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Abstract. Global Abduction (GA) is a recently proposed logical for-
malism for agent oriented programming which allows an agent to collect
information about the world and update this in a nonmonotonic way
when changes in the world are observed. A distinct feature of Global
Abduction is that in case the agent needs to give up one plan, it may
start a new one, or continue a suspended plan, while its beliefs learned
about the world in the failed attempts persist.
This paper describes an implementation of GA in the high-level language
of Constraint Handling Rules (CHR). It appears to be a first attempt to a
full implementation of GA, which also confirms CHR as a powerful meta-
programming language for advanced reasoning. The construction gives
rise to discussing important issues of the semantics and pragmatics of
Global Abduction, leading to proposal for a specific procedural semantics
and architecture that seem well-suited for real-time application.

1 Introduction

Global Abduction (GA) is an extended form of logical abduction which has been
proposed recently by Ken Satoh [19, 20]. As opposed to traditional Abductive
Logic Programming [16], GA features the reuse of abducibles from one branch
of computation in another branch. Abducibles are here believed properties of a
dynamic world, so that truth of a belief may change due to an observed change
in the world. If an agent follows one plan (i.e., one branch of computation)
that does not give a solution, the beliefs learned are assumed still to be valid
(until contradicting evidence is learned) and should be available when another
plan is tried; this other plan may be a new branch of computation or one that
was previously suspended, but which can be taken up again if it appears to fit
with the new state of beliefs. Interestingly, GA allows not only accumulation
of knowledge but also replacing a belief by its opposite when the circumstances
indicate that this is relevant.

We shall not go into a detailed explanation of GA nor argue for its advan-
tages, but all in all, we find GA a very promising approach which deserves an
implementation so that more experience can be obtained. In the present paper
we describe how it can be implemented with state of the art constraint logic
programming technology represented by the language of Constraint Handling
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only, and the implementation in an appropriate high-level language provides a
setting for raising and discussing in a concrete manner, important issues of GA
and its use for agent modeling.

The language of Constraint Handling Rules (CHR) [13] is an extension to
Prolog designed as a declarative language for writing constraint solvers for CLP
systems and is now integrated in several major Prolog versions. Previous work [1,
3, 5–8, 23] has shown that CHR is a powerful language for implementing advanced
logical reasoning that goes beyond standard logic programming paradigms, and
in the present paper we extend these experiences to the implementation of GA.

In the present paper we concentrate on the basic mechanisms of GA, but
our work is intended to lead to an implementation of GA based on a high-level
syntax and which employs the facilities of a full scale Prolog system to have GA
programs communicate online with its environment. The code explained below
has been developed and tested in SICStus Prolog [24], which provides the de
facto reference implementation of CHR. Our system is still at a prototype stage
with no interesting applications developed so far, but it indicates that full scale
implementations are within reach with a reasonable amount of effort.

Section 2 explains the basic notions of GA, and we refer to [20] for a complete
description; we define also notions of soundness and completeness for procedures
and provide definitions used later for discussing flow of control and floundering.
Section 3 gives a brief introduction to CHR with an emphasis on its advantages
as meta-programming language for logical reasoning. In section 4 we explain how
belief states can be represented and maintained, and explain the implementation
of a multiple-process architecture for GA, and section 5 extends with integrity
constraints. An proposal for extending GA with real world monitoring and for-
ward reasoning is given in section 6. Section 7 uses the implementation described
so far to analyze and give proposals for selection rules and flow of control; we
end up advocating range-restricted GA programs with left-to-right execution as
a suitable choice that respects the pragmatic considerations underlying GA. We
add to section 7 also an explanation of how a cut operator indicated by [19, 20]
can be added to GA and implemented in the left-to-right-setting. A final section
provides a summary and future direction.

2 Global Abduction

Disjoint sets of belief predicates, ordinary predicates, and equality and nonequality
predicates = and 6= are assumed, the latter two having their standard syntactic
meaning; we allow positive and negative literals over belief predicates but not
over the other categories (for which “literal”, thus, indicates “atom” only). We
define also annotated literals of the form announce(B) and hear(B), where B
is a belief literal. A notation of prefix plus and minus is applied for positive
and negative belief literals. Program clauses are defined as usual, expected to
have an ordinary atom as its head and a conjunction of zero or more literals
as body. An integrity constraint is a clause whose head is false (expressing
falsity), and with only belief literals in the body. A global abductive framework



(GAF) 〈B,P, IC〉 consists of a sets of belief predicates B, program clauses P,
and integrity constraints IC. A belief set is a set of ground literals over belief
predicates which contains no pair of contradictory literals.

