Adaptable Grammars for
Non-Context-Free Languages

Extended and revised version'

Henning Christiansen
Research group PLIS: Programming, Logic and Intelligent Systems
Department of Communication, Business and Information Technologies
Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark
henning@ruc.dk, http://www.ruc.dk/~henning

Abstract

We consider, as an alternative to traditional approaches for describing
non-context-free languages, the use of grammars in which application of
grammar rules themselves control the creation or modification of grammar
rules. This principle is shown to capture, in a concise way, standard
example languages that are considered as prototype representatives of
non-context-free phenomena in natural languages. We define a grammar
formalism with these characteristics and show how it can be implemented
in logic programming in a surprisingly straightforward way, compared
with the expressive power. It is also shown how such adaptable grammars
can be applied for describing meta-level architectures that include their
own explicit meta-languages for defining new syntax.

1 Introduction

An important aspect of formal linguistics is to search for suitable grammar
formalisms that can describe non-context-free languages; both the formal ex-
pressibility as well as how these languages are described, are important (are the
grammars “natural” in some sense, or which conception of language does a class
of grammars represent).

Many classical approaches to handle extra-context-free aspects apply special-
ized derivation relations so that everything is captured in terms of rewriting;
two-level grammars [22] and contextual grammars [17] are examples of this.
Other directions use extra-grammatical add-on’s to context-free grammars such

IThis paper is an extended and revised version of [7] presented at Third International
Workshop on Non-Classical Formal Languages in Linguistics, organized by Gemma Bel-
Enguix and M. Dolores Jiménez-Lépez, published previously in the IWANN 2009 Proceedings,
LNCS, vol. 5517.

as first order logic in Definite Clause Grammars [20] and arbitrary mathematical
functions in Attribute Grammars [15].

We consider here a third approach by turning the grammar itself into a
dynamic entity, so that the application of grammar rules can create new or
modify existing grammar rules. The scope of grammar rules can be controlled
analogously to the way Definite Clause Grammars and Attribute Grammars pass
information around to different parts of the string being analyzed or constructed.
The difference is that here we pass the entire and dynamically evolving grammar
around, so that new constructs may come in and others disappear.

We present a formalism that we call Adaptable Grammars, based on an
earlier proposal of ours [3, 4, 5], which has not been considered in a formal lin-
guistics setting before, but confined to applications for programming languages.

The principle of having a grammar dynamically modifying or adapting itself
along a discourse may be seen as a universal mechanism that can be incorpo-
rated in other grammatical frameworks as well. One of the motivations for this
approach is to obtain a ‘natural’ way of modelling those context-dependent as-
pects of language that essentially are related to the introduction of new linguistic
potential or — in a broader perspective — the development of language, whether
this be within a discourse or perhaps over generations of language users or even
in the evolution of species. The advantage is that original and novel language
constructs are represented in an equal manner so that, at any stage, the current
grammar may be read out. In most traditional grammar formalisms, that are
capable of expressing some context-dependencies, this need to be modelled by
highly over-general rules whose application is controlled by an encoding of the
linguistic context.

The earliest version of our grammars were introduced with the misleading
name of ‘generative grammars’ that was later changed into ‘adaptable gram-
mars’; other authors have used the name ‘Christiansen grammars’, e.g., [21, 13,
19, 24, 9]. Recently [19, 9] have used these grammars for grammatical, evolution-
ary programming; the authors motivate their approach by the observation that
with such grammars, they can do with shorter derivations of target programs,
thus smaller and more expressive ‘chromosomes’ and faster convergence.

The first trace of the principle of grammars that adapt to the context seems
to be [11] from the early 1960ies, but no general formalism was developed; an
extensible grammar formalism was developed in [23] for describing one particular
system, and other proposals are [21, 1]; see also [4, 5] for a detailed comparison
with other selected formalism.

