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Abstract. Complete checks of database integrity constraints may be
prohibitively time consuming, and several methods have been suggested
for producing simplified checks for each update. The present approach
introduces a set of transformation operators that apply to database in-
tegrity constraints with each operator representing a concise, semantics-
preserving operation. These operators are applied in a procedure produc-
ing simplified constraints for parametric transaction patterns, which then
can be instantiated and checked for consistency at run-time but before
any transaction is executed. The operators provide a flexibility for other
database enhancements and the work may also be seen as more system-
atic and general when compared with other approaches. The framework
is formulated with first-order clause logic but with the perspective of
being applied with present-day database technology.

1 Introduction

Simplification of integrity constraints is a principle that has been recognized for
more than two decades, dating back to at least [20], and elaborated by several
other authors. Despite a general recognition, it has not gained ground in standard
databases. Our work is an attempt to reconcile and generalize such ideas in a
systematic way that may promote practical applications with current database
management technology.

An integrity constraint is a logical formula, typically depending on the na-
ture of the application domain, that must hold for any database state for it to
represent a meaningful set of data. Integrity constraints often concern the en-
tire database and require linear or worse time complexity for a complete check,
which is prohibitive in any non-trivial case. Simplification in this context means
to derive specialized versions of the integrity constraints that can be checked
more efficiently at each update, employing the hypothesis that the database is
consistent before the update itself. Ideally, the simplified constraint should be
a test that can be generated at database design time and that can be executed
before a potentially offensive update is performed, so that rollback operations
become unnecessary.

This paper introduces a framework providing a set of semantics-preserving
program transformations by means of which an effective simplification procedure



as well as other optimizations and database enhancements can be defined. In-
tegrity constraints, here in the form of denial clauses, are considered as programs
in the sense that they can be executed as Prolog queries that must fail or, more
in the line with present-day database technologies, as SQL queries that must
return the empty answer. Unlike some previous approaches, which only consider
single updates, our simplification procedure (and the individual transformations)
applies to transaction patterns. Once a specific transaction is proposed, and be-
fore it is executed, the simplified formulas can be evaluated as pieces of code
integrated in database application programs so that only consistency-preserving
transactions are eventually given to the database.

We also illustrate other applications of our framework combined with other
techniques such as data mining, abductive reasoning and data integration.

The paper is organized as follows. In section 2 we review existing literature in
the field. The notation and theoretical setting are introduced in section 3, while
in section 4 the program transformations and the simplification procedure are
formally defined. Other applications are discussed in section 5 and concluding
remarks are provided in section 6.

2 Motivation and related works

Simplification of integrity constraints, is highly relevant for optimizations in
database integrity checking. Typically it gives a speed-up of a linear factor (in
the size of the database state) for singleton updates but for certain transactions
an even higher speed-up can be gained. We find crucial the ability to check
consistency of a possibly updated database before execution of the transaction
under consideration so that inconsistent states are completely avoided. Several
approaches to simplification first require the transaction to be performed, and
then the resulting state to be checked for consistency [20, 18, 23, 8, 11].

The proposal of [14] presents many analogies with our method, although the
referenced paper does not present a fully developed method. A series of tests is
generated from an integrity constraint C and an update U ; if one of these tests
succeeds, then U is legal with respect to C. This method is based on resolution
and transition axioms, which provide an effect similar to our After operator (in-
troduced in section 4 below). Updates are limited to be single actions, but can
contain so-called dummy constants, very similar to our notion of parameters.
The main disadvantage of this approach is that once the set of tests is gener-
ated, strategies have to be employed to decide which specific tests to execute
and in which order. Furthermore, failure of all tests does not necessarily imply
inconsistency. Our simplification algorithm is more straightforward in that it
generates a single test whose result is a necessary and sufficient condition for
determining consistency of the database if the update were performed.

Grant and Minker [11] introduce a principle called partial subsumption ap-
plied among other things to produce simplified integrity constraints. This method
applies to singleton additions or deletions and produces conditions to be applied
after the update; it also handles parametric updates expressed using logical vari-



ables. For compound updates (transactions) the principle is explained in terms
of examples, but no general procedure is described. Partial subsumption applies
also to semantic query optimization; see [12, 10] for an overview.

Qian [22] observes the relationship between Hoare’s logic [13, 9] for imperative
languages and integrity checking, identifying a simplified integrity constraint as
a weakest precondition for having a consistent updated state. This notion is
enforced by assuming the consistency of the database before the update. We
give a more detailed discussion of this issue in section 3. Qian’s method works
for a variety of SQL-like ways of updating relations but with the impractical
limitation that it does not allow more than one update action in a transaction
to operate on the same relation; furthermore, no mechanism corresponding to
parameters is present, thus requiring to execute the procedure for each update.
We have no such restrictions.

Another problematic issue inherent in most work in the field is the lack
of a characterization of what it means for a formula to be simplified; this is
traditionally defined in terms of a semantic criterion. Our view is that a trans-
formed integrity constraint, in order to qualify as “simplified”, must represent a
minimum in some ordering that reflects the effort of actually evaluating it. We
propose a simple ordering based on the number of literals but we have no proof
that our own algorithm hits a minimum in all cases.

Standard ways of translating integrity constraints into SQL exist. In a re-
cent paper [7], Decker shows how to implement integrity constraint checking
by translating first-order logic specifications into SQL triggers. In this way the
advantages of declarativity are combined with the efficiency of execution. It is
interesting to note that the result of our transformations can be combined with
similar translation techniques and thus integrated in a database system. An ex-
tension of trigger syntax is proposed in [7] that allows the specification of the
positions of the arguments of a relation that are relevant for an update. Our
approach using parameters clearly subsumes this one.