Intuitively, an announcing literal announce(L) for ground belief L, means
to assert L in a current belief set so that a hearing literal hear(L) becomes
satisfied in that belief set. The truth value of a belief literal not in the given
belief set is recognized as unknown, and similarly for corresponding annotated
literals. We introduce the semantics informally by an example; it anticipates
left-to-right execution but it should be stressed that this is not assumed for the
declarative semantics of [19].

Example 1. The following program is supposed to help an agent to decide whether
or not to cross the street; sS stands for “stop signal” and t for “traffic”.

decide(walk):- hear(-sS), hear(-t).
decide(wait):- hear(+sS).
check:- announce(-sS), announce(+t).
check:- announce(+sS).

The initial query is check, decide(X) which corresponds to a process which
may split into two, one for each of the two check clauses.
(1) announce(-sS), announce(+t), decide(X)
(2) announce(+sS), decide(X)
Each process has its own set of belief assumptions (BA) which must be consistent
with the current global belief state (CBS) in order to classify as active. The BA
of a process consists of those beliefs it has applied in getting to its present state;
the CBS consists of announced beliefs, maintained in a nonmonotonic way and
independently of which processes made the announcements.

Suppose (1) executes the two announcements leading to process
(1′) decide(X) with BA = {-sS, +t} and
CBS = {-sS, +t}. Process (1′) splits into (1′.1) and (1′.2).
(1′.1) hear(-sS), hear(-t) with binding X=walk and BA = {-sS, +t}.
(1′.2) hear(+sS) with binding X=wait and BA = {-sS, +t}.
Process (1′.1) continues with hear(-sS) but gets stuck on hear(-t) which does
not fit with CBS; (1′.2) gets stuck in a similar way. Thus branches (1 · · · ) failed
to provide a solution, but the CBS persists. Now process (2) may be tried, doing
announce(+sS), which results in a revision of CBS:
CBS = ({-sS, +t} revised with +sS) = {+sS, +t}.

Left of (2) is decide(X), which via 2nd clause executes successfully a hear
and terminates with the binding X=wait and the final belief set {+sS, +t}.

A declarative semantics for GA is given in [19], based on a three-valued minimal
model approach [12, 18]. Truth value of a statement φ in a GAF 〈B,P, IC〉 is
expressed relative to a belief set Bs, written〈B,P, IC〉 |=Bs φ.

By a proof procedure, which may exist as an implemented program, we indi-
cate a device which given a GAF and an initial goal G produces zero or more
answers, each of which is a pair 〈Bs, σ〉 of belief set Bs and substitution σ to
the variables of G; a goal is a set (or sequence, depending on context) of literals.



Definition 1. Let a GAF GA = 〈B,P, IC〉 and an initial goal G be given, and
assume a fixed proof procedure.

– A correct answer for G in GA is one 〈Bs, σ〉 so that 〈B,P, IC〉 |=Bs Gσρ
for any grounding substitution ρ.

– A computed answer for G in GA is one returned by the proof procedure.
– A proof procedure is sound whenever any computed answer is also a correct

answer.
– A proof procedure is complete whenever, for any correct answer 〈Bs, σ〉,

there exists a computed answer 〈Bs′, σ′〉 so that Bs′ ⊆ Bs and σ = σ′ρ for
some substitution ρ.

GA has some inherent problems concerning the relationship between correct an-
swers and computed answers not recognized in [19]. We illustrate this with the
following queries (variables existentially quantified); the first one is not prob-
lematic but the remaining ones are:

1. announce(+b(1)), hear(+b(1))
2. announce(+b(X)), hear(+b(1))
3. announce(+b(1)), hear(+b(X))

No. 1 is clearly satisfied with the belief set {+b(1)} and we would expect any ca-
pable implementation to recognize this. No’s 2–3 are also satisfiable with {+b(1)}
by substitution X 7→ 1. The procedural semantics of [19] does not recognize the
solutions for 2–3 but ends in floundering states.

We may, however, ask whether it is reasonable to expect them to be found.
As presented intuitively and illustrated by the examples of [19, 20], announce
is an event that goes “before” hear, and announce indicates changes in the
agent’s belief about the world. So producing X 7→ 1 from case 2 is a bit absurd
as this corresponds to an agent for whom an act of Providence modifies the
world to fit what it wants to hear. On the other hand, we may suggest an
extension that produces the solution for case 3, which seems intuitively correct
when considering hear(+b(X)) as a query for information about the current
status for belief predicate b/1; we return to this topic in section 7.