In the present paper, we define in section 2 an adaptable grammar formal-
ism which borrows formal concepts from first-order logic and logic programming.
However, we have intended to make the paper accessible also for readers with
little or no background in the logic programming field. In section 3 we show a
generic implementation written as a meta-interpreter in Prolog, which is strik-
ingly simple compared with the high expressibility of the class of adaptable
grammars that it implements; this section may be skipped by mainly linguisti-
cally oriented readers and summarized as “there is an implementation that can
be copied from this paper, pasted into any standard Prolog system and executed

directly”. We show how these grammars can capture standard non-context-free
languages used in the literature (e.g., [18]) as prototypical representatives for
the central natural language properties of reduplication, crossed dependencies,
and multiple agreements (section 4; find executable versions in the appendix).
Finally, in section 5, we show how adaptable grammars can be used to describe
meta-level architectures that include their own explicit meta-languages for defin-
ing new syntax. It appears that the three first grammars become almost trivial
when formulated as adaptable grammars, whereas the last example requires a
more detailed analysis analysis of the input and synthesis of new grammar rules.
The concluding section gives a summary and a discussion of perspectives and
possible future work.

2 Definition

We assume the terminology of first-order logic, including logical variables, and
logic programs (pure Prolog programs) as well as related notions such as (ground)
instances for formulas and terms; see, e.g., [16]. We recall briefly that a ground
term is one without logical variables, and that a ground instance of a for-
mula or term is given by a consistent replacement of ground terms for its vari-
ables. Intuitively, a ground formula represents a specific piece of information
whereas a non-ground one can be instantiated in many different way; for ex-
ample identical(X,Y), where X and Y are variables, may represent a general
relationship of identity, whereas identical(a, a) concerns the specific fact of some
constant a being identical to itself.

Definition 1 An adaptable grammar is a quintuple (X, N,II, [-], R) where ¥
is a finite alphabet, N a set of nonterminal symbols which are logical predicate
symbols of arity at least 1, 11 is a logic program, [—] is the denotation function
which is a (partial) function from ground terms to grammars, and R is a set of
grammar rules (below). Nonterminals and atoms defined as predicates in I1 are
assumed to be disjoint. Fach nonterminal symbol has a distinguished argument
called its grammar argument (or grammar attribute). A grammar rule is of
the form
lhs ==> rhs.

where lhs is a nonterminal and Ths a finite sequence of elements which may be
terminal or nonterminal symbols or first-order atoms defined by 11.

It may be noticed that the use of an explicit denotation function means that we
avoid potential circularity problems, so that the definition can rely on standard
sets of first-order terms. Intuitively, the denotation function defines a ground
representation of grammars, i.e., the variables in rules are represented by con-
stants or other ground objects. Without this, the application instances of rules
(defined below) may include structures containing a copy of themselves, which
requires a far more complicated mathematical foundation; see, e.g., [12] and its
references to the mathematical background.

We apply a notation inspired by definite clause grammars [20] so that ter-
minals in grammar rules are written in square brackets, and atoms referring the
program component in curly brackets. Furthermore, the grammar argument of
a nonterminal symbol is assumed to be the last of its arguments, and we drag
it outside the standard parentheses and attach it by a hyphen, e.g., instead
of n(x,y,G), we prefer n(x,y)-G when n is a nonterminal of arity 3. In the
text, we use italic letters for metavariables in the text, e.g., as in “let G be
...7; logical variables within grammar rules are indicated by capital letters in
typewriter font (as G above), and constant symbols that denote such variables
by single quotes, e.g., ‘G’. Our Prolog-based implementation uses a slightly
different notation that will be explained.

Terms within rules that represent grammars are generally written using Pro-
log’s list syntax but may be written in other ways depending on the actual
denotation function. In order to simplify the notation, we expect that the de-
notation function only changes the rule sets, so that the other components are
fixed within the derivations made from a given initial grammar. In the examples
below, we assume X and N to be introduced implicitly by usage, and the logic
program IT implicitly supplies any standard Prolog predicate that we may need.