The use of constraint techniques for abduction in logic programming may
display an incremental evaluation of integrity constraints without an explicit
simplification algorithm: each time an abducible atomic update a arises, the cur-
rent representation of the integrity constraints wakes up, checks a’s dependencies
and, in case of success, delays a specialized version of the integrity constraints
waiting for the next update. This principle is applied in the DemoII system [2, 5]
and in the approach of [1] using Constraint Handling Rules for abduction; [3] is
an attempt to relate such methods to database applications. However, a common
drawback of these techniques is that the delayed constraints typically unroll to
a size proportional to the database and that, occasionally, an unsatisfiable set
of constraints is delayed where a failure should be reported.

With few exceptions (e.g., [17, 16, 15, 4]), little attention has been devoted to
the problem of checking the integrity of a database containing recursive views,
although recursion is now part of the current SQL standard. Consider, for exam-
ple, a directed graph in which a path between two nodes is recursively expressed
as the transitive closure of the edge relation and suppose that the graph is



acyclic. If a new edge a 7→ b is added, the optimal way to check whether the
new graph still is acyclic is to verify that there is currently no path connecting
b to a. None of the methods we are aware of is able to provide such a simplified
check. When recursive rules are present, the methods described in [17, 4] pro-
duce a set of constraints which is typically the same as the original one, i.e., no
actual simplification takes place during the application of the procedure. In [16],
low-cost pre-tests are generated which are sufficient conditions that guarantee
the integrity of the database; however, these pre-tests typically fail in the pres-
ence of recursion, so nothing can be concluded about consistency. In [15], partial
evaluation is applied to a general integrity checker to generate logic programs
that correspond to simplified constraints. Generally, it is difficult to evaluate the
method described in [15], as it depends on a number of heuristics in the partial
evaluator as well as in the general checker; furthermore, no results are reported
for recursive databases. The method we present here applies to non-recursive
databases only.

Technical difficulties related to undecidability may also hinder the realization
of a perfect simplification method (see subsection 4.4).

We are not aware of any other approach that reduces simplification into a
combination of well-defined program transformations, which furthermore serve
as an “algebra” in which different optimizations and interesting transformations
can be described (see section 5). An experimental prototype [19] implementing a
simplified version of these transformations is available on the World Wide Web.

Finally, we emphasize that we only consider integrity constraints expressed
relative to all states; constraints that compare successive states, by some authors
called dynamic or transactional integrity constraints, are not considered.

3 Preliminaries

Assume a function-free first-order language equipped with negation and pred-
icates for equality ( .=) and inequality (6=), called predefined predicates. Terms
are either variables (x, y, . . .) or constants (a, b, . . .). However, special constants
called parameters are written in boldface (a,b, . . .); constants that are not pa-
rameters are called ground constants. Predicates (p, q, . . .) are used to build
atoms, i.e. expressions of the form p(t1, . . . , tn), where the ti’s are terms and
n ≥ 0. A predicate that is not predefined is called a database predicate. Formu-
las are formed as usual from the atoms and the logical connectives. A formula is
ground if its terms are only ground constants. A literal is either an atom A or a
negated atom ¬A; whenever ¬¬A appears, it should be read as A and ¬s .= t as
s 6= t and ¬s 6= t as s .= t. Clauses are written in the form Head← Body where
the head is an atom and the body a (perhaps empty) conjunction of literals; the
head may be left out, understood as false, in which case the clause is a denial; the
body may be left out, understood as true, in which case the clause is a fact; any
other clause is a rule. (In)equalities are not allowed in the head and are assumed
with their usual meaning of syntactic (in)equality, but the order in which the
arguments of .= and 6= are written does not matter. Logical equivalence between



parameter-free formulas is denoted by ≡. The notation ~t indicates a sequence of
terms t1, . . . , tn and p(~t) an atom whose arguments are t1, . . . , tn. The expression
~t
.= ~s is a shorthand for t1

.= s1∧ . . .∧tn
.= sn where ti’s and si’s are the terms of

the two sequences; in a similar way, ~t 6= ~s refers to the disjunction of individual
inequalities.

Definition 1 (Parametric instance and equivalence). For any expression
E with parameters ~a and sequence of constants ~c of the same length as ~a, the no-
tation E~a/~c refers to the expression that arises from E when each element of ~a is
replaced consistently by the matching element of ~c; E~a/~c is called a (parametric)
instance of E.

Two formulas F and G are equivalent up to instantiation of parameters,
written F ∼= G, whenever F ′ ≡ G′ for all parametric instances (F ′, G′) of (F,G).

Clearly ∼= is symmetric, reflexive and transitive. Note that name uniqueness is
assumed for all ground constants but not for parameters, as different parameters
may be instantiated by the same ground constant.

Example 1. Let a, b be two parameters and c, d two ground constants. Then
both p(c, d, c) and p(c, c, c) are instances of p(a,b,a), whereas p(c, c, d) is not.
We have c .= d ∼= false but neither a .= b ∼= false nor a .= b ∼= true. Note that
two formulas being parametrically equivalent does not necessarily indicate that
they contain the same parameters, e.g. a .= a ∼= true. 2

We further assume that all clauses are range restricted, as defined below.

Definition 2 (Range restriction). A variable in a clause is range bound if
it appears in a positive database literal in the body. A clause is range restricted
if all variables in it are range bound.