We adapt the notion of range-restriction familiar from deductive databases
in order to impose restrictions on which GAFs we prefer. Range restriction in a
database implies that any query or relation has a well-defined and finite extension
derivable from base relations; for a knowledge based system such as GA, these
database heuristics appear quite reasonable. We define a left-to-right version of
this notion which ensures that every variable achieves a definite value under
left-to-right, thus reducing the risk of floundering under left-to-right execution,
and we end up later concluding that left-to-right fits well with a pragmatic
understanding of GA.

Definition 2. A clause, an integrity constraint, or a query (considered as a
clause with empty head) is range-restricted (rr) whenever any variable in it
appears (as well) in an ordinary literal in its body; it is hear range-restricted
( hear-rr) whenever any variable in it appears (as well) in an ordinary or hear



literal in its body; it is left-to-right range-restricted (lr-rr) whenever any variable
in it has a leftmost occurrence within the body in an ordinary literal; it is left-
to-right hear range-restricted (lr-hear-rr) whenever any variable in it has a
leftmost occurrence within the body in an ordinary or hear literal.

A GAF has one of these properties if all its clauses, integrity constraints,
and permitted queries have the property.

Example 2. The following clause is lr-rr.
p(X,Y):- q(X), r(Y), announce(+Y).

The next one is lr-hear-rr but not lr-rr.
p(X,Y):- q(X), hear(-Y).

The clauses p(X,Y):- q(X) and p:- announce(+X) have none of these proper-
ties.

The primary source on GA, [19], proposes a proof procedure which is not re-
produced here. Our implementation is explained below in a self-contained way
but for the interested reader, we refer to the steps of that proof procedure writ-
ing, e.g., PP3.5 for its case 3.5. We refer to the following central notions: an
execution state consists of a set of processes and a current belief set. A process
is a triplet consisting of a current goal (a query), a set of belief literals called
its belief assumptions that has been used by this process so far, and an answer
substitution. A process is active if its belief assumptions are true in the current
belief set, suspended otherwise.

3 Constraint Handling Rules as a Metalanguage for
Logic-based Systems

Constraints of CHR are first-order atoms whose predicates are designated con-
straint predicates, and a constraint store is a set of such constraints. CHR is
integrated with Prolog and when a constraint is called, the constraint solver
defined by the programmer takes over control. A constraint solver is defined in
terms of rules which can be of the following two kinds.

Simplification rules: c1, . . . cn <=> Guard | cn+1, . . . , cm

Propagation rules: c1, . . . cn ==> Guard | cn+1, . . . , cm

The c’s are atoms that represent constraints, possibly with variables, and a
simplification rule works by replacing in the constraint store, a possible set of
constraints that matches the pattern given by the head c1, . . . cn by those cor-
responding constraints given by the body cn+1, . . . , cm, however only if the con-
dition given by Guard holds. A propagation rule executes in a similar way but
without removing the head constraints from the store. The declarative semantics
is hinted by the applied arrow symbols (bi-implication, resp., implication formu-
las, with variables assumed to be universally quantified) and it can be shown
that the indicated procedural semantics agrees with this. There is also a mixture



of the two rules, called simpagation cs1\cs2 <=> · · · in which cs1 is kept in the
store and cs2 removed when such a rule applies. Guards should be tests (with no
unifications to head variables and no calls to constraints), and rule bodies can,
in fact, be any executable Prolog term and is executed as such. Procedurally,
CHR is a committed choice language which means that a failure (in Prolog’s
sense) within the body of a CHR rule means failure of the goal that triggered
that rule, but backtracking remains in Prolog constructs as usual. Notice that
CHR uses a one-way matching and not unification when a rule applies for a set
of constraints. When a constraint is called, rules are tested for applicability in
textual order, and when a rule is chosen, its body finishes before the possibly
next rule for that constraint is allowed to start.

CHR is more powerful than indicated by its declarative semantics, as the
constraint store can be used as a global resource that can be modified in non-
monotonic ways. A simplification rule may, for example, remove a piece of in-
formation and replace it with complementary information. In this way we may
use the constraint store for, say, a pool of processes and for belief sets. Further-
more, CHR programmers tend to employ their procedural knowledge about the
sequential order in which rules are tried, as we do in the following; this has in-
spired to the formulation of a formal semantics, the so-called refined operational
semantics [11], that takes all these aspects into account. There is an interesting
analogy between the view of the constraint store as a global resource and a re-
cently proposed semantics for CHR based on linear logic [4]; this relationship,
however, has not studied further.