However, it should be noticed that our definition allows any component to
be modified during a discourse, including the ‘knowledge base’ IT and even the
denotation function if needed; our implementation can be extended accordingly.

As it follows from the results of [10], the inclusion of logic programs in the
formalism does not add anything new as they can be seen as grammars that
generate the empty string. They are included for notational convenience only.

Example 1 We show here a very simple and technical example of an adaptable
grammar in order to illustrate the details of the definition; more interesting
examples will be given later. Let

Go = <{a7ba C}a {n/1}7 0, [[_]]0’ {Tl’T2}>

be an adaptable grammar where the rules r; and ro are as follows.

Ty n-G --> [a], n-modify(G)
To : n-G --> [b]

It is assumed, for this example, that only the rule set varies during syntactic
derivations (to be defined). We can thus define the denotation function [—]o as
a function from lists of “rule terms” into grammars whose first components are
fixed as those of Gy. We extend [—] so that it also applies to the representation
of single clauses: any term that resembles a rule is mapped into a similar rule
with the special quoted constants replaced by variables; for example, we have
that [n-‘G’-->[bl]op = r2. Any list of terms is mapped into the set of rules
denoted by each of these terms, and finally to interpret the modify operator,
we define [modify(gt)]o = [gt]o \ {ro} U {rs} where r3 = n-G-->[c].

For reference in the following example, let ¢1, 2, t5 be terms such with [t;]o =
ri, 1 =1,2,3.

Definition 2 (derivation) Given an adaptable grammar (X, N, 11, [—], R), an
application instance of one of its rules r € R is a ground instance v’ of r
in which grammar arguments denote grammars and any logical atom in v’ is
satisfied in II. Whenever afBv is a sequence of ground grammar symbols, 3
being a nonterminal of the form N-G with an application instance 3 -=>§ of a
rule in [G], we write

aBy = ad'y

where &' is a copy of 6 with any atom referring to 11 taken out. The relation
="* refers to the reflexive, transitive closure of = .

The language defined by a given ground nonterminal N-G is the set of ter-
minal strings o for which N-G =* o.

The application instances of a given grammar can be thought of as an infinite set
of context free rules. When a particular nonterminal N = n-{grammar-term) is
rewritten, only those application instances whose left-hand side coincides with
N can be used. In many cases, this amounts to a finite set, which may intuitively
be understood as the context-free potential for a particular node in a syntax
tree.

Syntax trees are written in the usual way, but extending each nonterminal
node with the available grammar or rule set that is available for the expansion
of that node. When no confusion occurs, we may interchange grammars and
the terms that denotes them and even write N — G as a node when N refers to
a nonterminal with its grammar attribute (that denotes G).

Example 2 We continue example 1 above. We notice that
No =n-[t1,t2]

is a nonterminal whose grammar part denotes the grammar Gg; Gp in turn has
an application instance

n- [tl,tg] -—> [a] B N1
where N7 = n-modify([t1,t2]). We have thus the derivation steps
Ny = aN; = ac,

where the last step is due to the facts that V;’s grammar part denotes a grammar
{r1,73} and that an application instance of r3 can apply to rewrite N7 into
terminal symbol c. We can illustrate this by a syntax tree in which each node is
decorated with the actual rules that can apply (more precisely, whose application
instances can apply), with an underlining of the chosen one.

Ny — {Q,Tz}

/\
a Ny —{ri,r3}
\

C

We notice also that Ny =* b, but not Ny =* ab.

3 Plain Vanilla Implementation
of Adaptable Grammars

Adaptable grammars as we have defined them above can be implemented in
Prolog in a straightforward way, based on well-tested techniques. We stress
that the code shown here can be executed directly as it is in any standard
Prolog system; no additional facilities or hidden devices are needed.

We will assume a non-ground representation of grammars, i.e., using logical
variables to denote logical variables. This representation has the advantage
that programs can be written very succinctly but requires a bit of care to avoid
mixing up quantification levels. We take this for granted and refer to standard
literature on this topic, e.g., [12], and avoid these potential technical problems
in our examples.