Notice that parameters in this definition are treated in the same way as ground
constants. As already stated, we do not allow recursion, but our method is
relevant for all database environments in which range restricted queries produce
a finite set of ground tuples. The notion of subsumption is applied repeatedly in
this paper.

Definition 3 (Subsumption). A clause C1 subsumes another C2 iff there is
a substitution σ such that each literal in the body of C1σ occurs in the body of
C2 and similarly for the heads.

Example 2. The clause ← p(x, y) ∧ a 6= x subsumes ← p(x, b) ∧ x 6= a ∧ q(b). 2

The definition of subsumption is syntactic but has the semantic property that
the subsuming clause implies the subsumed one.

Complying with [10], a database is characterized by three components:

– a set of facts, called the extensional database;
– a set of rules (the intensional database);
– a set of integrity constraints (here denials), known as the constraint theory.



Parameters cannot occur in a database but the transformation operators may
produce integrity constraints that contain parameters. We call these parameter-
ized integrity constraints. In a recursion-free language, we can limit our attention,
without any loss of generality, to integrity constraints that refer to extensional
predicates only, as intensional predicates can be (repeatedly) replaced with their
definitions, that will eventually only be extensional. We will therefore keep this
assumption throughout the rest of the paper. By database state we refer to the
union of the extensional and the intensional parts only.

As semantics of a database stateD, with default negation for negative literals,
we take its standard model, denoted MD, as D is here recursion-free and thus
stratified. The truth value of a closed formula F , relative to D, is defined as
its valuation in MD and denoted D(F ). (See e.g. [21] for exact definitions.)
The meaning of a formula that includes parameters can be thought of as an
operator taking instantiations of the parameters and producing a truth value.
In the following, the overloaded notation D1(F1) ∼= D2(F2) will indicate that
D1(F ′

1) = D2(F ′
2) holds for all parametric instances (F ′

1, F
′
2) of (F1, F2), where

D1 and D2 are database states and F1 and F2 are formulas. Consistency of the
integrity constraints can be defined in different ways; we follow [10] arguing that
the following is the most natural choice.

Definition 4 (Consistency). A database state D is consistent with a con-
straint theory Γ iff D(Γ ) = true.

Definition 5 (Update and update pattern). An update U = U+ ∪ U− is
a non-empty set of additions U+ and deletions U−, both consisting of ground
facts, with the deletions indicated by a ¬ sign. The reverse of an update U ,
denoted ¬U , contains the same elements as U but with the roles of additions and
deletions interchanged. The additions and deletions of an update are required to
be disjoint, i.e. U+∩¬U− = ∅. The notation D∪U , where D is a database state,
is a shorthand for (D ∪ U+) \ ¬U−. An update pattern is an expression whose
parametric instances are updates.

This definition of update fits with all cases where the additions and deletions
are known independently of the database state. This is not always the case. For
example, given the statement “delete all records of computer science books from
the library”, which is easily expressible in SQL, the set of tuples that will be
deleted depends on the actual database state. Our method can be generalized
to such more general updates including also SQL’s UPDATE, but for reasons of
space this is omitted in the present version of the paper.

As already emphasized, it is important to be able to test that a prospective
database update does not violate the integrity constraints — without actually
executing the update, i.e., a test is needed that can be checked in the present state
but indicating properties of the prospective new state. A semantic correctness
criterion for such a test is given by the notion of weakest precondition.



Definition 6 (Weakest precondition, strongest postcondition). Let Γ
and Γ ′ be constraint theories and U an update pattern. Γ ′ is a weakest pre-
condition of Γ with respect to U and Γ is a strongest postcondition of Γ ′ with
respect to U whenever D(Γ ′) ∼= (D ∪ U)(Γ ) for any database state D.

As also noticed by Qian [22], this definition is similar to the standard axiom
for defining assignment statements in a programming language [9], whose side
effects are analogous to a database update. Hoare’s [13] original version of the
axiom used only implication from pre- to postcondition; the notion of weakest
precondition that we need is due to Dijkstra [9].

The concept of strongest postcondition is not used for simplification but is
useful for other purposes. It characterizes how questions concerning the previous
state may be answered by considering transformed questions in the updated
state. The essence of simplification is the optimization of a weakest precondition
based on the invariant that the constraint theory holds in the present state. The
semantic characterization of this property is defined as follows.

Definition 7 (Conditional weakest precondition). Let Γ be a constraint
theory and U an update pattern. A constraint theory Γ ′ is a conditional weakest
precondition of Γ with respect to U whenever D(Γ ′) ∼= (D ∪ U)(Γ ) for any
database state D consistent with Γ .

A weakest precondition is also a conditional weakest precondition but not nec-
essarily the other way round. All other known definitions of simplification are
based solely on this or similar semantic notions, but this is not sufficient: a
characterization should be given of the sense in which the resulting formula is
actually “simpler” than the original one. In example 3 we show that a criterion
based on semantic weakness does not capture the intuition behind simplicity.

Example 3. In case a theory Γ1 holds in more states than another Γ2, we say that
Γ1 is weaker than Γ2 and that Γ2 is stronger than Γ1. Consider the constraint
theory Γ = {← p(a)∧q(a), ← r(a)} and the update U = {p(a)}. The strongest,
intuitively simplest, and weakest conditional weakest preconditions of Γ with
respect to U are shown in the following table.