As indicated by [2], CHR makes it possible to combine different control strate-
gies in an easy way, and for GA we need to make use of process delays and
breadth-first search. For the latter, we need to be careful in catching Prolog-
failures in one branch so they do not destroy other branches; in other words, a
process with a failure should be eliminated, i.e., avoid calling a continuation in
case of a failure. This can be done in the following way using Prolog’s conditional
construct (for background of such transformation of CHR rules, see [14]).

Head ==> Guard | (SuccessOrFailure -> Continuation ; true).

In most well-behaved CHR programs, all references to the constraint store are
normally made indirectly by the matching in head of rules. However, in some
cases (as in our code, below), it may be useful to test explicitly whether a certain
constraint is in the store; CHR has a primitive called find constraint for this
purpose.

For the meta-programming task at hand, we need to do renaming of vari-
ables which is done using a predicate renameVars/2 which produces a copy of
its first argument with all variables consistently replaced by other variables.
It is implemented by the one-liner renameVars(A,B):- asserta(dummy(A)),
retract(dummy(B)).

Finally, we remind the reader that there is a the risk of confusion due to
terminological overlap: a constraint of CHR is a single atom, while an integrity
constraint in general is a complex condition which is some cases can be identified
with a rule of CHR.



4 Belief States and Processes

GA’s belief literals are represented by means of two constraints, indicated by
symbols plus and minus (which can be written as prefix operators) for positive
and negative literals. A current belief state, then, is represented as the set of
such constraints in the store. According to PP3.5, adding a belief literal to the
state should remove any possible opposite literal; the complete code necessary for
managing the belief state, including rules that remove duplicates, is as follows.
constraints + /1, - /1.

+X \ -X#Old <=> true pragma passive(Old).
-X \ +X#Old <=> true pragma passive(Old).
+X \ +X <=> true.
-X \ -X <=> true.

The pragma passive syntax indicates that only a call to a predicate matching
an occurrence which is not marked as passive is able to trigger that rule; see [24]
for a detailed explanation. It is applied here to keep only the most recently
announced belief in store and to remove a possible earlier contradictory belief.
These rules must precede any others so that process rules are never triggered in
a state with contradictory beliefs.

Processes are represented in the store by declaring a constraint process/3
whose arguments are as follows.

process(Goals, BeliefAssumptions, Bindings)
The first argument is a list containing the remaining subgoals to be resolved by
that process; 2nd arg. is the process’ assumptions given as a list of beliefs; 3rd
arg. the bindings of variables of the initial query.

We assume a predicate inCurrent/1 which given the assumptions of a pro-
cess tests (using find constraint) whether they hold in the current belief state;
this implements GA’s test for active processes. This predicate is used as a guard
in every rule that describes a computational step of a process. We explain at
the end of the section how the binding argument is handled; it can be ignored
for the understanding of the overall principles of the procedure. The following
rules capture PP1, PP3 except PP3.1; the handling of integrity constraints in
PP3.5 is postponed until section 5. The add predicate adds an element to a list
but avoiding duplicates. The rules below select always the left-most literal for
execution, but other alternatives are discussed later.
process([],As,Bind) <=> inCurrent(As) | write(Bind), success.

process([(X=Y)|Gs],As,Bind) <=> inCurrent(As) |
(X=Y -> process(Gs,As,Bind) ; true).

process([(X\=Y)|Gs],As,Bind) <=> ?=(X,Y), inCurrent(As) |
X=Y -> true ; process(Gs,As,Bind)).

process([hear(B)|Gs],As,Bind) <=> ground(B) |
add(B,As,NewAs), process(Gs,NewAs, Bind).

process([announce(B)|Gs],As,Bind) <=> ground(B), inCurrent(As) |
B, add(B,As,NewAs), process(Gs,NewAs,Bind).



The success constraint removes (by rules not shown) all other processes from
the system so that they cannot continue. Thus, after printing the bindings, the
final constraint store returned by CHR will consist of exactly the final belief set
plus success. Failure of the computation in the sense of GA is signified by a
final state in which no success is present; this principle implements PP3.2; any
other final state (with suspended process constraints) is “floundering”.

The rules for equality and nonequality eliminate processes with Prolog-failure
using the technique described in section 3 above. For nonequality, a peculiar
SICStus Prolog test ?=(X,Y) is used [24]. It is satisfied whenever X and Y are
either identical or sufficiently instantiated as to tell them different; this makes
our procedure go a bit further that Satoh’s proof procedure which has to wait
until both arguments become ground.