Instead of magically predicting the right application instances of grammar
rules in order to analyze a given string, we use unification when a rule is applied,
and embedded code chunks are executed in the order they are encountered in
the current derivation; these are also standard techniques for execution of Pro-
log programs and language recognition with Definite Clause Grammars [20],
so we take correctness for granted. Our implementation is similar to a meta-
interpreter implementation of Definite Clause Grammars with the single ex-
tension that grammar rules are picked in the grammar argument instead of in
Prolog’s global database. An extra predicate for renaming variables in gram-
mar rules is needed, implemented here in a traditional one-line fashion. The
following few code lines are sufficient to check whether a given string S can be
derived from an adaptable grammar nonterminal NG by the call derive (NG,

S).
derive (NG, S):- derive(NG, S, []).
derive([], S, S).
derive([TITs], [TIS1], S2):- derive(Ts, S1, S2).
derive({Code}, S, S):- call(Code).
derive((A,B), S1,S3):- derive(A, S1, S2), derive(B, S2, S3).
derive(N-G, S1, S2):-
renameVars(G,GFresh),
member((N-G --> Rhs), GFresh),

derive(Rhs,S1,82).

renameVars(X,Y) :- asserta(quax(X)), retract(quax(Y)).

Example 3 We continue examples 1 and 2 by showing the encoding of grammar
G in Prolog for demonstrating the use of the interpreter above. We need

to modify the grammar a little, as the inherent denotation function does not
understand the modify operator. Instead, we define a Prolog predicate with the
same purpose.

modify ([R1,R2], [R1,R3]):- R3=(n-G-->[c]).
It is convenient to store the grammar as a Prolog fact exemplified as follows.

gram([(n-G --> [al], {modify(G,G1)}, n-G1),
(n-G --> [p]) 1).

Testing that the string ab is in the language is then done as follows.

| ?- gram(G), derive(n-G, [a,c]).
G=[...17
yes

The appendix demonstrates tests for the grammars shown in remaining part of
the paper.

4 Important Non-Context-Free Languages in
Adaptable Grammars

In formal linguistics, three different phenomena are often emphasized as central
for natural language; they are called reduplication, crossed dependencies and
multiple agreements. These phenomena are exposed in the following languages
(see, e.g., [18]):

Ly = {rer|re{a,b}'}
Ly = {a"b"c"d™|n,m > 1}
Ly = {a"b"c"|n>1}

These are straightforward to describe in adaptable grammars as we will show
below. We introduce the language

RR = {rr|r is a string of as and bs}.

as a prototype. We can characterize RR by a grammar Grp that generates the
first half part of the string in a standard way and in parallel maintains a rule,
called the terminator rule, for generating the second half. Initially, when no
as and bs have been derived, the terminator rules generates the empty string.
More precisely, Grp consists of the following three rules, tl!, 72 and rP.

. r-¢ -=> 01

rlBl: r-G --> [al, {add-to-terminator(a)}, r-G1
Pl r-G --> [bl, {add-to-terminator(b)}, r-G1

where add-to-terminator(letter) is an action that changes the terminator rule
of grammar given by G by adding letter in front of its right-hand side in order
to obtain a revised grammar for G1. The following syntax tree, indicated in a
notation similar to example 2, represents the derivation of the string ‘abab’; the
notation ¢/5t7"9) indicates the terminator rule r-G -=> [string].

r - {tl r2 °}

a r (1B s, p0)

b r— {tlP 2 Py
\

ab

Changing the Grr grammar above to a grammar for L; is a matter of changing
the terminator rule of the initial grammar into r-G-->[c]. The principle applied
in the grammar for RR provides immediately the clue for describing Ly and Ls.
For Ly we can use an initial grammar consisting of the following rules (sketched).

s0-G --> [al,sl1-G

s1-G --> [al,{code;},s1-G1
s1-G -—> [b]l,s2-G

s2-G --> [bl,{codes}, s2-G1
s2-G --> Cs-G,Ds-G

Cs-G --> [c]

Ds-G --> [d]

The embedded code fragment code; adds a ¢ to the right-hand side of the rule
for Cs; thus one application of the first rule and n — 1 application of the second
create the rule Cs-G --> [c]”. Similarly, code; adds a d to the rule for Ds in
order to form the rule that produces d” in the final derivation step.