Strongest Simplest Weakest
{← q(a), ← r(a)} {← q(a)} {← q(a) ∧ ¬p(a) ∧ ¬r(a)} 2

We shall use a syntactic selection criterion instead, as discussed in detail in
section 4.2.

4 Transformations on integrity constraints

In the following, we define four syntactic transformation operators, each per-
forming a well-defined function that satisfies straightforward semantic condi-
tions. With these, we can compose a simplification procedure and, as shown in
section 5, other useful transformations of integrity constraints.



4.1 Translation of integrity constraints back and forth between
different states

To consider whether a given property holds after a prospective update means to
reason about the truth of a formula in a future state, but arguing in the present
state.

The following After operator translates a constraint theory into a weakest
precondition with respect to a given update pattern in a straightforward way;
it does not assume consistency of the present state and is, thus, applicable for
other things than plain simplification. By means of it, we define also a dual
operator Before that translates a constraint theory Γ into another theory that
can be used after the update to test whether Γ held before the update; it is not
used in the simplification procedure, but it proves useful for other purposes, as
shown in section 5.

Definition 8. Consider an update pattern U :

U = { p1(~a1,1), p1(~a1,2), . . . , p1(~a1,n1),
p2(~a2,1), p2(~a2,2), . . . , p2(~a2,n2),
. . .
pk(~ak,1), pk(~ak,2), . . . , pk(~ak,nk

),
¬p1(~b1,1),¬p1(~b1,2), . . . ,¬p1(~b1,m1),
¬p2(~b2,1),¬p2(~b2,2), . . . ,¬p2(~b2,m2),
. . .

¬pk(~bk,1),¬pk(~bk,2), . . . ,¬pk(~bk,mk
)},

where the pi’s are distinct predicates and the ~ai,j’s and ~bi,j’s are sequences of
constants. For a constraint theory Γ , the notation AfterU (Γ ) refers to the set of
denials Γ ′ obtained as follows.

1. Let Γ ′ consist of a copy of Γ in which all occurrences of an atom of the form
pi(~t) have been simultaneously replaced by

(pi(~t) ∧ ~t 6= ~bi,1 ∧ · · · ∧ ~t 6= ~bi,mi) ∨ ~t
.= ~ai,1 ∨ · · · ∨ ~t

.= ~ai,ni .

2. Do the following in Γ ′ as long as possible (A, B1, B2 and C are formulas):
– Replace any formula in Γ ′ of the form ← A ∧ (B1 ∨B2) ∧ C by the two

formulas ← A ∧B1 ∧ C and ← A ∧B2 ∧ C.
– Replace any formula in Γ ′ of the form ← A ∧ ¬(B1 ∨ B2) ∧ C by the

formula ← A ∧ ¬B1 ∧ ¬B2 ∧ C.
– Replace any formula in Γ ′ of the form ← A∧¬(B1 ∧B2)∧C by the two

formulas ← A ∧ ¬B1 ∧ C and ← A ∧ ¬B2 ∧ C.

The notation BeforeU (Γ ) refers to the set of denials After¬U (Γ ).

The intermediary formulas with disjunctions resulting from step 1 may not be
clauses, but step 2 takes care of restoring the clausal form. The following prop-
erties follow immediately from the definition of After and are stated without
proof.



Proposition 1 (Composition of After over denials). For any update U and
constraint theories Γ1 and Γ2 the following property holds:

AfterU (Γ1 ∪ Γ2) = AfterU (Γ1) ∪ AfterU (Γ2).

Proposition 2 (Composition of After over updates). For any constraint
theory Γ and updates U , U1, U2, with U = U1 ∪ U2 and U1 and U2 disjoint, we
have

AfterU (Γ ) ∼= AfterU2(AfterU1(Γ )) ∼= AfterU1(AfterU2(Γ )).

The semantic correctness of After is expressed by the following property.

Theorem 1 (After produces weakest precondition). For any update U and
constraint theory Γ , AfterU (Γ ) is a weakest precondition of Γ with respect to U .

Proof. We need to show that D(AfterU (Γ )) ∼= (D ∪ U)(Γ ) for any database
state D. Step 2 of definition 8 obviously preserves semantics so we can ignore it.
Composition over updates means that we need only consider singleton updates;
we start considering a positive update of the form U = {p(~a)}.

For any database predicate q assume another predicate q′ of the same arity,
and when writing Φ′ for some formula or set of formulas Φ (assumed not to
include such primed predicates), we refer to a formula similar to Φ with all oc-
currences of database predicate q replaced by q′. Let Π be the following program
that defines a way of going back and forth between the two classes of predicates.

{p′(~x)↔ ~x
.= ~a ∨ p(~x)} ∪

{q′(~x)↔ q(~x) | for any database predicate q different from p}

The theory D∪Π is a combined representation of the states before and after the
update, so that formulas without primes are evaluated as in the state before and
primed ones as in the state after. Formally we have the following equivalences,
where φ is any formula without primed predicates.

(D ∪Π)(φ) ∼= D(φ)
(D ∪Π)(φ′) ∼= (D′ ∪ U ′)(φ′) ∼= (D ∪ U)(φ)

To see that the last line holds, notice that the first two members are equivalent
because they have the same definitions for all primed predicates: in the former
p′ holds when p holds or when its argument is ~a and in the latter p′ is just a
renaming of p plus the fact p′(~a); all other primed predicates are evidently the
same. The last two members are equivalent as they differ only by a consistent
renaming of symbols. The two expressions (on the left-hand sides below) that we
need to prove equivalent can be represented in the combined theory as follows:

D(AfterU (Γ )) ∼= (D ∪Π)(AfterU (Γ ))
(D ∪ U)(Γ ) ∼= (D ∪Π)(Γ ′)



However, the two right-hand sides are equivalent as AfterU (Γ ) can be constructed
from Γ ′ by replacement of expressions that are equivalent inD∪Π, i.e., replacing
p′(~t) by (~t .= ~a ∨ p(~t)) and q′(~t) by q(~t) for any predicate q different from p.

