a Prolog pro-
gram, CHR’s constraint store serves as a container that col-
lects the abduced atoms. (This is opposed to plain Prolog in
which a call to an empty predicate yields failure.)

For example, the complete hand-coded implementation of
an abducible predicatea/1 is provided by the following three
lines.

:- use_module(library(chr)).
handler abduction.
constraints a/1.

A principle applied in many approaches to abduction is to
aim at minimal abductive answers (measures in number of
literals) by always trying to unify new abductive atoms with
existing ones. As we have argued elsewhere, this principle is
not always desirable, but anyhow, it can be implemented by a
single CHR rule; the following provides a correct implemen-
tation.

a(X), a(Y) ==> true | (X=Y ; dif(X,Y)).

(We have used SICStus Prolog; facilities explained
in [Swedish Institute of Computer Science, 2004].)

Another important aspect of abductive logic program-
ming [Kakaset al., 1998] is the presence of integrity con-
straints which are logical conditions that limit the possible ab-
ductive explanations, in order to exclude nonsense scenarios.
Using CHR for abduction, its rules are handy tools for writ-
ing integrity constraints. The following rule whose intuitive
meaning should be self-explanatory, can be written directly
in CHR and will provide the right meaning, declaratively as
well as operationally.

married(X,Y), married(X,Z)
==> Y \= Z | bigamist(X).

Compared with other approaches to abduction, a main advan-
tage is that the rules and given facts of an abductive logic
program are represented and executed as Prolog code with
no meta-interpreter involved to slow things down. Not sur-
prisingly, for the right sort of abductive problems (where de-
ductive steps dominate) we gain significant speed-up with the
indicated methods.

The price, then, is a limited use of negation. Where ap-
proaches such as[Kakaset al., 2000] can get interesting re-
sults by exporting knowledge from negated subgoals whose
solution depends on abducibles, this is incompatible with our
approach. However, a simple form of so-called explicit nega-
tion is supported by our method; see[Christiansen and Dahl,
2004].

4 An application to natural language
semantics

As an aside to the overall theme of this position paper, we
mention an approach to discourse semantics and analysis
called Meaning-in-Context[Christiansen and Dahl, 2005b]
which is inspired by the abductive mechanism explained
above.

As central for discourse understanding, we consider con-
text (here defined as the set of knowledge learned so-far from
the discourse) as a central component. The analysis of any
little fragment is analyzed using knowledge from the context,
and may contribute with new knowledge to that context, as
well as its meaning is expressed in a compact form by means
of references to the context. This model is formalized using

a possible worlds semantics, which we can map directly into
abductive programs formulated as above.

5 Rules in the constraint stores
In yet unpublished work together with V. Dahl, we have ex-
tended CHR with rules in the constraint store. The idea came
up due to a frustration over the fact that the model of abduc-
tion described so far could not express the meaning of general
statements of such as “All fishes swim”. What we want is, of
course, a model so that all known fishes, as well as any future
fishes met later in the discourse are assigned the property of
being able to swim.

In CHR, there is no counterpart to Prolog’s (anyhow du-
bious) assert so that we can extend the program with a
new rule. What we propose instead is to extend the notion of
constraints from being atomic statements to include also rules
such as the following.

fish(X) ==> swim(X).

An inefficient prototype implementation can be produced by
including as set of meta-rules in the original program (for
dynamically created rules with head size up to some num-
ber). Let us for simplicity assume that prefix operator? is
applied as a general constraint to capture all abducible pred-
icates, i.e., we write?fish(X) instead offish(X) . The
following sample metarule is capable of handling a rule in
the constraint store with two constraints in the head.

?A, ?B, (?A, ?B ==> Body) ==> call(Body).

(In practice, we should apply a slightly more complicated
version in order to avoid the inherent problems with a non-
ground representation. Never mind, the rule above works for
interesting examples.)

When a new “dynamic” rule is created it will apply to all
existing pairs of constraints that match its head, as well any
future such that may arise.

The generation of a rule such asfish(X) ==>
swim(X) can be done in the body of either another CHR
rule or Prolog rule. We just need to declare==> as a con-
straint predicate (the compiler accepts it;-)), and just “call”
a new rule as if it were a goal and it is added to the constraint
store.

Interestingly, CHR’s declarative semantics generalize im-
mediately with correctness statements for the indicated im-
plementation analogous to those we recognize for CHR.

6 A proposal for induction in CHR
Induction in a logic programming setting means to generate
new rules when sufficient evidence for doing so it is present
(and it is seen as practical to in(tro)duce that rule). We saw
above how it is possible to generate and install new CHR rules
when program is running, so (naively stated) to do induction
in this model is a matter of writing the program lines that keep
track of such evidence.

Referring to the example above, let us assume a program
that concernsfish es andswimming entities. We can say
that we would like to induce a rulep(X) ==> q(X) when-
everp has been observed a sufficient amount of times as facts

p(a) and for all of then, we have alsoq(a) (and perhaps
q(b) for someb withoutp(b)).