We have chosen the language RR instead of Ly, as it may be more difficult
to model in some formalisms due to the lack of a “middle demarcation” c.
Changing our grammar above to L is a matter of changing the first rule of the
initial grammar into r-G --> [c]. The language L3 can be described in exactly
the same way, so that each time the rule for generating an a is applied, rules for
bs and cs are extended with one more letter. We have shown grammars for Lo
and L3 in the appendix, that work in a slightly different and even simpler way.

5 Adaptable Grammars for Grammar-Definitions
and other Meta-Languages

The language in a discourse may develop as the discourse goes along, new usages
are introduced or usages may achieve new meanings, which can be “stored” in

grammar rules. We may say that the semantic-pragmatic context (which is
something very different from the syntactic context considered in Contextual
Grammars [17]) is growing along with the discourse and in this way enriches
the linguistic potential.

We consider here meta-level architectures, as they arise in parser genera-
tors (e.g., YACC [14]), as archetypical in that they provide explicit language
constructs for linguistic enrichment.

Indeed, one of the most striking features of adaptable grammars is their
ability to characterize meta-level architectures. A formal grammar, for example,
may itself by written in an idiosyncratic language of the sort typically called
a meta-language. Context-free grammars may be written with the left and
right-hand sides separated by, e.g, “::="

We describe here the syntax of a meta-level system that accepts the definition
of a context-free grammar in a specific syntax together with an arbitrary sample
string, supposed to be described by that context-free grammar. The following
is an example of a correct formulation in this meta-level system.

or “==>".

start ::= nl n2 .
nl ::=ab.
n2 ::=ba .

sample a b b a

For simplicity of the grammar, the nonterminals of the novel grammar must be
chosen among “start”, “n1”, and “n2”, and terminals must be chosen among
“a” and “b”; “start” is assumed always to be the start nonterminal.

The meta-level grammar for this system can be written as the following
adaptable grammar that is referred to as Gg. For the denotation function, we
assume that a grammar is denoted as a list of ground terms, each representing a
particular rule. We use below, the logic programming notation for list construc-
tion such that when L refers to a list, F to e new list element, then [E| L] refers
to a new list starting with E and followed by elements of L. Comma structures
are in used a similar way for constructing rule bodies. The nonterminal ‘e’ (de-
riving the empty string) will be included at the end of each generated rule for
simplicity only; it can easily be suppressed by adding a bit of extra code.

s-G
gram([(e-‘G’-->[1)1)-G

gram(C)-G, [sample], start-C
-—> []

gram([R|Rs])-G --> rule(R)-G, gram(Rs)-G
rule((H-->B))-G --> head(‘G’,H)-G,

[::=], body(‘G’,B)-G
head(‘G’,H)-G --> nonterm(‘G’,H)-G
body(‘G’, ([T],Bs))-G --> term(T)-G, body(‘G’,Bs)-G
body(‘G’,(N,Bs))-G --> nonterm(‘G’,N)-G,

body (¢G’,Bs)-G
body(‘G’,e-‘G’)-G --> [.]

term(a)-G --> [a]
term(b)-G --> [b]
nonterm(‘G’,start-‘G’)-G --> [start]
nonterm(‘G’,n1-‘G’)-G --> [ni1]
nonterm(‘G’,n2-G’)-G --> [n2]

When the first rule is applied to s-tg,, where tg, is a term denoting G, firstly
gram(C) -Gy is processed, producing a new adaptable grammar Cy whose term
representation t¢, is bound to the variable C; then start-tc, is processed for
the investigation of a sample sentence. In the example above, Cy will consist of
the following rules.

start-G --> nl-G, n2-G, e-G
nl-G --> [al], [b], e-G
n2-G --> [b], [a], e-G
e-G -—> []

We can illustrate the actual derivation in terms of the following syntax tree; the
notation tn; refers to a term that denotes the second clause, i.e., the one for n1.

