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Abstract

Using constraint logic techniques, it is made possible to use a well-
known metainterpreter backwards as a device for generating programs.
A metainterpreter is developed, which provides a sound and complete
implementation of the binary demo predicate. Based on it, a general
methodology for automated reasoning is proposed and it turns out that
a wide range of reasoning tasks, normally requiring different systems, can
be defined in a concise manner in this framework. Examples are shown
of abductive and inductive reasoning in the usual first-order setting as
well as in contexts of default reasoning and linear logic. Furthermore,
examples of diagnosis and natural language analysis are shown.

1 INTRODUCTION

We propose a general methodology for automated reasoning in the setting of
metalogical programming. The central component is a fully declarative metain-
terpreter, reversible in the sense that it is equally well suited for generating
programs as for executing them in the normal way. Constraint logic program-
ming techniques are central in order to provide an implementation which is
practically relevant and which can be proved to be sound and complete.

Where other systems for automated reasoning usually support a single form
of reasoning, our system appears as a highly generic environment in which ex-
isting and new techniques can be implemented and combined with each other.
We illustrate this by examples of abductive and inductive reasoning in the usual
first-order setting as well as in contexts of default reasoning and linear logic.
We show also applications in diagnosis and natural language analysis. The defi-
nitions of such tasks in our framework appear in a quite concise and declarative
manner. We believe the system to be a tool well suited for research and teaching
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in automated reasoning and logic programming, providing a short turn-around
time from the conception of an idea to a running prototype. For large and re-
ally difficult problems, however, specialized systems with more intelligent search
strategies will still be needed. The implemented system is available electroni-
cally at the address http://www.dat.ruc.dk/software/demo.html.

In the rest of this introduction we give an overview of the approach and put
it into a historical perspective; finally we present a brief outline of the paper.

1.1 The idea

Normally, a metainterpreter is thought of as a predicate that executes object
programs given at a metalevel. What we suggest is to use it backwards as a way
to generate new object programs. Our metainterpreter is a realization of the
binary proof predicate demo, which is specified as follows.

demo(P ′, Q′) iff P ′ and Q′ are ground names of object program and
query, P and Q, such that there exists substitution
σ with

P ` Qσ

A metavariable, say X, in P ′ will thus stand for a piece of program text and
a logically satisfactory implementation, such as our constraint-based version,
will produce program fragments which make Q provable. By means of addi-
tional side-conditions, demo can be instructed to produce useful programs as
illustrated by the following pattern.

useful(X) ∧ demo(· · ·X · · · , · · ·)

The ‘useful’ predicate may specify syntactic requirements to the program frag-
ments sought, perhaps extended with additional calls to demo to express in-
tegrity constraints. In this way, a choice of ‘useful’ can define a reasoning
method, e.g., abduction or a class of inductive problems, and the remaining
parts of the arguments to demo set up the specific problem to be solved.

The object language for our demo predicate consists of positive Horn clauses
extended with equality and inequality (6=) constraints. Technically, this is a
minor extension, but inequalities make it possible to express exceptions to a
predicate without introducing the problem sphere associated with mechanisms
such as negation as failure.

1.2 Getting the thing to work

A straightforward implementation of the demo predicate, nick-named Instance-
demo, has been studied by several other authors recently [21, 22, 28, 5] (our
version of it is shown in section 2.3). It replicates Sld resolution (see [44]) using
the primitive operations specified as follows.
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instance(S′, T ′, σ′) iff S′ and T ′ are names of terms S and T , σ′ name
of a substitution σ with Sσ = T .

member(C ′, P ′) iff C ′ and P ′ are names of clause and program C
and P where C is a member of P .

In the referenced works, programs are represented as list structures with ‘mem-
ber’ being the usual list operation; ‘instance’ is implemented in a similar straight-
forward way in traditional logic programming languages such as Prolog or Gödel
with substitutions represented as lists of variable-value pairs.

While sufficient when the program argument to demo is fully given (i.e.,
ground), such naive implementation methods imply severe problems in the gen-
eral case we have in mind:

1. Uninstantiated variables in the first argument to an instance constraint
will lead the Gödel programs of [28, 5] into floundering states, so no answer
is provided. This arises in the maintenance of substitution arguments.

2. With a straightforward implementation in Prolog, a subgoal instance(X, Y, Z),
for metavariables X, Y, Z may initiate on backtracking a generation pro-
cess of all possible names of terms in the object language until one that
meets the subsequent subgoals is reached. Obviously, this can easily cause
loops.

3. The representation of programs as lists results in infinitely many equiv-
alent solutions produced for essentially the same object program by per-
mutation and duplication of clauses and by insertion of arbitrary numbers
of new variables. (To see this, consider the solutions to the Prolog calls
member(a,L), member(b,L)). Backtracking on failure is thus condemned
to loop.

It is obvious to suggest constraint techniques applied for the first two related
problems: When not enough information is present in the arguments to ‘in-
stance’, it should delay and some additional machinery needs to be developed
in order to check for satisfiability.

To solve the third problem, we consider programs as sets of clauses rather
than lists, and viewing also ‘member’ as a constraint makes it possible to provide
a detailed control of which solutions are produced.

Another problem arises when arbitrary patterns with uninstantiated vari-
ables are possible in the arguments to ‘instance’. As we will show in section 3.3,
satisfiability turns out to be closely related to the undecidable semiunification
problem. Fortunately, we have identified an invariant property, called safeness,
which holds for the constraint sets that actually can occur, and under which
our constraint solver is guaranteed to terminate. Roughly, safeness means that
no variable can occur in a first as well as in a second argument to ‘instance’
constraints.
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We can show that this constraint solver together with the logic program
defining demo comprises a sound and complete implementation of provability,
where completeness here is a metalevel statement saying that demo is able to
produce any program that makes something provable.

The constraint solver is described as a derivation system, which can be
mapped into an executable program in Sicstus Prolog [56] using its notion of
attributed variables, originally suggested by [34, 35]. Constraints appear as
predicates in Prolog with an inherent constraint-behaviour in the sense that
they delay and wake up at the right moments together with additional code
that takes care of the overall satisfiability.

Soundness and completeness are preserved in our implementation of the
constraint solver in Prolog. The overall program structure of the metainterpreter
is executed directly by Prolog with the well-known characteristics of general
efficiency paired with a lack of completeness due to possible loops. However,
in practice this appears not to be a big problem. When demo is applied for
a specific task, the defining side-conditions (depicted as the ‘useful’ predicate
above) can behave in a “lazy” way by means of delay mechanisms, which do not
affect the declarative nature of the metalanguage. In this way demo and ‘useful’
work as two co-routines, and this has proved to be sufficient for all examples we
show in this paper.

The main advantage of using the structure of Instance-demo is that we
achieve an efficient implementation of object level unification, virtually map-
ping it into metalevel unification, i.e., in the end into Prolog unification. Oper-
ationally, this is very similar to the nonground representation in the Vanilla in-
terpreter, but avoiding the soundness problems with this representation pointed
out by [29].

In [5], Instance-demo is compared with another interpreter using an explicit
simulation at the metalevel of an object level most-general-unifier operation.
Application of object level substitutions to the lists of subgoals waiting to be
processed needs also to be simulated at the metalevel. This takes place in
each proof step and, as this list can grow arbitrary large, this approach seems
quite inefficient. However, [5] points out metaprogramming tasks where such
an interpreter may be more appropriate than Instance-demo. In our case demo,
when once implemented, serves as a black-box, and for reasons of efficiency
Instance-demo seems to be the obvious choice.

It should be stressed that the referenced works consider exclusively the case
with fully given program arguments; our use of constraints to extend to the
general case seems to be new.

1.3 Related work in a historical perspective

In tracing the principle of formalized proof procedures in logic and computer
science, it is relevant to go back to D. Hilbert (1862–1943). He was the most
prominent representative of the formalist school around the turn of the century,
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strongly putting forward that mathematical theorem proving in general could be
axiomatized as a way to achieve a complete proof procedure; see, e.g., [26, 27].
With Gödel’s first incompleteness theorem in 1931 [24], this optimistic view had
to be adjusted.1 The theorem states that in any logical system capable of ex-
pressing number theory there will be true sentences that cannot be proved. The
more modest goal pursued in computer science nowadays is to search for special
cases where completeness can be obtained, while still allowing for interesting
applications (or perhaps searching for incomplete proof procedures for stronger
systems, where we are willing to accept a loop now and then).

The notion of a ground representation of an object language at the metalevel
was apparent in the proof of Gödel’s theorem. He represented formulas of the
given logic by numbers. Translating this into computer science terms, it means
a representation of programs as data which, thus, can be transformed and elabo-
rated. However, when the purpose is to write interesting programs, a structural
representation such as a tree is more convenient than a monolithic number.
Programs as data do not appear only in recent work on metaprogramming in
logic (as described by [29]), but has been central in computer science throughout
its history, consider, e.g., the von Neumann computer architecture [49] with its
notion of the stored program, or any traditional compiler, which is a program
transforming other programs from one language to another, or we can refer to
reflective architectures (see [46] for an overview and references) where Lisp [47]
is the historically most important one.

We now take a jump to Robinson’s [54] introduction in 1965 of resolution,
which is a complete proof procedure for the subset of first-order logic called
Horn clause logic. Later, resolution has lead to efficient implementations of
logic programming languages such as Prolog [57], where, however, a depth-first
control structure is used for reasons of efficiency, but with the consequence of
reducing completeness to a hypothetical property. Another important issue of
resolution is the emphasis on the logical variable. A query may contain free
variables, and completeness implies that the procedure can produce all values
for these variables that turn the query into a true statement.