Finally, we implement hear(B) by the little trick of adding B to the process’
assumptions. In this way, the process needs to wait until consistency of assump-
tions and B becomes true, and this provides the behaviour of PP3.4. The rules
for hear and announce can easily be extended with a check so that the process
vanishes in case the belief literal B is incompatible with the assumptions As.

There is one omission in the procedure presented so far that concerns restart-
ing of once suspended processes. A process is delayed in case the inCurrent test
tells it passive, but it may happen later that another process changes the belief
state in a way that makes the inCurrent test succeed.

The basic mechanisms of CHR try a rule r for applicability when either a
constraint (which has a matcher in the head of r) is called or when a variable
in such a stored constraint is unified. However, CHR does not test for cases
where the outcome of a guard changes from false to true in the absence of the
other kinds of “triggering events”, as is the case with our use of inCurrent.1 We
implement a mechanism for this delay-and-retry phenomenon by the following
rules.

process(Gs,As,Bind) <=> \+ inCurrent(As) |
delayedProcess(Gs,As,Bind).

+_ \ delayedProcess(Gs,As,Bind)#Delay <=> inCurrent(As) |
process(Gs,As,Bind) pragma passive(Delay).

-_ \ delayedProcess(Gs,As,Bind)#Delay <=> inCurrent(As) |
process(Gs,As,Bind) pragma passive(Delay).

For simplicity of code, these rules perform a check for possible restart whenever
the belief state changes. This can be optimized by introducing instead a special-
ized constraint for restart which is called whenever some process goes passive
or vanishes and which locates one other delayed process for restart by using a
simplification rule.

1 Such guards are not considered not good style of CHR programming, but are difficult
to avoid in the present case. In an attempt to do this by a matching rule head, we
would need one specific rule for each possible set of belief assumptions with those
assumptions in the head, which of course vary dynamically; hence this approach is
impossible.



In order to handle the goals of ordinary predicates we need to start a new pro-
cess for each clause whose head unifies with the goal in a breadth-first way. This
is done by a compilation of clauses into CHR rules described as follows. Consider
a predicate p/k, defined by clauses p(t1):-B1, . . ., p(tn):-Bn; the expressions ti
indicate sequences of k terms, Bi arbitrary bodies, and X, Xr below sequences
of k distinct Prolog variables. The ith clause, i = 1, · · ·n−1 is compiled into the
following rule.

process([p(X)|Gs],As,Bind) ==>
renameVars(f(X,Gs,Bind),f(Xr,GsR,BindR)),
append([Xr=ti|Bi],GsR,NewGs),
(inCurrent(As) -> process(NewGs,As,BindR)

; delayedProcess(NewGs,As,BindR)).

Clause n is compiled in a similar way, except that the rule is made into a sim-
plification rule, i.e., using <=> instead of ==>. The strategy applied is, thus, that
n fresh copies replace the original call p(· · · ), so that the unifications for the
different clauses can be done correctly in simultaniety.2

An initial query such as p(X,Y), q(Y,Z) is given to the system as a process
constraints with the following arguments.

process([p(X,Y),q(Y,Z)],[],[’X’=X,’Y’=Y,’Z’=Z])

The first argument is the list containing the query, the 2nd is the (still) empty
list of belief assumptions (but default beliefs can be added here), and the 3rd
one represents the bindings. Each “equation” represents an association between
a variable (say X at the rhs) and its name (’X’ at the lhs, which is a quoted
constant that Prolog prints without quotes). Along each branch of computation,
the variable will be affected by all unifications and renamings, but its name
is not. Thus in the final state, it represents perfectly the binding made to the
variable X appearing in the initial query.

5 Integrity Constraints in GA

In [20], integrity constraints are not used and for the examples in that paper, we
can do with the implemented system described so far. The integrity constraints
of [19] can be handled in a way similar to how we handled consistency of belief
sets above. While consistency means that all beliefs in a process’ assumptions
are in the current belief set, a given integrity constraint is satisfied if not all
beliefs of a certain set are in the current belief set. As for consistency, a process
should delay if it violates an integrity constraint and be tested again when the
current belief set changes.

2 The test for inCurrent(As) made inside the body (instead of as guard) takes care
of those cases where, say, the execution if Bi has changed the belief set so that the
next inCurrent(As) for Bi+1 fails.