S *Go
gram(Co) — Go sample start — Cy
rule([tni1) — Go gram(---) — Go n1 -Cop n2-Co e—Co

/’\ N b oa
Programming languages include also devices that may be seen as language ex-
tenders. Declaring, say, a variable n of type int means that we can now write
n in positions of the program where an int is expected; before the declaration
was added, such usages were illegal, ungrammatical so to speak. In other words,
the indicated variable declaration can be seen as the creation a new grammar
rule int-G --> [n]. Programming languages were in focus in earlier publica-
tions on adaptable grammars; see [3, 4, 5] for more examples of programming
language constructs described in this way but with a different notation. Books
of math are another kind of texts in which new nomenclature is introduced in
an explicit way and for which adaptable grammars may be used.

10

6 Conclusion

We have defined a highly expressive grammar formalism which captures non-
context-free language features by treating the grammar itself as a dynamic en-
tity, which can be elaborated and changed by the application of grammar rules.
We have shown a plain vanilla meta-interpreter in Prolog which makes it pos-
sible to test and experiment with adaptable grammars. We have justified the
usefulness of this grammar formalism by showing grammars for important exam-
ples of non-context-free languages; we notice that these grammars were rather
straightforward and we needed to take the step to a more complex meta-level
system in order to illustrate the formalism’s power for a more detailed analysis
of the text and synthesis of new rules.

A more powerful and logically more satisfactory (but, alas, less transparent)
implementation may be possible using a constraint-based denotation function,
which may be implemented using ‘instance of’ constraints [6] with a potential for
producing new rules in abductive or even inductive ways from rule applications.
Constraint-based abduction in discourse analysis, as applied e.g., by [2, 8], may
also be interesting to combine with the approach described in the present paper.

‘We have presented an approach to context-sensitivity that allows for creating
rules for new expressions that come into use and to remove or change rules for
usages that go out of fashion (or perhaps become idiomatic expressions whose
sub-expressions loose their meaning). We hope in this way to provide inspiration
for future research in linguistics that concerns the evolution of language, whether
this be within a discourse or in a broader perspective, maybe over generations
of language users or even in the evolution of biological species.

It may be possible that other frameworks than the DCG grammars used here
may show to be more appropriate to extend with adaptable capabilities for this
sort of research. With the present work, we intended to emphasize and expose
the principle of adaptability in linguistic specifications and to provide an initial
light-weight implementation framework suitable for further experimentation.

A Example grammars in full details

Here we show grammars for important languages mentioned in section 4; they
are defined in the format of Prolog source text, so that they can be tested in
any standard Prolog system using the interpreter shown in section 3 above. We
emphasize again that the Prolog implementation can be used directly for the
reader’s experiments, no hidden auxiliaries are used.

The grammar for Lrr = {rr | r is a string of as and bs} can be represented
in Prolog by the following clause.

rrgram([(r-G -—> []1),
(r-G --> [a],{C1}, r-G1),
(r-G --> [b],{C2}, r-G1) -

Cl1 = (G =[(S-->List) |RestG],

11

append(List, [a] ,NewList),
G1=[(S-->NewList) |RestG]),
C2 = (G =[(S-->List) |RestG],
append(List, [b] ,NewList),
G1=[(S-->NewList) |RestG]) .

It could have been written equivalently as a Prolog fact, but we use the substi-
tutions in the rule body in order to obtain a more readable presentation; this
way, variables C1 and C2 abbreviate the embedded code that transforms the
grammar attribute. The grammar can be tested as follows.