When the principle of the logical variable is combined with formalized prov-
ability based on a ground representation of logic programs, the potentiality
appears of generating programs automatically from metalevel specifications ex-
pressed in terms of provability. Completeness becomes a statement that any
program satisfying the metalevel specification can be produced.

The demo predicate, which is a formalization of provability for logic pro-
grams, was introduced by Kowalski in his book [41] of 1979. The potentiality
for generation of programs as described above was not noticed, but many other
practically relevant applications of demo were mentioned; see also later work
[4, 3].

1A nontechnical and vivid introduction to Hilbert’s work and the period up to Gödel is
given by [52]; see [25] for a collection of important original papers.
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A fundamental result concerned with formalized provability was given by
Sato [55] in 1992. He gave an axiomatization of provability for full first order
logic in itself and proved it to be complete with respect to a three-valued seman-
tics. A proof procedure was obtained by means of a breadth-first interpreter at
the metalevel, preserving the completeness in the three-valued setting. However,
this approach does not seem suited for generating programs in practice, because
the interpreter in this case will perform an effective enumeration of all possible
programs until the right one is found. Also in 1992, we presented a resolu-
tion method [10] for a language with a construct similar to the demo predicate.
This method involved rewriting of equations with function symbols expressing
roughly the same thing as the instance constraints, we use in the present pa-
per. However, no practical implementation was given and termination in the
rewriting process was not guaranteed as it essentially was approaching an un-
decidable problem [9]. The implementation method for demo presented in the
present paper can be seen as a reformulation of this, but now using efficient
constraint techniques and in a context where the safeness condition described
above holds, effectively excluding the undecidable cases from the constraint sat-
isfaction problem.

We notice another early suggestion (1990) for using the demo predicate as
a device for program synthesis [50], but it seems clear to us that the field of
constraint logic programming had to mature and be applied in order to pro-
vide a relevant implementation; see [37] for background on constraint logic pro-
gramming. An early version of our constraint solver was described in [13] and
applications presented in [11, 12, 14, 15].

When the problem is restricted to have demo to synthesize programs from a
specified, finite collection of clauses, a straightforward implementation in Prolog
will be sufficient; we can mention [6] (also 1990) where new programs are syn-
thesized by set operations such as intersection and union applied to a collection
of object programs given in advance. Still 1990, [43] did actually suggest to use
constraints for metaprogramming and a constraint-based metainterpreter was
presented (with a structure similar to [5] discussed above). However, no proper
constraint solver was presented, delays were suggested instead, and using this
metainterpreter as a program generator was not considered, neither would it be
possible in this way.

An important relation between theorem proving and program synthesis is ex-
pressed in the Curry-Howard isomorphism in constructive type theory [36]. It
states a one-to-one correspondence between a constructive proof of a statement
∀x∃y.r(x, y) and a functional program computing a function x 7→ y satisfying
the specification r. This correspondence has been used in environments for
functional programming, we may mention the Nuprl system [17] and, more re-
cently, [45] using the principle in applications for astronomy and space craft
control. Using such a system, the developer has to supply a formal specification
of the predicate r and then build the proof supported by more or less automatic
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tools, including at least a proof checker. Finally, a program is extracted from
the proof.2

The principle can also be adapted to logic programming, in the simplest
form by viewing a predicate as a function from its arguments to the domain of
booleans; see [18] for an overview of different methods. Our approach seems
quite similar in the sense that the trace of an execution of demo is a proof from
which the constructed object program can be extracted. This may indicate a
deeper relation between our use of a reversible demo predicate and the Curry-
Howard isomorphism that we have not investigated so far. One fundamental
difference should be noticed, that demo works from examples whereas the proofs-
as-programs approach assumes a complete logical specification of the desired
program.

Now we will consider another thread, studies of reasoning in a logical context;
we will skip over early history and go directly to C.S. Peirce (1839–1914). His
work [51] has attracted new interest recently among philosophers and computer
scientists, among other reasons because he appears to be the first to postu-
late deduction, abduction, and induction as being the fundamental ways of
reasoning.3

We can use the demo predicate to give a simplistic characterization of these
notions. Assume a metalevel predicate rules(· · ·) defining the shape of rules
for describing general knowledge in Horn clause logic, similarly cases(· · ·) for
basic or irreducible facts, and observations(· · ·) for observations which should
be explainable from the current rules and cases. We consider the following
formula.

(*) rules(X) ∧ cases(Y) ∧ observations(Z) ∧ demo(X & Y, Z)

Purely deductive reasoning is when X and Y are fully specified, i.e., they con-
stitute an established theory in which observations Z have to be verified or
predicted. This corresponds to the functionality in a Prolog interpreter and
most earlier work on demo [41, 4, 3, 1, 2]. When X and Z are fixed, abduction
is obtained, an explanation Y is sought for the observations Z. Induction, which
is the process of identifying general rules from a set of examples, is obtained by
fixing Y and Z, and perhaps a part of X (so-called background knowledge). In
this perspective, demo appears, at least at the level of specification, as a general
reasoning device which can be used for all three reasoning forms and actually
smoothes out the distinction between them.

In the last decade, new areas called inductive and abductive logic program-
ming have emerged. Most techniques for abduction appear as extensions of Sld

2Or as done in some systems, the proof is interpreted directly as a program.
3Peirce had two different theories concerned with these notions, an early version, by

P. Flach [20] called the syllogistic theory, which he abandoned later in favour of a new formu-
lation, by Flach called the inferential theory, with slightly different meanings associated with
the three terms. Here, we refer to the syllogistic version, which is the most common one to
assume in computer science literature.
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or Sldnf resolution (see [44]) with the possibility of deriving new facts, when
otherwise a given atom does not match a clause in the program; see [38] for
an overview. Within induction, a technique called inverse resolution has been
developed. It is defined by a number of derivation rules which together capture
an effect similar to using the resolution rule backwards; an overview of this and
other techniques in inductive logic programming is given by [48].

In our implementation of demo, resolution appears as a metalevel relation
and depending on the given side-conditions and the degree of instantiation of
its arguments, it may operationally behave similarly to the modified resolution
for abduction or the inverse resolution applied for induction. For the abduction
case, consider again the specification (*) above with X and Z ground. If demo
runs out of clauses that unify with a give atom A, it will automatically commit
the metavariable Y to represent a program with a fact which unifies with A
and also satisfies the metalevel predicate cases(· · ·). Analogously in case of
induction, a proof step may introduce a pattern for a new clause whose head is
unifiable with the actual atom and constraints about its body will be derived
in the subsequent proof steps.

In [38], a notion of abductive frameworks is defined which also includes in-
tegrity constraints and we show, section 4.2, how this can be described in our
framework. To indicate the generality in the use of demo, we have combined
abductive frameworks with induction and default reasoning so that we auto-
matically get produced defaults-with-exceptions from examples, section 4.5. It
should be noticed, however, that we provide no support for negation, so negative
examples have to be encoded in a suitable way.

In inductive and abductive reasoning, it may also be important to make a
priority among the generated answers. For diagnosis [53], which is a special case
of abduction, minimal explanations are preferred, i.e., collections of ground facts
such that if one fact is removed, the observed symptoms cannot be explained
anymore. Our system does not include a mechanism to express such priorities
in general, but we can show, how the minimality requirement in diagnosis can
be expressed in a straightforward way by control at the metalevel, section 4.8.

For natural language analysis, [32] has developed a technique called weighted
abduction which associates a quality measurement to each possible explanation
in order to chose the best one and in induction, various kinds of statistics have
been applied in order to chose the best rules. We have not considered adding
such facilities to demo, but it may be interesting to apply fuzzy logic at the
metalevel for this purpose.

Finally we will mention that there is a long tradition in machine learning working
with related problems which we did not include in this review. In [16], we
compare our approach with work done on methods for logic program synthesis.
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1.4 Overview

Section 2 describes the theoretical setting for achieving the complete imple-
mentation of demo. We introduce a class of typed constraint logic languages
which includes our object and metalanguages HCL and Clp(HCL), the latter in
which the demo predicate is programmed. We end this section by the derivation
system DS which serves a constraint solver for Clp(HCL).

Section 3 gives the proofs of soundness and completeness of DS and hence
of our implementation of the demo predicate.

Section 4 entitled “Automated reasoning with the demo predicate” explains
firstly the implementation in Prolog of DS and Clp(HCL). Then follows a
series of examples of reasoning problems defined in the demo system:

– Abductive frameworks.

– Default reasoning.

– Abduction in default reasoning.

– Induction of defaults-with-exceptions from examples.

– Abduction in a fragment of linear logic.

– A natural language example.

– Diagnosis.

2 A CONSTRAINT-BASED,
REVERSIBLE METAINTERPRETER

2.1 Typed constraint logic languages

The presence of a naming relation at the metalevel induces a natural classifica-
tion of metalevel terms, namely those that stand for programs, those that stand
for clauses, etc. This makes it obvious to suggest the use of a typed metalan-
guage. Our experience is that the introduction of types leads to a considerably
simpler derivation system for solving the sort of constraints that are relevant for
metaprogramming tasks. In the following, we introduce a framework for typed
constraint logic languages and constraint solving.

We consider a class of constraint logic languages Clp(X ) similarly to [37],
but here adapted for typed languages. In our case, the parameter X refers to
some domain of constraints over terms with no interpreted function symbols.

Each constraint logic language is characterized by a structure consisting of

– a finite set of type identifiers or types for short (called monotypes by [31]),
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– a collection of function symbols each with an arity n and rank f : τ1 ∗ · · · ∗
τn → τ , where τ1, . . . τn, τ are types; function symbols of arity 0 are called
constants.