For a negative update of the form U = {¬p(~a)} the proof is symmetric, with
the definition of p′ in Π being {p′(~x)↔ ~x 6= ~a ∧ p(~x)}. 2

We get immediately composition properties of the Before operator and a dual
version of theorem 1 stating that BeforeU produces strongest postconditions with
respect to update U .

Example 4. Consider a database containing information about marriages, where
the binary predicate m indicates that a husband (first argument) is married
to a wife (second argument). We expect for this database updates of the form:
U = {m(a,b)}. The following integrity constraint is given:

φ =← m(x, y) ∧m(x, z) ∧ y 6= z

meaning that no husband can be married to two different wives. The first step
of definition 8 in the calculation of AfterU ({φ}) generates the following:

{← (m(x, y) ∨ (x .= a ∧ y .= b)) ∧ (m(x, z) ∨ (x .= a ∧ z .= b)) ∧ y 6= z}.

The second step translates it to clausal form:

AfterU ({φ}) = { ← m(x, y) ∧m(x, z) ∧ y 6= z,
← m(x, y) ∧ x .= a ∧ z .= b ∧ y 6= z,
← x

.= a ∧ y .= b ∧m(x, z) ∧ y 6= z,
← x

.= a ∧ y .= b ∧ x .= a ∧ z .= b ∧ y 6= z }. 2

Example 5. We shall now consider an example of referential integrity, where a
relation f (father) is only meaningful if its first argument (the father) is recorded
in a relation p (person) with a specific constant value concerning the gender (m
for “male”):

φ =← f(x, y) ∧ ¬p(x,m).

For transactions of the form U = {f(a,b), p(a,m)} we have:

AfterU ({φ}) = { ← x
.= a ∧ y .= b ∧ ¬(x .= a) ∧ ¬p(x,m),

← x
.= a ∧ y .= b ∧ ¬(m .= m) ∧ ¬p(x,m),

← f(x, y) ∧ ¬(x .= a) ∧ ¬p(x,m),
← f(x, y) ∧ ¬(m .= m) ∧ ¬p(x,m)}. 2

Notice that when a predicate that appears in a positive literal is updated pos-
itively by a single addition, AfterU ({φ}) contains a copy of φ (see example 4),
whereas for a predicate that appears in a negative literal, AfterU ({φ}) contains
a formula that is a specialization of φ, even when the update is not singleton
(see example 5). The effect is symmetric for deletions.



4.2 Normalization of formulas

The result of the After transformation is obviously not in any “reduced” or
“normalized” form, and we introduce an operator Norm to take care of this.

An ideal Norm procedure should produce a constraint theory as output that
is minimal in some ordering that reflects an estimate of the time complexity. This
can only be an estimate as the actual execution times depend on the database
state (that is not available at the time of the simplification process) and is
also highly dependent on the applied database technology that may perform
optimizations that are not feasible to include in a general definition. We suggest
an ordering based on the simple principle of counting literals, although it may
be the case that longer constraints are evaluated more efficiently in particular
database states (see also section 5.6). We define Γ ≺ Γ ′ iff Γ has fewer literals
than Γ ′.

This may appear a bit coarse as it gives the same measure for, say, ← 1 .= 2,
← p(a), and← p(x). However, it should be kept in mind that the Norm procedure
(as well as the entire simplification process) should return a minimal constraint
theory among those that satisfy the corresponding semantic condition.

We give a proposal below for a procedure that implements the Norm operation
but we do not have a proof that it produces a minimal constraint theory.1 We
are not alone with this problem, as no other work on simplification that we are
aware of provides results of this form; in fact, we are not aware of any other
work that considers this criterion at all.

In the following definition we also refer to the notion of expansion [10]: the
expansion of a clause consists in replacing every constant in a database predicate
(or variable already appearing elsewhere in database predicates) by a new vari-
able and adding the equality between the new variable and the replaced item.
For example, ← p(x, a, x) can be expanded to ← p(x, y, z) ∧ y .= a ∧ z .= x.

Definition 9 (Normalization). For a constraint theory Γ , let Norm(Γ ) be the
result of iterating the following steps on Γ as long as possible, where x is a
variable, t is a term, and A, B are (possibly empty) conjunctions of literals.

Variable elimination: If a clause φ ∈ Γ contains an equation x
.= t,

remove it and replace all occurrences of x in φ by t.

Redundant constraints: Remove any denial that is subsumed by another
denial in the current set.

Redundancy within constraints: In any denial that can be written ←
A ∧ B so that A logically implies B, remove B (can be done by a straight-
forward procedure searching for specific patterns such as trivially satisfied
(in)equalities).

1 It is clearly possible to enumerate in finite time all constraint theories preceding
the original one in the selected ordering, as the set of symbols is finite. However,
the problem of determining whether a constraint theory satisfies a given semantic
condition (in this case, being a conditional weakest precondition) is likely to be
undecidable. See subsection 4.4 for further discussion.



Contradiction removal: Remove any denial ← B where B is unsatisfiable
(can be done by a straightforward procedure searching for specific patterns).