If we disregard efficiency, it is straightforward to extend
a CHR program as to maintain the necessary statistics each
time a constraint is called and check whether the indicated
evidence is strong enough for launching a new rule.

The approach is implementable, and will provide a more
dynamic paradigm that Inductive Logic Programs, as rules
are created dynamically and participate in the continued com-
putational process.

If this proposal should be developed into something of any
practical value, it is worth seeking inspiration in methods for
data mining, more precisely association rule mining, to which
our approach shows obvious similarities.

7 What else do we need?
Abduction in CHR as we have described it can be consid-
ered a well-understood, ready to use technique, whereas the
approaches to dynamic rule generation as well as evidence-
based induction still are at a very preliminary stage.

However, using it for experimentation with possible new
mechanisms for induction in logic programming and applica-
tion thereof (e.g., for advanced discourse analysis) is possible
and feasible.

Important aspects of induction such as syntactic bias and
preference that are known from other paradigms of induction
have been ignored until now and need, of course, to be related
to this framework.

Clearly the indicated techniques with a direct implementa-
tion in CHR seems very inefficient, and the main contribution
of our proposal may be that of modeling a new approaches
to induction, which, then may inspire to the development of
practically relevant implementation. One obvious advantage
of working within CHR at this experimental stage is there is
always a logical semantics semantics underneath.

Current research related to abduction in CHR concerns
the use of a probabilistic semantics as a systematic way to
achieve weights and priorities during evaluation, as well as
an alternative way of execution CHR so that backtracking is
replaced by a simultaneous evaluation of different possible
abductive explanations.

References
[Abdennadher and Christiansen, 2000] Slim Abdennadher

and Henning Christiansen. An experimental CLP platform
for integrity constraints and abduction. InProceedings of
FQAS2000, Flexible Query Answering Systems: Advances
in Soft Computing series, pages 141–152. Physica-Verlag
(Springer), 2000.

[Christiansen and Dahl, 2004] Henning Christiansen and
Veronica Dahl. Assumptions and abduction in Prolog.
In Elvira Albert, Michael Hanus, Petra Hofstedt, and
Peter Van Roy, editors,3rd International Workshop on
Multiparadigm Constraint Programming Languages,
MultiCPL’04; At the 20th International Conference on
Logic Programming, ICLP’04 Saint-Malo, France, 6-10
September, 2004, pages 87–101, 2004.

[Christiansen and Dahl, 2005a] H. Christiansen and V. Dahl.
HYPROLOG: a new approach to logic programming with
assumptions and abduction. In Maurizio Gabbrielli and
Gopal Gupta, editors,Proceedings of Twenty First Inter-
national Conference on Logic Programming (ICLP 2005),
Lecture Notes in Computer Science, 2005. To appear.

[Christiansen and Dahl, 2005b] H. Christiansen and V. Dahl.
Meaning in Context. In Anind Dey, Boicho Kokinov,
David Leake, and Roy Turner, editors,Proceedings of
Fifth International and Interdisciplinary Conference on
Modeling and Using Context (CONTEXT-05), volume
3554 ofLecture Notes in Artificial Intelligence, pages 97–
111, 2005.

[Christiansen, 2002] Henning Christiansen. Abductive lan-
guage interpretation as bottom-up deduction. In Shuly
Wintner, editor, Natural Language Understanding and
Logic Programming, volume 92 ofDatalogiske Skrifter,
pages 33–47, Roskilde, Denmark, July 28 2002.

[Christiansen, 2005] Henning Christiansen. CHR Gram-
mars. Int’l Journal on Theory and Practice of Logic Pro-
gramming, 2005. To appear.

[Consoleet al., 1991] Luca Console, Daniele Theseider
Dupŕe, and Pietro Torasso. On the relationship between
abduction and deduction.J. Log. Comput., 1(5):661–690,
1991.

[Frühwirth, 1998] Thom Fr̈uhwirth. Theory and practice
of constraint handling rules, special issue on constraint
logic programming.Journal of Logic Programming, 37(1–
3):95–138, October 1998.

[Kakaset al., 1998] A.C. Kakas, R.A. Kowalski, and F. Toni.
The role of abduction in logic programming.Handbook of
Logic in Artificial Intelligence and Logic Programming,
vol. 5, Gabbay, D.M, Hogger, C.J., Robinson, J.A., (eds.),
Oxford University Press, pages 235–324, 1998.

[Kakaset al., 2000] A.C. Kakas, A. Michael, and
C. Mourlas. ACLP: Abductive Constraint Logic Pro-
gramming. Journal of Logic Programming, 44:129–177,
2000.

[Swedish Institute of Computer Science, 2004] Swedish In-
stitute of Computer Science. SICStus Prolog user’s
manual, Version 3.12. Most recent version available at
http://www.sics.se/isl , 2004.