Furthermore, a language includes

– for each type τ , an infinite collection of variables of type τ , and

– disjoint collections of predicate symbols and of constraint symbols, each of
which has an arity n and rank p: τ1 ∗ · · · ∗ τn, where τ1, . . . τn are types,

Capital letters such as X and Y are used for concrete variables; the underline
character ‘ ’ is used as an anonymous variable in the sense that each occurrence
of it stands for a variable that does not occur elsewhere. A program is a finite
set of clauses of the form h ← b1 ∧ . . . ∧ bn with h being an atom, each bi an
atom or a constraint, composed in the usual way respecting the ranks of each
symbol; a query is similar to the body of a clause. Queries and bodies of clauses
are collectively called formulas. The truth constant true is used to indicate the
empty body of a fact.

For technical reasons, we will assume two inclusion operators taking an atom,
resp. a constraint, into the domain of formulas.4 However, to simplify the
notation, we leave out these operators except in a few, essential cases in which
they appear as a prefixing arrow ↑. So, for example, a more precise version of
the pattern for clauses would be h← ↑b1 ∧ . . . ∧ ↑bn.

The meaning of the constraints in a given language is assumed given by a set
of ground constraints referred to as satisfied constraints. We assume, for each
type τ , constraint symbols ‘=: τ ∗ τ ’ and ‘6=: τ ∗ τ ’ with the usual meanings of
syntactic identity and non-identity. To cope with the semantics of 6= constraints,
we require, for each type τ , that there exist infinitely many constant symbols
(not necessarily of rank → τ) which can occur in a term of type τ .

We assume any substitution to be idempotent corresponding to the sort of
answers generated by Prolog and for reasons of technical simplicity, we define
satisfiers and answer substitutions to be ground substitutions. The logical se-
mantics is given in terms a proof relation defined for ground queries as follows.

Definition 1 The proof relation for a constraint language L = Clp(X ), de-
noted `L, between programs and ground queries is defined inductively as follows.

– P `L true for any program P .

– Whenever P has a clause with a ground instance H ← B such that P `L
B, we have P `L H.

– Whenever P `L A and P `L B, we have P `L A ∧B.
4These inclusion operators make it easier to define a naming relation as part of a typed

metalanguage without having to introduce a notion of subtypes.
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– P `L C whenever C is a satisfied constraint of X .

A correct answer for a query Q with respect to a program P is a substitution σ
for the variables of Q such that P `L Qσ.

A constraint set C is said to be satisfiable if there exists a ground substitution
µ for the variables of C so that Cµ is satisfied; in this case µ is called a satisfier
for C. The notation [[C]] refers to the set of all satisfiers for C. The notions
of satisfiers and satisfiability are extended to sets of constraints and atoms by
saying “A is satisfied (wrt. program P )” whenever P `L A for any atom or
constraint A.

As a procedural semantics, we use top-down derivations in the sense of [37],
however here adapted for typed languages. Furthermore, as we have in mind
implementations using Prolog-like technology, we assume an indivisible (and
efficiently implemented) unification operation which, as opposed to the usual
Clp scheme, penetrates the whole execution state, including the goal part.

A derivation system consists of transition rules S ; S′ over states of the
form

〈C,α〉

where C is a finite set of literals and α an accumulated substitution, which
represents the explicit variable bindings made so far.

States are assumed to be idempotent in the sense that no variable x ∈ dom(α)
occurs in C, i.e., α is mapped consistently over the constraint set C. We extend
the notions of satisfaction and satisfiers (with respect to program P ) to states
by viewing the accumulated substitution as a set of term equations. We assume
a special state called Failure with set of satisfiers [[Failure]] = ∅.

We use also ; to denote the derivation relation induced in the natural
way by a set of derivation rules {;}; ;∗ is the reflexive, transitive closure of
;. A state is final if there is no derivation possible from it, and a derivation
is successful if it ends in a final state 〈C,α〉 where C is a set of satisfiable
constraints. A derivation is failed if it ends with Failure.

Whenever 〈Q, ∅〉 ;∗ S is a successful derivation for a query Q, any substi-
tution in [[S]] restricted to the variables of Q is called a computed answer for
Q.

The following transition rules, labeled (Unif), (Res), (Dif1), (Dif2), and
(True), constitute the core of any transition system.

The unification rule (Unif) is the only one that changes the accumulated
substitution.

(Unif) 〈C ∪ {s = t}, α〉; 〈C,α〉µ
— where µ is a most general unifier of s and t chosen so that αµ is defined

and the new state becomes idempotent;
however, if s and t have no unifier, the result is Failure.
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In any other rule, we will leave out the accumulated substitution assuming it to
be copied unchanged. Other rules can of course affect it indirectly by setting up
one or more equations as is the case in the following resolution rule. Resolution
is only meaningful in the context of some program P .

(Res) C ∪ {A}; C ∪ {B1, . . . , Bn, A = H}
— whenever A is an atom, H ← B1 ∧ . . . ∧Bn a variant with

new variables of a clause in P .

In this rule, the equation A = H should be understood as an equation between
terms similar to A and H but with the predicate symbols replaced in a consistent
way by function symbols. The resolution rule is assumed to be the only one that
can refer to atoms.

Occurrences of the truth constant true are removed by the following rule.

(True) C ∪ {true}; C

We need the following characterization in order to handle inequality constraints.

Definition 2 Two terms t1 and t2 are said to be distinguishable if they have
no unifier, i.e., for any substitution σ, t1σ and t2σ are different.

The following two rules define a behaviour of inequations quite similarly to the
dif predicate of Sicstus Prolog [56].

(Dif1) C ∪ {t1 6= t2}; C
— whenever t1 and t2 are distinguishable.

(Dif2) C ∪ {t1 6= t2}; Failure
— whenever t1 and t2 are identical.

So, for example, inequations f(X,a)6=f(X,b) and f(X,X) 6=f(a,b) will be reduced
away by (Dif1), f(X)6=f(X) reduces to Failure by (Dif2), whereas f(X)6=f(Y)
and f(X,a)6=f(b,Y) cannot be reduced.

Two terms not being distinguishable means that they are unifiable. Referring
to the results of [42], it can be shown for any finite set of constraints S = {si 6=
ti} with each pair of terms si, ti unifiable but not identical, that S is satisfiable
under the assumptions we made above, that for each type τ , there exist infinitely
many constant symbols which can occur in a term of type τ . A satisfier can be
constructed by assigning, to each variable, a term with a unique constant that
does not occur in S.5

The correctness of a given derivation system with respect to a given language
is contained in the following definition.

5It can be argued that it is sufficient to assume that there are infinitely many terms of
each type.
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Definition 3 A derivation system for a constraint logic language Clp(X ) is a
set of transition rules {;} which includes (Res), (Unif), (True), and (Dif1–2)
such that the conditions (i) and (ii) hold.

(i) (Preservation of satisfiers)
For any state S, let {Si}i∈I be the set of all states with S ; Si. Then
the set of substitutions

⋃
i∈I [[Si]], each restricted to the variables of S,

coincides with [[S]].

(ii) (Termination in constraint solving)
For any state of the form S = 〈C,α〉, with C consisting of constraints
only, any derivation from S is finite and any maximal derivation S ;∗ S′

ends with either a satisfiable state S′ = 〈C ′, α′〉 or S′ = Failure.

By induction, we can prove the following soundness and completeness result.

Proposition 1 Let {;} be a derivation system for a constraint language Clp(X ).
Then, for any program P and query Q of Clp(X ), a correct answer for Q with
respect to P is a computed answer and vice-versa.

A derivation system satisfying proposition 1, however, is only of practical rele-
vance if it can be justified that there exists an efficient proof procedure for it,
which preserves the proposition. By a proof procedure we mean an algorithm
which, for any correct answer, can produce a representation of it in finite time.

In Lloyd’s presentation of Sld-resolution [44], he uses the notion of a com-
putation rule to represent the overall behaviour of a proof procedure. A com-
putation rule is defined as a deterministic strategy for selecting the next atom
to be processed (out of the finite set comprising the current goal) and he shows
that the completeness result is maintained under any such computation rule.
This characterization is in some sense optimal: It explains how a large source
of nondeterminism can be eliminated and the remaining nondeterminism in the
derivation step is finite and cannot be reduced further in any obvious way. In
the Sld case, the nondeterminism in the choice of program clause needs to be
preserved.

When defining a notion of computation rule in the context of constraint
solving, it should analogously govern a portion of the process as large as possible
where alternative choices can be eliminated. In the following definition, we set
as the domain of a computation rule “the choice of derivation step and the
literals to which it applies”. Thus, in order to achieve an optimal behaviour, the
nondeterminism within each rule of the derivation system should be restricted
to what really is essential for completeness.6

6As in (Lloyd, 1987) the process of renaming variables, also called “standardizing apart”, is
tacitly assumed to be a deterministic operation. Choosing just one out of the infinitely many
renamings is sufficient! Analogously for the choice of a most general unifier in the unification
step.
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Definition 4 Given a derivation system {;i}i∈I , a computation rule is a func-
tion from finite sets of literals to some i ∈ I and selected literal(s) to which the
rule ;i applies. Given a computation rule R, a R-derivation is a derivation in
which each step Sn ; Sn+1 is consistent with R. A computed answer produced
in an R-derivation is called an R-computed answer.

Condition (ii) in the previous definition 3 anticipates a computation rule which
is fast-solving:

The resolution rule (Res) cannot be applied if another rule is applicable.

When a fast-solving computation rule is used, condition (ii) implies that ;∗

serves as an effective constraint satisfaction test which in addition may sim-
plify the constraint set. It is easy to show that proposition 1 still holds when
derivation is restricted by a fast-solving computation rule. We can illustrate
the relevance of a fast-solving computation rule by the query ‘p’ to the program
consisting of the clauses ‘p← a=b ∧ p’ and ‘p’. A fast-solving computation rule
yields one failed and one successful derivation whereas a “slow-solving” rule in
addition would produce one infinite derivation and infinitely many failed ones.