Integrity constraints should be tested in the process rule for announce(B)
(cf. PP3.5), and this can be done by adding to its guard an extra test icHolds(B).
It succeeds when, for each ground instance of an integrity constraint containing
the actual B, the other belief literals in it are not in the current belief set. This
can be implemented in a way similar to inCurrent, and a suitable delay-and-
retry mechanism for announce processes can be implemented using the same
principles as we used above for the general inCurrent test. The extensions to
the code are straightforward and omitted.

Readers familiar with earlier work on abductive logic programming (ALP) in
CHR (e.g., [1, 8]) may wonder why we did not write integrity constraints directly
as rules of CHR, e.g., write “false:- a,b” as a propagation rule “+a,+b==>false”
which, then, would fail when, say, +a is added to a state including +b. It seems
possible to adapt the code shown above this approach as well, but a mechanism
to wake processes that were blocked by failing integrity constraints may become
difficult to implement.

Writing integrity constraints as CHR rules works perfectly for ALP in a com-
bination of Prolog and CHR since in that paradigm, more and more abducibles
are collected in a monotonic fashion; the indicated failures caused by integrity
constraints discard effectively the current branch, and Prolog backtracks neatly
to the next one. In GA, on the other hand, control may jump back and forth
between different branches and the belief set may be updated in nonmonotonic
ways.

6 Proposal for an Extension of AG with Monitor
Processes and Forward Reasoning

By a monitor process, we indicate a process which supplies real world data into
the global belief set. In this way the agent may adjust its behaviour according
to events in the real world. We suggest to have separate mechanisms for defining
such processes for the following reasons.

– Monitors should work independently of other processes and not wait until
other processes decide to give up the control. This may be implemented
by a sort of interrupt technology or, what is easily incorporated into the
present CHR implementation, called with regular intervals from the rules
that comprise the interpreter.

– Monitor processes should be released from the basic GA restriction of keeping
their own belief assumptions consistent with the current (global) belief set.
If a normal GA process executes announce(+a) followed by announce(-a) it
blocks forever as its belief assumptions contains {+a,-a} which is inconsistent
with any belief state. This is obviously problematic for a process monitoring
real world event.

Current Prolog systems with CHR, such as SICStus [24], provide libraries which
can communicate with external state-of-affairs, so we may suggest to add a
special syntax as follows.



monitor code.

The code can inspect different external sources and perform suitable announce-
ments and in this way affect the program execution to change its processes
accordingly (the interpreter takes care to call all monitors now and then).

Furthermore, it seems useful to include forward reasoning at the level of the
global belief set. This is done simply by writing CHR rules about beliefs, e.g.:

+robber, -police ==> +emergency.

If the combination of beliefs recorded in the head occurs in the current belief set,
those in the body are added immediately, and this may affect the GA program,
e.g., to switch process.

In the detailed design of a mechanism for forward reasoning, it should be
considered whether the programmer is responsible for supplying additional rules
to remove conclusions in case their premises disappear, or such additional rules
should be produced by an automatic analysis.

7 Details of the Procedural Semantics

The strategies for selection of literal and process for the continuation are impor-
tant choices from logical as well as pragmatic perspectives.

The procedure outlined above considers only the leftmost literal of a process
for possible execution, and when an ordinary literal is expanded by means of a
clause, its body is appended to the left, which yields a Prolog-like depth-first,
left-to-right execution within each branch of computation.

This may obviously cause deadlocks and loss of completeness as illustrated
by

process([hear(a),announce(a)], . . .).

If desired, the selection of literal can be modified as to search for the leftmost
one for which an execution step can apply.

We take the liberty to assume that our implementation is sound, indepen-
dently of selection strategies. We base this claim on the fact that the implemen-
tation is modeled over the abstract proof procedure of [19] for which a soundness
result is given; the referenced paper does not give completeness results. In fact,
it is not complete as we indicated by example queries in section 2.

Our own procedure as well as that of [19] can be extended further for lr-
hear-rr programs by adapting the step for hear so that in case of a nonground
argument, it tries to unify the argument with the different current beliefs in
separate processes. Another source for lack of completeness in our procedure is
that it does not try out alternative interleavings of different processes. A jump
from one process to another takes place only in case the leftmost literal L is
blocked, either because the process is suspended as a whole or a specific condition
for L is unsatisfied. A detailed analysis can show that when this happens, control
will go to one of the delayed processes if any, otherwise it will move upward in



the execution tree, searching for the nearest point where an ordinary atom can
try an alternative program clause.

It may be possible to obtain a complete procedure, i.e., one that eventually
produces (answers that subsume) all correct answers by trying different inter-
leavings on backtracking, or by an approach that keeps track of alternative belief
states in parallel. Such implementations, however, are likely not of any practical
value due to lack of efficiency. In addition, a backtracking implementation may
be problematic for a program with real world monitoring.