?- rrgram(G), derive(r-G, [a,b,b,a,a,b,b,al).
G=1I[...17
yes

The language Lo = {a™b™c"d™ |n,m > 1}, which is intended to represent the
essence of crossed dependencies, can be defined by a grammar as follows. As
also done above, we represent the grammar as a Prolog rule, so that we can use
unifications in the body for making complex expressions more readable; notice
the introduction of an auxiliary predicate that characterize the language.

g2gram(
[(s-G -—> as(Cs)-G, bs(Ds)-G, cs-[Rc], ds-[Rd]),
(as([c])-G -—> [a]),
as([c|Cs])-G --> [a], as(Cs)-G),
bs([d])-G --> [b]),
bs([d|Ds])-G --> [b], bs(Ds)-G)

~ NN

Rc
Rd

(cs-G1 --> Cs),
(ds-G1 --> Ds).

g2(8) :- g2gram(G), derive(s-G, S).
The grammar can be tested as follows.

| 7»- g2([a,a,b,b,b,c,c,d,d,d]).
yes

I - g2([a,a,b,b,b,C,C,d,d,d,d]).
no

The language L3z = {a™b"c™ |n > 1} which is intended to represent the essence
of multiple agreement, can be defined by a grammar as follows.

g3gram(
[(s-G --> as(Bs,Cs)-G, bs-[Rb], cs-[Rc]),
(as([bl, [c])-G --> [a]),
(as([blBs], [clCs])-G --> [al, as(Bs,Cs)-G)

12

1):-

Rb
Rc

(bs-G1 --> Bs),
(cs-G1 -—> Cs).

g3(8) :- g3gram(G), derive(s-G, S).
The grammar can be tested as follows.

| 7- g3([a,a,b,b,c,c]).
yes

| 7- g3([a,a,b,c,c]).
no

We will mention a simple but useful technique which is very useful for the reader
who wishes to develop and test his or her own, new adaptable grammars using
our interpreter. Typically the first version of a grammar contains bugs that
the developer needs to locate and correct. In principle, Prolog’s tracer can be
used, but (here as in general) experience shows that it produces far too much
information. We suggest instead to use test prints that can written directly
into the grammar as embedded code. Consider as an example, the first rule of
the grammar for Ls above. Modifying it into the following does not change its
logical meaning, but it will print the rules created for the recognition of the c
and d subsequence.

12gram(
[(s-G -—> as(Cs)-G, {write(Rc)}, bs(Ds)-G,
{write(Rc)}, cs-[Rc], ds-[Rd]),

IDE

Rc = (cs-G1 --> Cs),
Rd = (ds-G1 --> Ds).

Finally, the grammar for the meta-level system shown in section 5 can be used
almost directly by the Prolog implementation. The only modification needed to
the text of the grammar is to replace quoted variable names such as ‘G’ by new
variables, e.g., Gnew, not used as proper variables in the “top-level” grammar.

Acknowledgment

This work is supported by the project “Logic-statistic modelling and analysis
of biological sequence data” funded by the NABIIT program of the Danish
Strategic Research Council.

References

[1] Boris Burshteyn. On the modification of the formal grammar at parse time.
SIGPLAN Notices, 25(5):117-123, 1990.

13

2]

H. Christiansen and V. Dahl. Meaning in Context. In Anind Dey, Boicho
Kokinov, David Leake, and Roy Turner, editors, Proceedings of Fifth Inter-
national and Interdisciplinary Conference on Modeling and Using Context
(CONTEXT-05), volume 3554 of Lecture Notes in Artificial Intelligence,
pages 97-111, 2005.

Henning Christiansen. Syntax, semantics, and implementation strategies
for programming languages with powerful abstraction mechanisms. In 18th
Hawait International Conference on System Sciences, volume 2, pages 57—

66, 1985.

Henning Christiansen. The syntax and semantics of extensible languages.
Datalogiske skrifter 14 (Tech. rep). Computer Science Section, Roskilde
University, Denmark, 1988.