For analogous reasons, it may be relevant to require a computation rule
which is fast-unifying:

The rules (Unif), (Dif1), and (Dif2) take precedence over all other rules.

Finally, we have to remark that the conditions (i) and (ii) in the definition above
turn out to be too naive in many cases. For the derivation system we present
in section 2.4, condition (i) needs to be refined by a notion of equivalence of
satisfier sets and an invariant must be imposed on the states in order to verify
(ii).

2.2 The object and metalanguage

The object language for demo is called HCL and consists of untyped, positive
Horn clauses with equality and inequality (6=) constraints allowed in the body
of clauses. The precise syntax and semantics are given by considering HCL as
a constraint logic language (as defined above) with only one type, no additional
constraints, and with infinitely many function symbols.

The metalanguage in which demo is written is a constraint logic language
Clp(HCL) with function symbols that reflect the syntax ofHCL and constraints
that make it possible to express its proof relation.

Clp(HCL) has the following types:

program, clause, formula, atom, constraint,term, substitution,
and substitution-pair.

For each symbol f of HCL, Clp(HCL) includes a unique function symbol de-
noted f of arity and rank corresponding to the syntax of HCL, e.g.,
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← : atom ∗ formula→ clause,

and for each HCL variable, say X, a unique constant denoted X :→ term, etc.
For arbitrary phrase P of HCL, the notation dP e refers to the ground term that
arises when each symbol f occurring in P is replaced by f and we call dP e
a name for P . Additionally, the metalanguage includes the following function
symbols to represent programs and substitutions,

empty-program:→ program,

program-cons: clause ∗ program→ program,

empty-substitution:→ substitution,

substitution-cons: substitution-pair ∗ substitution→ substitution,

pair: term ∗ term→ substitution-pair.

Prolog’s list-notation will be used for terms of type program as well as substi-
tution; the ‘pair’ function is written (−,−). We extend the d· · ·e notation to
programs and substitutions as follows,

d{C1, . . . , Cn}e = [dC1e, . . . , dCne],
— assuming no duplicates among the clauses C1, . . . , Cn.

d{X1 7→ T1, . . . , Xn 7→ Tn}e = [( X1 , dT1e), . . . , ( Xn , Tn)],
— assuming no duplicates among the object variables X1, . . . , Xn.

Notice that the name of an object program (or substitution) is not unique,
so the metalevel constraints “=” and “ 6=” do not correspond to the relations
between object programs (substitutions) usually written with the same symbols.
For all other syntactic phrases of HCL, the name in Clp(HCL) is unique and
compositional.

The reverse brackets b· · ·c are used inside d· · ·e to indicate the presence of a
metavariable. If, for example, Z is a metavariable of type atom, we have

dbZc ← q(f(X,b))e = ← (Z, ↑ ( q ( f ( X , b )))).

For simplicity, we have not included the naming brackets’ notation in the formal
definition of the language, instead we consider it as syntactic sugar. But we want
to emphasize, that any implemented system must support such a notation in
some way. Otherwise, programming about the ground representation is really
impractical.

We have chosen the naming relation as simple as possible in order to simplify
the presentation in this paper. In the implemented system, section 4.1, we
use a more detailed naming relation in which names of function and predicate
symbols, arities, and argument lists are made explicit so that the name of, say,
p(X,a) is the following huge term.
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atom(predicate(p, 2),

termlistcons(variable(X),termlistcons(constant(a),emptytermlist))).

For practical metaprogramming, we find such a naming relation relevant because
it allows to parameterize over object phrases in a more abstract way, e.g., by
binding an item to name a constant or a function symbol of arity three without
specifying which symbol.

We believe, however, that our choice of naming relation in the present paper
is representative and suited to display the general principles behind the sort
of metalanguages and metainterpreters we are interested in. In [13] we use a
metalanguage based on the more detailed naming relation illustrated above and
give a derivation system for it, which is much more complicated than what we
can show here.

For each type τ ∈ {clause, formula, atom, constraint, term}, Clp(HCL) has
a constraint symbol

instanceτ : τ ∗ τ ∗ substitution.

The type subscript will be left out when obvious from the context or when
a distinction is unnecessary. Additionally, we have the following constraint
symbols.

no-duplicates: program,

member: clause ∗ program

not-member: clause ∗ program

Satisfaction is defined by exactly the following constraints recognized as satisfi-
able:

– any constraint instance(dP1e, dP2e, dσe) where P1, P2 are phrases of HCL,
σ a HCL substitution with P1σ = P2,7

– any constraint of the form member(c, [. . . , c, . . .]),

– any constraint of the form not-member(c, [c1, . . . , cn]), n ≥ 0 where c is
different from all c1, . . . , cn, and

– any constraint of the form no-duplicates([c1, . . . , cn]), n ≥ 0 where all
c1, . . . , cn are different.

7Notice that σ by convention must an idempotent substitution. For the usage of instance
constraints in implementing the demo predicate, satisfaction of instance constraints could
equally well have been defined in terms of general or ground object level substitutions.
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Member constraints are used in the usual way for selecting clauses out of the
object program; notice that the list notation stands for program-cons lists. In-
stance constraints provide a way to express object level unification at the met-
alevel, which we will make clear in proposition 2 and example 1 below.

It is obvious that the member constraint could have been specified as an
ordinary predicate, but in order to suppress the generation of different repre-
sentations of the same object program, we need to have a detailed procedural
control, which is only possible by explicit derivation rules. The no-duplicates
constraints are used to ensure that terms of type program really are names
of programs; not-member and 6= constraints are used here as auxiliaries. We
could also have provided a collection of similar constraints concerned with terms
of type substitution, but it will turn out that the derivation system and the
metaprograms of interest imply the relevant properties.

The following property, that follows from the definition of the constraints,
indicates how object level unification can be simulated by instance constraints.

Proposition 2 For arbitrary metalevel terms t1, t2, t, s1, s2, and metalevel
substitution θ, the following properties are equivalent.

– {instance(t1, t, s1), instance(t2, t, s2)} is satisfiable with satisfier θ.

– There exist phrases P1, P2, P , substitution σ, renaming substitution ρ of
HCL (with variables of P1 and P2ρ disjoint) such that

• dP1e = t1θ, dP2e = t2θ, dP e = tθ,

• dσe = s1θ, dρσe = s2θ,

• P1σ = P2ρσ = P .

The inherent renaming of variables in the proposition is very convenient as our
primary goal is to simulate the proof relation for HCL given by definition 1.
Typically P1 is a part of the object level query and P2 the head of an object
clause.

The proposition implies a kind of reflection of object language variables to
metavariables that we want to make clear by means of an example.

Example 1 The constraint

instance(dp(X)e, Z, S)

is equivalent to the following equations where ZX and S′ are new variables.

Z = dp(bZXc)e, S = [( X , ZX) | S′].

The first equation can be thought of as a translation from the ground repre-
sentation into terms with ‘live’ metavariables standing in the place for object
variables, quite similar to the non-ground representation used in the classical
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Vanilla interpreter (see, e.g., [28]). The second equation serves to communicate
to other instance constraints with the same substitution argument, the exact
“location” ZX used for storing values for the object variable Z in the “stack
frame” referred to by metavariable S.

So referring to proposition 2, we can map object level unification to the
metalevel in the following way: To unify two object terms given by their ground
names, replace variable names consistently with new metavariables and let the
metalevel unification do the work. It will appear that the derivation system
DS to be introduced performs a recursive decomposition of instance constraints
which yields exactly this translation.

Consider, for example, the object level condition

p(X,a) = p(b,Y).

It is equivalent to the metalevel equation,

dp(bZXc,a)e = dp(b,bZYc)e.

2.3 The metainterpreter

Using Clp(HCL), we can now write a metainterpreter which simulates HCL’s
proof relation. The program, which we will refer to as Demo, defines the fol-
lowing two predicates.

demo: program ∗ formula,

demo1: program ∗ formula.

We remind that the ↑ symbol appearing in clause (d12) (clauses (d13) and (d14))
is the inclusion operator of atoms (constraints) into formulas that is left implicit
in most other cases.
(d) demo(P, Q) ←

no-duplicates(P) ∧
instance(Q, Q1, ) ∧
demo1(P, Q1).

(d11) demo1(P, dtruee) ← true.
(d12) demo1(P, d↑ bAce) ←

member(C, P) ∧
instance(C, dbAc ← bBc e, ) ∧
demo1(P, B).

(d13) demo1(P, d↑(bT1c=bT2c)e) ← T1=T2.
(d14) demo1(P, d↑(bT1c6=bT2c)e) ← T1 6=T2.
(d15) demo1(P, dbAc ∧ bBc e ) ←

demo1(P, A) ∧
demo1(P, B).
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The purpose of the ‘no-duplicates’ constraint is to impose our convention of pro-
grams being sets and not lists of clauses, a property which cannot be expressed
with the sort of types normally used in logic programming. This principle,
together with a careful implementation, section 2.4 below, of the ‘member’ con-
straint prevents the generation of alternative presentations of the same program
due to permutation and duplication of clauses.

The soundness and completeness of the Demo program can be expressed as
follows.

Proposition 3 Let p and q be terms of type program and formula, and ρ a
substitution, all of the language Clp(HCL). Then the following two statements
are equivalent.

– ρ is a correct answer for demo(p, q) with respect to the Demo program.

– There exist program P , query Q, and substitution σ of HCL, where σ is a
correct answer for Q with respect to P and pρ = dP e, qρ = dQe.