Folding by resolution (FbR): If there are two denials that, after expan-
sion, have the form ← A ∧ L and (← A ∧ ¬L ∧ B)σ,2 where L is a literal
and σ a substitution, the second denial is replaced by (← A ∧B)σ.

Notice that if the empty clause is produced during the process, then Norm(Γ ) =
false, as it subsumes every other denial.

The FbR step takes care of a sort of dependency “across” different integrity
constraints that is a bit more subtle than the identification of redundant con-
straints. These cases are not handled in the other approaches to simplification
that we have studied, and we can expect that other specific optimizations of
the same sort may be recognized in the effort to prove a minimality property.
However, there are cases where an unfortunate order of the steps in the nonde-
terministic Norm procedure makes it fail to remove certain redundant literals,
but a refined version not presented here appears to avoid this problem.

Proposition 3 (Semantic correctness of Norm). The Norm procedure ter-
minates on any input, and for any constraint theory Γ , Γ ∼= Norm(Γ ).

Proof. Termination follows from the fact that each step in the procedure reduces
the constraint theory with respect to the ≺ ordering which is obviously well-
founded, apart from FbR that may generate an expansion which is anyhow
removed by variable elimination. Lemma 1 below shows that FbR preserves the
logical meaning. For all the other steps in Norm this property is evident. 2

Lemma 1 (Validity of FbR). Let Γ be a constraint theory and Γ ′ be another
constraint theory obtained by applying FbR on Γ once. Then Γ ∼= Γ ′.

Proof. We need only consider the logical equivalence between the two constraints
mentioned in definition 9 before and after the replacement in the FbR step
(the expansion step clearly preserves equivalence); assume the notation in that
definition so that φ below represents the before-constraints and ψ the after-
constraints, σ a substitution.

φ = {← A ∧ L, (← A ∧ ¬L ∧B)σ}.

The first denial is equivalent to A → ¬L, from which we conclude that A ∧ ¬L
and A are equivalent. Therefore φ ∼= {← A ∧ L, (← A ∧B)σ} = ψ. 2

As a step towards a correct simplification procedure, we notice that the next
proposition follows immediately from the previous results.

Proposition 4. For any constraint theory Γ and update U , Norm(AfterU (Γ ))
is a weakest precondition of Γ with respect to U .
2 According to notational convention, the actual negation may appear in either of the

two clauses mentioned in FbR.



4.3 Subsumption checks

An essential step in the achievement of simpler integrity constraints is to employ
the fact that they hold in the current database state, and remove those parts
of the condition about the possible updated state that are implied by this. For
this purpose, we define a transformation RSub that is used to remove those
derived integrity constraints produced by other transformations, that are anyhow
subsumed by the original ones.

Definition 10 (Remove subsumed). Given two constraint theories Γ and
Γ ′, RSubΓ (Γ ′) refers to a copy of Γ ′ in which

– first, any denial subsumed by a denial in Γ is removed and
– then, any remaining denial expandable to the form (← A ∧ ¬L ∧ B)σ, for

which a denial expandable to the form ← A ∧ L is in Γ , is replaced by
(← A ∧B)σ.

We have immediately the following.

Proposition 5. Let Γ ′ be a weakest precondition of Γ with respect to an up-
date pattern U . Then RSubΓ (Γ ′) is a conditional weakest precondition of Γ with
respect to U .

4.4 Putting together a simplification procedure

The transformation operators described in the previous sections comprise tools
that can be used to define a procedure for simplification of integrity constraints,
where the updates always take place from a consistent state.

Definition 11. For a constraint theory Γ and an update U , we define

SimpU (Γ ) = RSubΓ (Norm(AfterU (Γ ))).

From the previous results we get immediately the following.

Proposition 6. Let Γ be a constraint theory and U an update. Then SimpU (Γ )
is a conditional weakest precondition of Γ with respect to U .

Example 6. Consider again the update and the constraint theory from exam-
ple 4, where we showed the transformation AfterU ({φ}). In order to obtain
SimpU ({φ}), we first calculate Norm(AfterU ({φ})) as follows. The “variable elim-
ination” step of definition 9 applied to AfterU ({φ}) generates the following set.

{ ← m(x, y) ∧m(x, z) ∧ y 6= z,
← m(a, y) ∧ y 6= b,
← m(a, z) ∧ b 6= z,
← a .= a ∧ b 6= b }.

Then, “contradiction removal” eliminates the fourth constraint and, finally, the
“redundant constraints” step removes the third constraint, as it is subsumed



by the second one3. The output of the normalization procedure is therefore the
following.

Norm(AfterU ({φ})) = { ← m(x, y) ∧m(x, z) ∧ y 6= z,
← m(a, y) ∧ y 6= b }.

The first constraint is obviously subsumed by φ and thus removed by RSub in
the simplification procedure.

SimpU ({φ}) = {← m(a, y) ∧ y 6= b}. 2

Example 7. Reconsider now the update and the constraint theory from example
5. We have here:

SimpU ({φ}) = ∅. 2

A detailed trace for the evaluation of these simplified formulas will show that
RSub removes φ from the resulting set of formulas when a predicate with only
positive occurrences is updated, and a nontrivial specialization of φ when a
predicate with a negative occurrence is updated.

The following example shows different combinations of singleton and com-
pound updates for predicates occurring in positive and negative literals.

Example 8. The following transformations hold for the integrity constraint φ =
← p(x) ∧ q(x) ∧ ¬r(x) and parameters a and b.