Henning Christiansen. A survey of adaptable grammars. SIGPLAN No-
tices, 25(11):35-44, 1990.

Henning Christiansen. Automated reasoning with a constraint-based
metainterpreter. Journal of Logic Programming, 37(1-3):213-254, 1998.

Henning Christiansen. Adaptable grammars for non-context-free languages.
In Joan Cabestany, Francisco Sandoval, Alberto Prieto, and Juan M. Cor-
chado, editors, IWANN (1), volume 5517 of Lecture Notes in Computer
Science, pages 488-495. Springer, 2009.

Henning Christiansen and Verénica Dahl. HYPROLOG: A new logic pro-
gramming language with assumptions and abduction. In Maurizio Gab-
brielli and Gopal Gupta, editors, ICLP, volume 3668 of Lecture Notes in
Computer Science, pages 159-173. Springer, 2005.

Marina de la Cruz Echeandia and Alfonso Ortega de la Puente. A
christiansen grammar for universal splicing systems. In José Mira Mira,
José Manuel Ferrdndez, José R. Alvarez, Félix de la Paz, and F. Javier
Toledo, editors, IWINAC (1), volume 5601 of Lecture Notes in Computer
Science, pages 336-345. Springer, 2009.

Pierre Deransart and Jan Maluszynski. Relating logic programs and at-
tribute grammars. Journal of Logic Programming, 2(2):119-155, 1985.

Alfonso Caracciolo di Forino. Some remarks on the syntax of symbolic
programming languages. Communications of the ACM, 6(8):456-460, 1963.

P. M. Hill and J. Gallagher. Meta-programming in logic programming. In
Handbook of Logic in Artificial Intelligence and Logic Programming, pages
421-497. Oxford Science Publications, Oxford University Press, 1994.

Quinn Tyler Jackson. Adapting to Babel: Adaptivity and Context-
Sensitivity in Parsing. Ibis Publications, Plymouth, Massachusetts, USA,
2006.

14

[14]

[15]

[16]

[17]

[18]

[19]

Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical Re-
port CSTR 32, Bell Laboratories, Murray Hill, N.J., USA, 1975.

Donald E. Knuth. Semantics of context-free languages. Mathematical Sys-
tems Theory, 2(2):127-145, 1968.

John W. Lloyd. Foundations of logic programming, 2nd, extended ed.
Springer-Verlag, 1987.

Solomon Marcus. Contextual grammars. Rev. roum. de math. pures et
appl, 14:1473-1482, 1969.

Solomon Marcus, Gheorghe Paun, and Carlos Martin-Vide. Contextual
grammars as generative models of natural languages. Computational Lin-
guistics, 24(2):245-274, 1998.

Alfonso Ortega, Marina de la Cruz, and Manuel Alfonseca. Christiansen
grammar evolution: Grammatical evolution with semantics. IEEE Trans.
Evolutionary Computation, 11(1):77-90, 2007.

Fernando C. N. Pereira and David H. D. Warren. Definite clause grammars
for language analysis—A survey of the formalism and a comparison with
augmented transition networks. Artificial Intelligence, 13(3):231-278, 1980.

John N. Shutt. Recursive adaptable grammars. Master’s thesis, Com-
puter Science Department, Worcester Polytechnic Institute, Worcester
Massachusetts, USA, 1993.

Adriaan van Wijngaarden, B. J. Mailloux, J. E. L. Peck, Cornelis H. A.
Koster, Michel Sintzoff, C. H. Lindsey, Lambert G. L. T. Meertens, and
R. G. Fisker. Revised report on the algorithmic language algol 68. Acta
Informatica, 5:1-236, 1975.

Ben Wegbreit. FExtensible programming languages. Harward University,
Cambridge, Massachusetts, USA, 2006. (Garland Publishing Inc., New
York & London, 1980).

Thomas Weise. Global optimization algorithms - theory and application.
Electronic manuscript (e-book); linked checked January 2008, 2007.

15