Proof. Assume ρ is a correct answer for demo(p, q), i.e.,

(1) Demo `Clp(HCL) demo(p, q)ρ

By definition of ` and referring to clause (d) of the Demo program, we see that
(1) holds if and only if there exist query Q1 and substitution σ of HCL such
that

(2) Demo `Clp(HCL) no-duplicates(pρ)∧
instance(qρ, dQ1e, dσe)∧
demo1(pρ, dQ1e).

By the definition of the constraints, (2) holds if and only if pρ = dP e, qρ = dQe
for some program P and query Q of HCL with Qσ = Q1 and

(3) P `Clp(HCL) Q1 (or equiv. P `Clp(HCL) Qσ).

In (2), we can especially choose Q1 and σ such that Q1 is ground without
affecting the satisfiability of the instance constraints. Under this assumption,
we can show (3) equivalent with

(4) P `HCL Q1.

This follows by induction over the number of recursive applications of the def-
inition of ` needed to verify P `HCL Q1. In the induction step we use the
fact that each clause for demo1 is equivalent with an instance of a case in the
definition of `. [ ]

It should be emphasized that the so-called completeness of demo needs to be
complemented by an appropriate derivation system in order to be of a more
than mathematical interest. The following example investigates the potential
expressivity in queries to the demo predicate.
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Example 2 The set of answers to the query,

demo(X, Y)

characterizes the proof relation `HCL.
The set of answers to the query

demo(dP e, X)

characterizes the set of formulas which are logical consequences of the HCL
program P .

Assuming a predicate abducible: → clause programmed in Clp(HCL), the
set of answers to the query

abducible(X) ∧ demo(d [ bXc | P ] e), dObse)

characterizes the set of all HCL clauses whose name satisfies the abducible(–)
condition and which together with the clauses of P can explain the ‘observations’
Obs.

It may seem a little unsatisfactory that the demo predicate does not provide
any information about which object level substitution actually made a query
succeed. However, we can get the same information using metavariables as part
of the query argument, cf. the “reflection principle” indicated in example 1.

Example 3 Assume an object program P and let O be the set of ground object
terms determined by the answer substitutions for the object query p(X). Let
in a similar way M be the set of terms given for the metavariable ZX by the
metalevel query

demo(dP e,dp(bZXc)e)

with respect to the Demo program. Then M consists of names for the terms of
O together with of (all!) names for non-ground object terms, each of which is
more general than a term in O.

However, a derivation system needs not invent new variable names. Instead
it can provide more abstract answers in the shape of answer constraints. An
answer constraint such as

instance(ZX, df(a,b)e, [( Y , dce)| ])

captures the names of a large collection of names of object terms, e.g., df(a,b)e,
df(A,b)e, df(a,B)e, etc., but not df(Y,b)e.
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2.4 A derivation system for solving Clp(HCL) constraints

In the following, we present and explain the rules of a derivation system for
solving the constraints of Clp(HCL). The system, called DS consists of the
rules below together with the basic rules (Res), (Unif), (True), and (Dif1–2)
introduced in section 2.1. The soundness and completeness of DS are shown in
section 3.

We start with the rules concerned with instance constraints. The rule (I)
expresses that a given variable (of relevant type τ) can have one and only one
instance under a given substitution. It applies also following a unification of
two variables v = v′.

(I) C ∪{instanceτ (v, t, s), instanceτ (v, t′, s)}; C ∪{t = t′, instanceτ (v, t′, s)}
— when v is variable.

The following two rules (It1–2) reduce instance constraints that express bindings
to object variables; the first one applies when a binding has been recorded
already for the given variable, the second one installs an initial binding in the
substitution.

(It1) C ∪ {instanceterm( x , t, s)}; C ∪ {t = t′}
— when x is the name of an HCL variable and s = [· · · ( x , t′) · · ·]

(It2) C ∪ {instanceterm( x , t, s)}; C ∪ {w = [( x , t)|w′]}
— when x is the name of an HCL variable, (It1) does not apply,

and s = [· · · |w]; w′ is a new variable.

Notice that a fast-unifying computation rule is relevant for (It2) in order to
avoid different and incompatible expansions of the substitution tail w. The
representation of an object level substitution is not unique, and it appears that
the rules (It1–2) will produce exactly one representation of a given substitution,
the one chosen depends on the order in which the rules are applied.

Instance constraints with names of structured object language terms in the
first argument are reduced as follows.

(It3) C ∪ {instanceterm( f (t1, . . . , tn), t′, s)}
; C ∪ {t′ = f (v1, . . . , vn),

instanceterm(t1, v1, s), . . . , instanceterm(tn, vn, s)}
— when f is the name of a function symbol of HCL, n ≥ 0;

v1, . . . , vn are new variables.

The reduction of a term instance constraint is, thus, triggered by its first argu-
ment being non-variable. In case the first argument is a variable, but the second
is bound to a structure, the rule (It3) does not apply. To see why, consider the
constraint instanceterm(X, df(a)e, s). There is no meaningful assignment to make
for X because the constraint is satisfiable with different values of X that are not
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covered by subsumption, e.g., df(a)e, df(A)e, df(B)e, dAe, or dBe, where A and
B are object variables.

Rules for all other syntactic constructs in HCL of categories clause, formula,
atom, and constraint are defined similarly to (It3) except that they are triggered
also by the second argument being non-variable.

(Ic) C ∪ {instanceclause(t1, t2, s)}
; C ∪ {t1 = ← (u1, u2), t2 = ← (v1, v2),

instanceatom(u1, v1, s), instanceformula(u2, v2, s)}
— when t1 or t2 is of the form ← (. . . , . . .); u1, u2, v1, v2 are new variables.

(If1) C ∪ {instanceformula(t1, t2, s)}
; C ∪ {t1 = ∧ (u1, u2), t2 = ∧ (v1, v2),

instanceformula(u1, v1, s), instanceformula(u2, v2, s)}
— when t1 or t2 is of the form ∧ (. . . , . . .); u1, u2, v1, v2 are new variables.

(If2) C ∪ {instanceformula(t1, t2, s)}
; C ∪ {t1 = true , t2 = true }
— when t1 or t2 is of the form true .

For each of the types τ ∈ {atom, constraint} we have the following rule with, in
each case, ↑ being the operator of rank τ → formula.

(If3) C ∪ {instanceformula(t1, t2, s)}
; C ∪ {t1 = ↑ (u), t2 = ↑ (v), instanceτ (u, v, s)}
— when t1 or t2 is of the form ↑ (· · ·); u, v are new variables.

For each of the types τ ∈ {atom, constraint} we have the following rule; when
τ = atom, p refers to the name of an HCL predicate, otherwise to one of the

symbols = or 6= .

(Iac) C ∪ {instanceτ (t1, t2, s)}
; C ∪ {t1 = p (u1, . . . , un), t2 = p (v1, . . . , vn),

instanceterm(u1, v1, s), . . . , instanceterm(un, vn, s)}
— when t1 or t2 is of the form p (· · ·);

u1, . . . , un, v1, . . . , vn are new variables.

Member constraints are reduced by the following rules.

(M1) C ∪ {member(c, v)}; C ∪ {v = [c|v′]}
— when v is a variable; v′ is a new variable.

(M2) C ∪ {member(c, [c′|p])}; C ∪ {m}
— where m is either c = c′ or member(c, p).
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(M3) C ∪ {member(c, [ ])}; Failure.

Rule (M1) is the only rule that can apply when a new clause is added to an unin-
stantiated program or program tail v. The nondeterminism in (M2) provides an
iteration through the list of positions for clauses indicated by the list structure
in a term of type program. To see the overall behaviour of (M1–3), consider the
constraint set {member(c1, v), member(c2, v)}, assuming c1, c2 being two distin-
guishable terms and v a variable. With a given fast-unifying computation rule,
exactly one solution will be found, e.g., v = [c1, c2| ] if the computation rule
chooses member(c1, v) first. A fast-unifying computation rule will also prevent
applications of (M1) leading to failure due to incompatible assignments to v.

The following transition rules define the behaviour of the no-duplicates con-
straints and the auxiliary not-member constraints.

(ND1) C ∪ {no-duplicates([c|p])}; C ∪ {not-member(c, p),no-duplicates(p)}.

(ND2) C ∪ {no-duplicates([ ])}; C.

(NM1) C ∪ {not-member(c, [c′|p])}; C ∪ {c 6= c′,not-member(c, p)}.

(NM2) C ∪ {not-member(c, [ ])}; C.

When no-duplicates is called with an uninstantiated variable, it delays because
none of (ND1–2) can apply. We notice that the time complexity is quadratic in
the size of the program.

3 CORRECTNESS: SOUNDNESS AND COM-
PLETENESS OF DEMO

In section 3.1 we characterize those states that can appear when DS and the
Demo program is used for executing queries to the demo predicate. We identify
important invariants that are necessary in order prove soundness and consis-
tency. The central result in section 3.2 is a proposition stating that the set
of satisfiers (qua an equivalence relation) is preserved in the possible deriva-
tions from an initial state. Section 3.3 shows the central termination result and
formulates the concluding soundness and completeness theorem.

3.1 States and their properties

Satisfiability of instance constraints is closely related to the undecidable multiple
semiunification problem [40]. Our semantics is based on idempotent substitu-
tions but if we had used general substitutions, satisfiability of sets of two or
more instance constraints would have been equivalent with this problem; this
relation has been pointed out in a slightly different context in [9]. It is not know
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at present whether the restriction to idempotent substitutions will affect this
negative result.