Simp{p(a)}({φ}) = {← q(a) ∧ ¬r(a)}
Simp{q(b)}({φ}) = {← p(b) ∧ ¬r(b)}
Simp{r(a)}({φ}) = ∅

Simp{p(a),r(b)}({φ}) = {← q(a) ∧ ¬r(a) ∧ a 6= b}
Simp{p(a),r(a)}({φ}) = ∅
Simp{p(a),q(b)}({φ}) = { ← q(a) ∧ ¬r(a),

← p(b) ∧ ¬r(b),
← a = b ∧ ¬r(a) } 2

As shown in examples 6, 7 and 8, the simplified integrity constraints are minimal
in the ≺ ordering and instantiated as much as possible.

In case the original constraint theory contains redundant constraints (i.e.,
entailed by other constraints in the set), it is possible to construct examples
where the result produced by our procedure would also contain redundancies.
Cyclic patterns and recursive definitions can, for instance, be encoded in the in-
tegrity constraints, thus rendering the detection of redundancy computationally
harder. We have not investigated this phenomenon in depth, but it seems to
be undecidable in general whether a given constraint is redundant, as it would
amount to the query containment problem in datalog, which is known to be
undecidable. This means that we can only hope to prove the optimality of our
3 Alternatively, the second constraint could be removed instead of the third one, as

they subsume one another.



procedure under certain restrictions to the original constraint theory, e.g., that
no recursion is encoded.

The following proposition demonstrates the idea that integrity constrains can
be “pre-compiled” at design time and then used against specific updates.

Proposition 7. Let U(~a) be a generic update request with sequence ~a of param-
eters, ~c any matching sequence of ground constants, and Γ a constraint theory.
Then

SimpU(~c)(Γ ) ≡
(
SimpU(~a)(Γ )

)
~a/~c
.

The left-hand side can be thought of as a simplification made at update time,
whereas the right-hand side uses a pre-compiled version produced at design time
in which the parameters are replaced by the actual ground constants when the
update arrives. Note that the former may be simpler (according to ≺) than the
latter. Apart from [14, 11], most works on simplification have not made such a
distinction so that the procedures apply to specific updates only and, thus, need
to be employed over and over when the database is running.

5 Other applications and examples

We briefly mention here several applications of our transformation operators
that go beyond the scope of simplification.

5.1 Generating consistent updates by abductive reasoning

It may be the case that a proposed update, which in itself will create inconsis-
tency in a given database state, can be extended to an update that preserves
consistency. In a database application program, this situation may be handled
by entering a dialogue in order to get more information.

Consider as an example the referential integrity constraint of example 5,
← f(x, y)∧¬p(x,m), and how an application program should handle an update
request described by the update pattern f(a,b); the simplified version of the
integrity constraint becomes ← ¬p(a,m).

At runtime, with a specific database state and instance of the parameters, the
evaluation of this simplified integrity constraint may signal an inconsistency. In
that case, the failing constraint gives a proposal for how the consistency may be
repaired, namely by an update described by the pattern p(a,m). This principle is
closely related to abduction in logic programming, where literals that otherwise
would fail are assumed in order to get a query to succeed.

This extended update should not be suggested to the user in case it con-
flicts with other integrity constraints. Thus simplified integrity constraints for
{f(a,b), p(a,m)} need to be checked.

The interesting point is that the different simplifications can be constructed
beforehand and added once and for all and embedded as code in the user in-
terface program. In general, this may be structured in a decision tree with each
edge labelled by an extension to the update pattern plus a simplified integrity



constraints. The tree splits into different branches when there are more than
one remaining literal in a failing constraint, i.e., several different ways to achieve
consistency may be possible. Either the database designer has made a choice or
the user is asked which way to go.

In the example, the insertion of p(a,m) may conflict with another integrity
constraint saying that a person can only have one gender; in this case the dialogue
with the user enters a new level.

5.2 Preventing duplicates

We re-examine here the scenario considered in examples 4 and 6 and include a
check to avoid duplicates, i.e., an attempt to add a tuple which is already in the
database is rejected. By a simple manipulation of the transformation operators,
we can define a new simplification operator that includes this.

Definition 12. For a constraint theory Γ and an update U , we define

SimpU
nd(Γ ) = RSubΓ (Norm(← U ∪ AfterU (Γ )))

where ← U is a shorthand for {← u1, . . . ,← un}, the elements of U being the
variable-free literals u1, . . . , un.

The “nd” subscript stands for “no duplicates”, which is characterized here by
the fact that any redundancies between the update and the weakest precondition
expressed by After should be eliminated by Norm. It is easy to check that with
U and φ from example 4 we have

SimpU
nd({φ}) = {← m(a, y)} ≺ {← m(a, y) ∧ y 6= b} = SimpU ({φ}).

In the calculation of SimpU
nd({φ}), FbR applies to the denials ← m(a,b) and

← m(a, y) ∧ y 6= b (expanded, respectively, to ← m(x, y) ∧ x .= a ∧ y .= b and
← m(x, y)∧x .= a∧y 6= b), generating← m(x, y)∧x .= a. This example showed
how a new assumption could be embedded in the simplification procedure to
generate a constraint theory which is clearly minimal in terms of the ordering
≺.