However, it is interesting to notice in [20], that the inventor of GA restricts to
a version of it that employs a Prolog-like execution strategy and even suggests
the addition of a procedural device analogous to Prolog’s cut. There may be
good reasons for this.

First of all, GA is really about resources, announce creates a new resource,
and hear applies it, and it is possible to consume a resource r by the code
hear(+r), announce(-r). The papers about GA [19, 20] apply usages that in-
dicate an implicit notion of time (which is reflected in our paper as well), so
it is reasonably to assume that a GA programmer has an understanding of a
sequential execution. I.e., the bodies in a clause are executed from left-to-right,
possible halting or interleaved with other branches, but never right-to-left or any
other order.

Under these considerations, it is reasonable to restrict programs to be lr-
hear-rr, which provides a good intuitive reading of programs with beliefs states
as well as the implicit time moving from left to right.

Thinking of GAFs as a practical programming language for developing com-
plex but fairly efficient agents, we may suggest to fix a deterministic execution
strategy which makes it possible for the programmer to foresee – and optimize
– the procedural behaviour of the program. This is the way things are done,
and programmers tend to think, in logic program languages such as Prolog and
CHR (as we have demonstrated fully above!). The execution strategy imple-
mented in our system seems to be a good candidate for a fixed strategy, and
this may conveniently be combined with a check that rejects GAFs that are not
lr-hear-rr.

A Note on the Implementation of Cut

Cut in a breadth-first context works differently from cut in Prolog and it is
not obvious how it should work. We show an example; assume a predicate p is
defined by a set of clauses as follows.

p(· · · ):- B1, !, B2, !, B3.
p(· · · ):- B4, !, B5.
p(· · · ):- B6.

In case, say, p(a) can unify with the head of these clauses, a process for each
clause may become active, and when one of them reaches its cut, the other two
should be eliminated. Assumes, as an example, that this happens in the first



clause. But at this point in time, the processes for all three clauses may have
multiplied into several ones each. A voting among logic programmers will likely
indicate a majority for the proposal that all process arising from the two last
clauses should be eliminated. It is less clear for the different processes that arise
during the processing of B1, all having “the same” cut in their query arguments
that represent their continuations.

We will take the solution that only the particular subprocess that gets to
the cut first should survive. To obtain this, we associate a unique key with the
particular call to p, which is attached to each of the three derived processes so
that any process in the state keeps a list of keys referring to split-points involving
cuts that may endanger it.

The split-point’s key is also attached to the visible cut operators so when one
of those is executed, it knows which processes to eliminate. The winning process,
i.e., one that reaches a cut before being eliminated, can be handled as follows.

process([cut(N)|Gs],As,Bind,Cuts) <=> inCurrent(As) |
eliminate(N), process(Gs,As,Bind,Cuts).

Elimination of the relevant processes can be done by the following CHR rules.

eliminate(N) \ process(_,_,_,Cuts)#X <=> member(N,Cuts) | true
pragma passive(X).

eliminate(_) <=> true.

(A rule similar to the first one should also be added for delayedProcesses.)
To see that it works, notice that the winning process is outside the pool when
eliminate makes its harvest. The eliminate constraint triggers the simpagation
rule as many times as possible to eliminate processes referring to the given cut,
and finally it eliminates itself by the last rule; after that, the winner can safely
enter the pool again. An encoding of cut by means of announce and an integrity
constraint is exemplified in [19] but it is difficult to compare this idea with our
general proposal.

8 Comparison with other Other Paradigms

It is interesting to compare with Assumptive Logic Programming [25, 10] which
can be understood as Prolog extended with operators to manage global resources
(called assumptions), which include counterparts to announce and hear. The
specification of that language explicitly says that the operations affect the state
given to the continuation, defined in the standard Prolog way. It is possible to
announce linear hypothesis, meaning that they can used once (i.e., consumed),
or intuitionistic ones which can be applied infinitely many times. It is also pos-
sible to refer to “timeless” assumptions which can be requested before they
are announced; this is useful because assumptions and requests are matched by
unification, and it is shown to have relevant applications for linguistic phenom-
ena. Assumptive Logic Programming does not include the possibility of jumping
from branch to branch and reusing beliefs, but may be interesting to propose



an extension of GA with the full repertoire of Assumptive Logic Programming’s
operators which provides a high flexibility for working with beliefs.