To get around this problem, we restrict our correctness considerations to
the class of derivations and states defined below, implying a property called
safeness that ensures decidability. It can be shown that safeness makes our
satisfiability problem equivalent with a special case of acyclic semiunification
shown decidable by [39] with general substitutions.

Definition 5 A demo-derivation is a derivation in DS using a fast-solving and
fast-unifying computation rule, with resolution made with clauses of the Demo
program, and starting from an initial state of the form 〈demo(p, q), ∅〉. Any
state occurring in a demo-derivation is called a demo-state.

The following properties of substitution well-formedness and safeness will serve
as invariants, that are essential for correctness proofs.

Definition 6 A set of Clp(HCL) constraints C (or a state 〈C,α〉) is substi-
tution well-formed if the following conditions hold.

1. Any instance constraint in C is of the form

instance(t, t′, [( x1 , t1), . . . , ( xn , tn)|w]),

where each xi is the name of a distinct HCL variable; no name of an
HCL variable occurs in t′, t1, . . . , tn, and the tail w is a variable.

2. If a variable w occurs as the tail of two substitution arguments s1 and s2,
then s1 and s2 are identical.

3. Any pair of constraints in C of the form

instance(t, t′, [( x1 , t1), . . . , ( xn−1 , tn−1)|w′]), w′ = [( xn , tn)|w],

satisfies a condition similarly to case 1 above; in addition, there is no
other equation w′ = . . . and w does not occur elsewhere in C.

4. Terms of type substitution or substitution-pair do not occur in other ways
in C.

Proposition 4 Any demo-state is substitution well-formed.

Proof. Consider an arbitrary demo derivation S0 ;∗ Sn starting from a state
S0 = 〈demo(p, q), ∅〉.

We use induction over n, observing that S0 is substitution well-formed as
there are no terms of type substitution or substitution-pair in it.

Whether a unification step violates the proposition depends on the equations
set up by the derivation step preceding it, so when considering the other possible
steps, we check also the indirect effect given by the equations they may create.
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A (Res) step using a clause of the Demo program does not violate the prop-
erty as the only terms of type substitution that are involved are new variables w
appearing as substitution argument of a single instance constraint and nowhere
else; no terms of type substitution-pair are involved. By inspection, we see that
no other rule of DS violates the property. [ ]

Intuitively, substitution well-formedness means that each such substitution tail
variable w serves as a fill-pointer to a unique substitution and the equation
mentioned in the third condition appears temporarily when a new binding is
added. The relevance of the notion is captured by the following proposition,
which we state without proof.

Proposition 5 Let C be a substitution well-formed set of constraints. Then
there exists a ground metalevel substitution ρ such that any term of type substi-
tution appearing in Cρ is the name of some object language substitution.

Furthermore, ρ can be chosen such that for any instance constraint in C,
instance(t, t′, s), t′ρ is the name of a ground object term, sρ the name of a
ground, object level substitution.

A metavariable in one of the arguments to demo will stand for the ground repre-
sentation of some unknown phrase of the object language HCL (such variables
are called external below). Looking at metavariables in second arguments to
instance constraints (called internal below), their role is intuitively a bit differ-
ent. Of course, they can only be bound to names of object language phrases
but, as indicated by proposition 2 and example 1, they serve as “live” place-
holders for object variables, effectively providing a non-ground representation.
The following notion of safeness specifies that no confusion is possible between
the two categories of metavariables and, as we will see later, this removes the
hard recursion that may imply undecidability.

Definition 7 A substitution well-formed set of Clp(HCL) constraints C (or
a state 〈C,α〉) is safe if its variables of type different from substitution can be
separated into two disjoint sets of external and internal variables such that the
following conditions hold.

– For any instance constraint in C

instance(t, t′, [( x1 , t1), . . . , ( xn , tn)|w]),

the variables occurring in t are external, those in t′, t1, . . . , tn internal.

– The arguments to any constraint in C with constraint symbol member,
not-member, or no-duplicates contain no internal variables.

– No equation or inequation in C between terms of type different from sub-
stitution contains both an internal and an external variable, or both an
internal variable and the name of an HCL variable.
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Proposition 6 Any demo-state is safe.

Proof. Consider an arbitrary demo derivation S0 ;∗ Sn starting from a state
S0 = 〈demo(p, q), ∅〉.

To show that safeness holds for any demo-state, we extend the characteriza-
tion of internal and external variables as follows,

– for any call demo(t1, t2) in S, any variable in t1 and t2 is external,

– for any call demo1(t1, t2) in S, any variable in t1 is external, any variable
in t2 is internal.

Again, we can use induction over the n, observing that the proposition obviously
holds for S0. By inspection of the Demo program and DS it appears that no
rule, directly or by means of an equation, can mix up the two classes of variables.
[ ]

In the following we define what is understood by a constraint-normalized state
and prove that such states are satisfiable. In section 3.3, below, we will show
that DS with a fast-solving computation rule eventually will reach a constraint-
normalized state before a possible next resolution step.

Definition 8 A safe constraint set C (or safe state 〈C∪A,α〉, with C consisting
of constraints and A of atoms) is constraint-normalized whenever the following
conditions hold.

– There are no equations or member constraints in C.

– Any instance constraint is of the form instanceτ (v, t, s) where v is a vari-
able, and if τ is different from term, t is also a variable.

– If, for given v and s that instanceτ (v, t, s) ∈ C, there is no other constraint
instanceτ (v, t′, s) ∈ C.

– For any not-member(c, p) or no-duplicates(p) ∈ C, p is a variable.

– For any t1 6= t2 ∈ C, t1 and t2 are different but not distinguishable.

Proposition 7 For a constraint-normalized state 〈C ∪A,α〉, with C consisting
of constraints, A of atoms, the state 〈C,α〉 is satisfiable.

Proof. Consider a constraint-normalized state 〈C ∪ A,α〉 as above. We show
satisfiability by constructing a satisfier ρ for 〈C,α〉 as follows.

For any inequation t1 6= t2 in C, t1 and t2 will be unifiable but not identical.
Referring to the discussion following the rules (Dif1–2) in section 2.1, it can be
seen that t1 6= t2 will be satisfied under any ground substitution which assigns to
each variable a term containing a unique constant that does not occur in C. The
decisions for ρ in the following will satisfy this requirement except for variables
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of types substitution and program. Substitution well-formedness implies that
terms of type substitution do not occur in an inequation in C. By inspection
of the Demo program and DS, the same thing can be shown for terms of type
program.

In any constraint in C of the form not-member(c, p) or no-duplicates(p),
p is a variable, and letting pρ = [ ] for any such variable p, will satisfy these
constraints. Such variables p cannot occur in other ways in C so the satisfiability
of any other constraint is not affected by this decision.

For each instanceterm(v, t, s), v is a variable. Let here vρ = dXve where Xv

is a unique HCL variable whose name does not occur elsewhere. To any variable
x occurring in t, let xρ = dTxe where Tx is a ground term of HCL containing
a constant not occurring elsewhere. The safeness condition ensures that there
is no conflict in these decisions (i.e., no variable can be referred to both as a
“v” and as an “x”). The mentioned instance constraints will be satisfied under
any further specified ρ for which sρ is the name of a substitution such that
sρ = [· · · (dXve, tρ) · · ·].

For each instanceatom(v, v′, s), v and v′ are variables. Let here vρ = dp(Xv)e
where p is a predicate symbol and Xv a unique HCL variable whose name do
not occur in elsewhere, and let v′ρ = dp(Tv′)e where Tv′ is a ground term of
HCL containing a constant not occurring elsewhere. The mentioned instance
constraints will be satisfied under any further specified ρ for which sρ is the
name of a substitution such that sρ = [· · · (dXve, dTv′e) · · ·].

Instance constraints concerned with constraints, formulas, and clauses are
treated analogously.

The requirements made above concerned with the effect of ρ on substitu-
tion arguments can be met, because each of the mentioned object variables
Xv can occur only once in relation to a given substitution. This follows from
the part of the definition of constraint-normalized state that says that for any
instanceτ (v, t, s), there is no other instanceτ (v, t′, s).

Finally, consider any binding x 7→ t in α. Due to the idempotent property
for states, x does not appear in C so there have not been made any decisions
for xρ above. Thus we can let xρ = tρ, possibly adding some arbitrary values
for any variables in t not mentioned already.

This finishes the construction of a satisfier for 〈C,α〉. [ ]

Finally, we have an invariant property, that excludes a subtle recurrence problem
that may cause DS to loop when applied to constraint sets outside the domain
of demo-states. In order to motivate proposition 8 we give an example showing
the phenomenon, which it excludes.

Example 4 Consider a state which includes the following constraints.

instanceformula( ∧ ( true ,Z),Y, S), instanceformula(Z,Y, S′)

Transition rule (If1) can be applied to the first constraint leading to an instan-
tiation of Y, and following steps by (Unif) and (If2), we have the following
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constraints.

instanceformula(Z,Y1, S), instanceformula(Z, ∧ ( true ,Y1), S′)

Now (If1) applies to the second constraint leading to an instantiation of Z, and
following steps by (Unif) and (If2), we get the following and a loop is established.

instanceformula( ∧ ( true ,Z1),Y1, S), instanceformula(Z1,Y1, S
′)

The problem arise because terms of type formula can contain proper subterms
also of type formula; there are no similar problems for the types atom, constraint
and clause. For instanceterm constraints, the problem does not exist because the
corresponding transition rule (It3) only propagates structure from the first to
the second argument, but not the other way round.

Proposition 8 An internal variable of type formula in a demo-state S can
occur at most once in some instance constraint in S.

The proposition can be proved by a straightforward but lengthy induction proof
that requires a detailed inspection of all transitions rules and clauses of the
Demo program. The proof in itself does not give any interesting new insight,
so we have decided to leave it out.