5.3 Maintaining integrity constraints in data mining applications

Data mining techniques exist that are used to unveil integrity constraints in-
herent in a database. These integrity constraints may then be used for various
purposes, such as semantic query optimization and integrity checking. Suppose
that an update comes up that violates the induced integrity. The data miner
might either give up the constraint that has been violated, in that it does not
model the underlying database anymore, or extend the integrity constraint to
use the offending update as a counter-example. For example, let the following
be a mined integrity constraint:

φ =← p(x) ∧ q(x)



and assume that update U = {p(a)} violates it. Instead of rejecting φ, a perhaps
clever approach is to regard U as an exceptional behavior of φ and produce a
modified version, for example:

φU =← p(x) ∧ x 6= a ∧ q(x)

The transformation from φ to φU is exactly what the Before transformation is
doing, as in general D(φ) = (D ∪ U)(BeforeU (φ)) for any database state D.

Some heuristics or application domain information can also be applied here
to determine an upper limit to the number of exceptions allowed, above which
the system eventually decides to reject φ.

Another system might go into a dialogue with the user by questioning whether
the mined φ is a property of the domain and should be trusted; if yes, the system
may continue as described in section 5.1.

5.4 Checking the integrity after the update

Although we generally have argued against it, there may be specific applica-
tions where database updates should be executed immediately and consistency
checked directly on the updated database. Our Before operator can be used in
such a case in order to convert our precondition style simplifications into a form
that tests the updated state:

Proposition 8. Let a database D be consistent with a constraint theory Γ . Then
the database state D ∪ U is consistent with Γ iff D ∪ U is consistent with the
following:

Norm(BeforeU (SimpU (Γ ))).

Example 9. Consider integrity constraint φ =← p(x)∧ q(x)∧¬r(x) and update
U = {p(a), q(b)}. We have:

SimpU ({φ}) = { ← a .= b ∧ ¬r(a),
← p(b) ∧ ¬r(b),
← q(a) ∧ ¬r(a) }.

Assuming that U was applied to a consistent database state, the updated state
is consistent iff the following holds in it:

{ ← a .= b ∧ ¬r(a),
← p(b) ∧ ¬r(b),
← q(a) ∧ ¬r(a) }. 2

As it can be seen in this example, the test produced in this way for the updated
state is identical to the original, simplified one for the state prior to the update.
Whether this indicates a general property is not known at the time of writing.



5.5 Applications for data integration

Data integration is the problem of combining two or more existing source data-
bases into a single global one by means of a so-called mediator schema. The global
database may be inconsistent even if each of the sources satisfies its particular
constraints. In [6] we have adapted the simplification method described in the
present paper to a number of different data integration scenarios, where the
consistency of the sources is employed, perhaps together with given a priori
knowledge on their combination.

Example 10 ([6]). Consider two databases containing information about mar-
riages, each of which is known to satisfy the following integrity constraint (no
husband has more than a wife):

φ =← m(x, y) ∧m(x, z) ∧ y 6= z.

A simplified constraint for checking consistency of the combined database (formed
by the union of the tuples) produced by the method is the following, where the
subscripts refer to the different local databases.

φ1,2 =← m1(x, y) ∧m2(x, z) ∧ y 6= z

The simplification procedure can also be applied to validate, at the global level,
an update reported from one of the local databases, based on the knowledge
that the global database was consistent before the update and that the update
was checked by the source. If, for example, the update {m1(frederik,mary)} is
reported, the simplified check for global consistency is the following:

φ′1,2 =← m2(frederik, z) ∧mary 6= z.

If, in addition, it is known that the sets of husbands in the two sources are always
disjoint, as expressed by the constraint← m1(x, y)∧m2(x, z), both φ′1,2 and φ1,2

could be further simplified by our method to true. 2

5.6 Semantic query optimization

We indicate here a potentiality for using the simplification procedure for semantic
query optimization by a sketchy example.

Consider again the integrity constraint ← f(x, y) ∧ ¬p(x,m) and assume
that a given database is consistent with it. The query ← f(x, y) is given to the
system. Treat the variables in the query as parameters, thus writing it as f(a,b),
and simplify the integrity constraint with respect to it. This gives for sure that
← ¬p(a,m) holds for any a with f(a,b) in the database.

This means that we can safely extend the query to the following:← p(x,m)∧
f(x, y). It may be the case that the new literal refers to a very small relation so
that the remaining query runs faster (although this is not likely to be the case
in the present example, however).



6 Conclusion

We applied program transformation techniques to the generation of simplified
integrity constraints. A procedure was constructed that makes use of these trans-
formations and produces the simplification searched for according to a criterion
of “minimality” that is relevant for a large class of cases. This minimality and the
versatility of the transformation operators are the original contribution of this
paper. This, together with the ability of producing a necessary and sufficient
condition for checking the integrity before a database transaction, constitutes
the main advantage of our method with respect to earlier approaches. Examples
are discussed that show how this procedure can be applied and it is also pointed
out that the program transformations prove useful in several other contexts.

Although the details were not spelled out, the simplified integrity constraints
are assumed to be executable as SQL queries. In this context, an empty answer
indicates that the database is consistent, otherwise the tuples returned provide
hints for extending the update in order to restore consistency, c.f. section 5.1.

Future directions include the extension of the transaction language to cover
the expressive power of today’s querying languages, which can be handled by
extending the After operator with suitable replacement patterns. Extension of the
simplification method to databases with recursive views is under consideration.

As we have indicated, there seem to be undecidability results that make
it impossible to achieve a general and optimal simplification procedure, so the
modest goal we can hope for is to provide a procedure that is proven to produce
optimal results under given restrictions to the constraint theory, and acceptable
results in all other cases.
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