The reader may wish to compare the architecture described in the present
paper with a CHR based implementation of Assumptive Logic Programming
with integrity constraints and combined with traditional Abductive Logic Pro-
gramming, as done in the the HYPROLOG system [7, 8].

It may, in fact, be questioned whether a more appropriate name for GA would
be Global Assumptive Programming, as GA as well as Assumptive Logic Pro-
gramming share the property that new knowledge is explicitly announced with
specific operators and explicitly consulted with others. In traditional Abductive
Logic Programming [16] (ALP), on the other hand, there is no explicit creation
of knowledge: when the program refers to a particular piece of information, for
the first or the nth time, the system provides an illusion that it was there already
from the beginning.

Furthermore, it seems fairly straightforward and relevant to extend GA to
describe systems of multiple cooperating agents. Each agent has its own program
clauses and can execute them as described, including jumping from branch to
branch, and the current belief state could be shared between all such agents.
Alternatively, distinctions can be made between an agent’s private beliefs and
common beliefs. Implementationwise, each agent may run on its own physical
processor, or parallelism can be simulated. Such a system seems to be useful
for coordinating agents which access different external sources simultaneously in
order to solve a given task.

A subset of GA can be executed within the speculative computation frame-
work of [21, 22] which is reported to be implemented in Prolog. The mentioned
frameworks as well the agent-oriented logic programming languages of [9, 17],
just to mentioned a few, may also seem interesting to approach with implemen-
tations in CHR.

A proof method called Dynamic SLDNF [15] has been applied for implement-
ing an agent-oriented architecture which allows arbitrary clauses to be removed
and added; a representation of the proof tree is maintained in an incremental
way when the program changes, and it is not obvious that CHR should provide
special advantages here.

As we have indicated, CHR is a powerful meta-programming language for
advanced reasoning demonstrated mostly by our own work [1, 5–8]; we may also
refer to [3, 23]. The present paper shows that a rule-based approach to constraint
programming fits well also for implementation of process-oriented languages.

9 Conclusion

We have suggested an implementation of Satoh’s Global Abductive Frameworks
using the high-level programming language of Constraint Handling Rules. We
have described the basic principles applied in a prototype version and shown
how the different aspects of the formalism can be implemented, including cut.
We have learned several important things from this exercise:



– We have been able to analyze and compare different execution strategies and
advocate one which we claim fits with realistic implementations as well as
applications in real-time environments.

– The implementation principles are described in so much detail as to indicate
that a full instrumented version with a high-level syntax3 is within reach
with a reasonable amount of effort.

– We have compared with other systems, and we have provided a catalogue of
interesting and implementable extensions to Global Abduction.
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17. João Leite and Lúıs Soares. Enhancing a multi-agent system with evolving logic
programs. In Katsumi Inoue, Ken Satoh, and Francesca Toni, editors, Seventh
Workshop on Computational Logic in Multi-Agent Systems (CLIMA-VII), 2006.
To appear.

18. Teodor C. Przymusinski. The well-founded semantics coincides with the three-
valued stable semantics. Fundam. Inform., 13(4):445–463, 1990.

19. Ken Satoh. ”All’s well that ends well” - a proposal of global abduction. In James P.
Delgrande and Torsten Schaub, editors, NMR, pages 360–367, 2004.

20. Ken Satoh. An application of global abduction to an information agent which
modifies a plan upon failure - preliminary report. In João Alexandre Leite and
Paolo Torroni, editors, CLIMA V, volume 3487 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2004.

21. Ken Satoh, Katsumi Inoue, Koji Iwanuma, and Chiaki Sakama. Speculative com-
putation by abduction under incomplete communication environments. In ICMAS,
pages 263–270. IEEE Computer Society, 2000.

22. Ken Satoh and Keiji Yamamoto. Speculative computation with multi-agent belief
revision. In AAMAS, pages 897–904. ACM, 2002.

23. Christian Seitz, Bernhard Bauer, and Michael Berger. Multi agent systems us-
ing Constraint Handling Rules for problem solving. In Hamid R. Arabnia and
Youngsong Mun, editors, IC-AI, pages 295–301. CSREA Press, 2002.

24. Swedish Institute of Computer Science. SICStus Prolog user’s manual, Version
3.12. Most recent version available at http://www.sics.se/isl, 2006.

25. Paul Tarau, Verónica Dahl, and Andrew Fall. Backtrackable state with linear
assumptions, continuations and hidden accumulator grammars. In John W. Lloyd,
editor, Logic Programming, Proceedings of the 1995 International Symposium, page
642. MIT Press, 1995.