3.2 Preservation of satisfiers

As we have described earlier, DS suppresses the generation of different repre-
sentations of the same object programs, one random representation is created,
determined by the order in which the constraints are processed. The same holds
for representations of object substitutions. This means that some derivations
steps will reduce the set of satisfiers — measured at the metalevel — but with-
out changing the possible choices at the object level. In order to characterize
soundness, we introduce the following notion of equivalence for sets of satisfier.

Definition 9 Two ground metalevel substitutions σ1 and σ2 are equivalent if,
for any variable v, vσ1 and vσ2 either

– are names for the same object program,

– are names for the same object substitutions, or

– are identical.

Two sets of substitutions Σ1 and Σ2 are equivalent whenever each member of
Σ1 has an equivalent substitution in Σ2 and vice versa.

The following proposition implies the soundness of DS in the sense that no
derivation step can introduce satisfiers not entailed by the original query and,
thus, that any computed answer also is a correct answer. In addition, it points
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forward to the completeness result by indicating that no correct answer is “lost”
in the derivation process, but proposition 9 has to be complemented by the
termination result to be given in section 3.3 in order to show completeness.

Proposition 9 (Preservation of satisfiers for DS) For any demo-state S,
let
{S1, . . . , Sn} be the set of all states with S ; Si by a step in a demo-derivation.
Then the set of substitutions

⋃
i=1,...,n[[Si]], each restricted to the variables of S,

is equivalent with [[S]].

Proof. Whenever S ; Si by one of the rules (Dif1–2), (I), (It1), (It3), (Ic), (If1–
3), (Iac), (M2–3), (ND1–2), and (NM1–2), the action that takes place is that
a constraint is replaced by other constraints (or failure), which are obviously
equivalent by definition of these constraint. In these cases, we have that [[Si]],
each restricted to the variables of S, coincides with [[S]]. Similar arguments go
for (Unif) and (True).

The rule (M1) changes a state S into Si = S ∪ {p = [c|p′]} \ {member(c, p)}
where p is a variable, p′ a new variable. This obviously reduces the possible set
of satisfiers. In order to show the equivalence between [[S]] and [[Si]] (suitably
restricted), consider firstly an arbitrary satisfier σ for S; it must hold that
pσ = [c1, . . . , cn] with cσ = ck for some k. We define the substitution σ′ as
follows.

vσ′ =

 [ck, c1, . . . , ck−1, ck+1, . . . , cn] if v = p
[c1, . . . , ck−1, ck+1, . . . , cn] if v = p′

vσ for any other variable v

Clearly σ′ minus the binding to p′ is equivalent to σ and we will argue as follows
that σ′ is a satisfier for Si. By its definition, σ′ is a satisfier for the new equation
p = [c|p′] as well as for the constraints in Si not involving variable p. Due to
the fast-unifying computation rule, there are no other equations in Si involving
p, so the possible occurrences of p are of the forms no-duplicates([· · · |p]), not-
member(· · · , [· · · |p]), or member(· · · , [· · · |p]). By definition of these constraints,
their satisfiability is indifferent of permutations within the value assigned to p.
The other way round, any satisfier for Si is obviously also a satisfier for S.

The argument is quite similar for (It2), which adds an object variable binding
to the representation of an object substitution, in a way that reduces the possible
satisfier sets.

Consider, now, for an atom A in S the set of possible states {S′1, . . . , S′kA
}

that can be reached by a (Res) step from S involving A and some clause
in the Demo program. By definition of `, it follows that the substitutions⋃

i=1,...,kA
[[S′i]], each restricted to the variables of S, coincides with [[S]]. [ ]
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3.3 Termination in constraint solving

The use of a fast-solving computation rule implies that all rules concerned with
constraint solving must finish before a next resolution step will be allowed.
In this section, we show that these constraint solving sub-derivations always
terminate in a constraint-normalized state.

To begin with, we show that if termination is observed, it will do so with a
constraint-normalized state.

Proposition 10 The only derivation steps possible in a demo-derivation from
a constraint-normalized demo-state are by the rules (Res) and (True).

For any demo-state different from Failure and which is not constraint nor-
malized, there will be possible derivation steps by means of rules different from
(Res) and (True).

If a demo-derivation ends in a final state S which is not failed, then S is
constraint-normalized.

Proof. By inspection of DS, it appears that the conditions that enable each
rule (different from (Res) and (True)), imply a state which is not constraint-
normalized; hence the first part of the proposition. With respect to the second
part, it is easy to see that the possible ways a state can violate the definition
of a normalized state imply that some rule different from (Dif) and (True) can
apply.

The last part is a direct consequence of what already has been shown. [ ]

Now, finally, comes the central termination result.

Proposition 11 (Termination in constraint solving) Consider an arbitrary
demo-derivation and an arbitrary state Sn in it,

S0 ; · · ·; Sn ; · · ·

Then there exists a k ≥ n such that Sk is constraint normalized or Failure
and no derivation step Si ; Si+1, i = n, . . . , k − 1 is made by (Res).

With the strong invariants on demo-states expressed by proposition 8 and the
safeness proposition 6, the following termination proof becomes straightforward
although a bit lengthy due to the number of different constraints and types.

Proof. For any demo state S, we define the following weights, each being an
integer number ≥ 0.

n1: The number of instanceclause and ‘member’ constraints in S.

n2: The number of occurrences in second arguments to instance constraints
in S of function symbols with a rank of the form · · · → formula.

n3: The number of occurrences in first arguments to instanceformula constraints
in S of function symbols with a rank of the form · · · → formula.
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n4: The number f + a + c + t where

– f is the number of instanceformula constraints in S,

– a is the number of instanceatom constraints in S,

– c is the number of instanceconstraint constraints in S,

– t is the number of occurrences of the truth constant true (of Clp(HCL))
in S.

n5: The number of occurrences of function symbols in first arguments to
instanceatom and instanceterm constraints in S.

n6: The number of instanceterm constraints in S,

n7: The number of occurrences of function symbols in arguments to ‘no-
duplicates’ constraints in S.

n8: The number of occurrences of function symbols in arguments to ‘member’
and ‘not-member’ constraints in S.

n9: The number of ‘6=’ constraints in S.

We use the tuple 〈n1, ..., n9〉 to measure the complexity of S assuming a lexico-
graphical ordering of such tuples defined as follows.

〈n1, ..., n9〉 < 〈n′1, ..., n′9〉 if and only if,
for some k = 1, . . . , 9 that n1 = n′1, . . . , nk−1 = n′k−1 and nk < n′k.

We will show that each possible derivation step (with a transition rule different
from (Res)) decreases this measurement. Referring to the fast-unifying compu-
tation rule, we consider only states without equations and instead show that the
sequence of steps (R)–(Unif)1– · · · –(Unif)n, viewed as a whole, decreases the
measurement, where (R) denotes any rule different from (Unif) and (Res), and
(Unif)1– · · · –(Unif)n, n ≥ 0 are the unification steps for the possible equations
produced by (R). We can ignore those rules that lead to Failure and proceed
as follows.

• The rule (True) decreases n4 and leaves the other weights unchanged.

• The rule (Dif1) decreases n9 and leaves the other weights unchanged.

• The rule (I) replaces constraints instance(v, t, s), instance(v, t′, s) by t =
t′, instance(v, t′, s). We consider the possible types of the arguments sep-
arately.

– For type clause, n1 is decreased.
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– For type formula, n1 is unaffected and proposition 8 gives that the
unification for t = t′ cannot increase n2. Safeness implies that n3

is unaffected. One instanceformula constraint is removed, so n4 is
decreased.

– For types atom and constraint, n1, . . . , n3 are unaffected; n4 is de-
creased.

– For type term, n1, . . . , n4 are obviously unaffected, safeness ensures
that the unification for t = t′ does not affect n5; n6 is decreased.

• The rules (It1–3) all decreases n5; n1, . . . , n4 are unaffected.

• The rule (Ic) decreases n1.

• For the rule (If1) we consider two cases.

– t2 is of the form ∧ (t21, t22); here n1 is unaffected, n2 decreases.

– t2 is a variable and t1 is of the form ∧ (t11, t12); n1, n2 are unaffected,
for n2 we need to refer to proposition 8, and n3 decreases.

• For the rules (If2–3), the arguments are analogously to those for (If1).

• For the rule (Iac), n1, . . . , n3 are unaffected, n4 decreases.

• The rule (M1) decreases n1.

• The rule (M2) replaces member(c, [c′|p]) by either

– an equation c = c′ in which case n1 decreases, or

– a simpler constraint member(c, p) in which case n8 is decreased, all
other weights are unaffected.

• The rules (ND1–2) leave n1, . . . , n6 unchanged and decrease n7.

• The rules (NM1–2) leave n1, . . . , n7 unchanged and decrease n8.

[ ]
We summarize this termination result and propositions 3, 7, 9, and 10 in the
following, which expresses the soundness and completeness of demo-derivations
considered as an implementation of `HCL.

Theorem 1 Let p and q be terms of type program and formula, and ρ a sub-
stitution, all of the language Clp(HCL). Then the following two statements are
equivalent.

– ρ is a computed answer for the query demo(p, q) with respect to the deriva-
tion system DS and the Demo program using a fast-solving and fast-
unifying computation rule.
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– There exist program P , query Q, and substitution σ of HCL, where σ is a
correct answer for Q with respect to P and pρ = dP e, qρ = dQe.

From this, it follows that the set of all correct answer for demo(p, q) can be found
by a procedure that combines the indicated computation rule with a breadth-
first management of alternative resolution steps. A more practical procedure is
considered in section 4.1 below.

4 AUTOMATED REASONING WITH
THE DEMO PREDICATE

In this section we describe how the metainterpreter developed in section 2 can
be made into an efficient Prolog program, which in turn serves as the central
tool in a methodology for automated reasoning.

We illustrate the use of the system by a number of examples that are intended
to cover a wide range of different reasoning problems as well as showing how
unusual and unexpected combinations of ideas can be realized in a surprisingly
straightforward fashion. All examples are available in full detail together with
the source code for the system at the electronic address given in section 1.

4.1 Outline of an implementation in Prolog

4.1.1 Implementing constraints in Prolog

An efficient implementation of Clp(HCL) has been achieved using mechanisms
in Sicstus Prolog [56] intended for constraint solving. Constraints are repre-
sented as Prolog predicates that delay and reactivate themselves in a suitable
way. This eliminates the need for an additional layer of overhead that would
arise in a straightforward simulation of the derivation system.

The basic transition rules (Unif), (Res), (True), and (Dif1–2) are inherent
in the underlying Prolog system, so with an implementation of the constraints
of Clp(HCL) as indicated, programs written in Clp(HCL) can be executed
directly by the Prolog.

Sicstus Prolog supports a notion of attributed variables [34, 35] which allows
the programmer to set up, inspect and alter named attributes attached to each
Prolog variable. In addition, the programmer may supply a hook predicate
verify_attributes, which is called automatically whenever Prolog unifies a
variable with a term (which may appear to be another variable).

We illustrate the principle by the type constraints we have incorporated to
correct for the fact that Prolog is not a typed language. For each type τ of
Clp(HCL), there is a constraint τ(t) satisfied for exactly all terms t of type τ .
These constraints are represented as predicates program (. . .), clause (. . .),
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atom (. . .), etc., the underline character consistently used to distinguish con-
straints from a few Prolog built-in’s. A delayed constraint, say atom (X), is
attached as an attribute to X controlled as follows.

– Whenever X is unified with another variable Y, it is checked that Y does
not carry a different type constraints. The type constraint is preserved for
the variable X=Y.

– Whenever X is unified with a structural term, the constraint is reduced (if
possible) into other type constraints according to the naming relation.

So if X is unified with dp(a,bZc)e, the variable X together with atom (X) vanishes
and term (Z) remains as an attribute on Z.

Instance constraints are implemented in a similar way except that now sev-
eral constraints can be delayed on the same variable X, e.g., term instance (X,T,S)
and term instance (X,T1,S1). For term instance the attributes are con-
trolled as follows.

– Whenever X is unified with another variable Y, the two attached constraint
sets are compared in order to identify possible applications of transition
rule (I), and a new list of delayed constraints is formed for the variable
X=Y.

– Whenever X is unified with a structural term, the constraint is reduced (if
possible) as specified by the transition rules (It1–3).

Instance constraints for other types are delayed in case both the first and second
argument are variables. A delayed constraint, say atom instance (X,Y,S) is
attached as an attribute to X as well as to Y, so that a unification to either of
the variables can trigger an action.

The ‘no-duplicates’ and ‘not-member’ constraints are implemented straight-
forwardly in accordance with the transition rules (ND1–2, NM1–2), with a un-
conditional delay when an argument of type program is given as a variable. The
‘member’ constraint is implemented in the following traditional Prolog style.

member(C,P):- var(P), !, P=programcons(C,_).
member(C, programcons(C,_)).
member(C, programcons(_,P)):- member(C,P).

Declarative delay mechanisms as those found in, e.g., the Gödel language [29]
are not powerful enough for implementing the constraints of Clp(HCL) as pred-
icates with a suitable execution behaviour. It seems to be essential to have the
ability to compare and alter explicitly the list of calls pending on a given variable
as is possible using the low-level and not very declarative notion of attributed
variables.
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It is difficult to give comparative measurements concerning the efficiency of this
implementation of demo as there does not seem to exist other systems with the
same functionality.

In order to give some kind of measurement, we will compare with a Prolog
interpreter, Prolog executing an object program completely given, of course, and
demo with the same program specified to such a degree that it will go through
the same control pattern as Prolog.

Without a formal proof, we estimate the time spent on processing a specific
instance constraint as being proportional with the size of its first argument.
Instance constraints are applied

– once in the Demo clause (d) to the name of the object query, and

– each time the Demo clause (d2) selects a clause in the object program.

In total, instance constraints slow down demo by a constant factor compared
with the Prolog interpreter.

The only other significant contribution is given by the no-duplicates con-
straint in clause (d), which, as we have noticed already, is quadratic in the size
of the program. However, for any program of moderate size this will still be
small as it is made up from n ∗ (n − 1)/2 calls of the built-in and efficiently
implemented dif predicate. Notice also that the no-duplicates constraints can
be removed safely from clause (d) of the Demo program in cases where other
conditions anyhow imply that all clauses are different. This is the case in the
diagnosis example in section 4.8 below.

4.1.2 Additional features in the system

As already mentioned, the implemented system applies a more detailed naming
relation than the one used in this paper, which makes it possible to implement
a subtype relation. To see the use of this, consider the following constraint set.

term (X), constant (X), term instance (X,Y, )

The new constraint constant is satisfied for terms of type constant, which is
a subtype of term. The constraint set is satisfiable and results in a unification
of X and Y.

An extended notation is provided to facilitate the use of the naming relation.
A Prolog-like syntax is used for the object language with three different oper-
ators representing the naming brackets d· · ·e in order to resolve ambiguity, \ is
used for object programs and clauses, \\ for formulas, atom and constraints,
and \\\ for terms. So, e.g., \\p(a,X) is a way of writing a ground term which
names the HCL atom p(a,X). A ‘?’ operator represents b· · ·c, so the expression
\\p(a,?Z) stands for the name of an HCL atom whose predicate is p, whose
first argument is a and whose second argument is unspecified, indicated by the
metavariable Z.
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This extended syntax is compiled away from queries and program files be-
fore any computation is performed and the answers correspondingly decompiled
before printed out.

The naming relation has been extended to support a concatenation operator
‘&’ for programs and a notion of object program modules. In the following,

demo( \ ( m1 & m2 & ?P), ...)

m1 and m2 must be defined as object program modules; the notation for this is
shown in the examples below. The ‘member’ constraints have been extended
accordingly as described by the following additional transition rules.

C ∪ {member(c, & (p1, p2))}; C ∪ {member(c, p1)}

C ∪ {member(c, & (p1, p2))}; C ∪ {member(c, p2)}

C ∪ {member(c,m)}; C ∪ {member(c, p)}
— when m is defined as an object program module containing

the program p.

This means that the demo predicate can interpret these new constructs, but it
will never invent occurrences of them when used for generating programs.

We illustrate by an example, how these rules work together with the original
ones (M1–3). Assume three metalevel predicates green(. . .), red(. . .), and
blue(. . .), each defining a condition on programs, and assume they behave in a
lazy way by means of coroutine mechanisms (which we illustrate in the examples
to follow). Consider the following query.

green(Pg), red(Pr), blue(Pb), demo( \ (?Pg & ?Pr & ?Pb), · · ·).

If, now, the internal matters of demo need to invent a new clause in order to
proceed, it will first try to expand Pg with one ‘green’ clause. If this leads to
failure, it will try next to expand Pr with a ‘red’ one, and if this also fails, an
expansion of Pb is tried.

Finally, we will mention an optimization of object program modules, which
can be viewed as an application of partial evaluation. Whenever an object
program module is declared by the user, its clauses are processed once and for
all by instance constraints and whenever demo requires a clause from a module,
it will pick a preprocessed version, each time with fresh metavariables.

4.2 Abductive frameworks

Kakas, Kowalski, and Toni [38] define an abductive framework as a triplet
〈A, T, I〉, where T is a theory of background knowledge, A defines the set of
possible hypotheses that can be abduced, and I are the integrity constraints.
By means of an example from [38], we show how abductive frameworks can be
defined in our system. The background knowledge kb0 is defined as an object
program module in the following way.
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:- object_module( kb0,

\[ (sibling(X,Y):- parent(Z,X),parent(Z,Y)),
(parent(X,Y):- father(X,Y)),
(parent(X,Y):- mother(X,Y)),
father(john, mary),
mother(jane,mary)

]).

The object_module procedure stores a representation of the indicated object
program in a global Prolog fact; the symbol kb0 can now be used as a synonym
for the program in calls to demo.

Abducibles in this example are the extensional father and mother predi-
cates. We formalize what it means for a program to consists of extensional facts
as follows.

:- block extensionals(-).

extensionals( \ []).

extensionals( \ [ (father(?A, ?B):- true) | ?More ]):-
constant_(A), constant_(B),
extensionals( More ).

extensionals( \ [ (mother(?A, ?B):- true) | ?More ]):-
constant_(A), constant_(B),
extensionals( More ).

The block declaration will hold back the execution of a particular call until
some other event (e.g., internal demo matters) instantiates the argument. The
predicate will wake up each time a new clause is added, make sure it is a father
or mother fact with constant arguments, and delay again on the new program
tail.

Integrity constraints are defined by a metalevel predicate as follows; the
third condition does not appear in [38], but is needed for getting rid of some
irrelevant answers.
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integrity_check(KB):-

% You can only have one father:
for_all( ( constant_(A), constant_(B), constant_(C),

demo(KB, \\ (father(?A, ?C), father(?B,?C)))),
A=B ),

% You can only have one mother:
for_all( ( constant_(A), constant_(B), constant_(C),

demo(KB, \\ (mother(?A, ?C), mother(?B,?C)))),
A=B ),

% A mother cannot be a father:
for_all( ( constant_(A), constant_(B),

demo(KB, \\ (mother(?A, ?_), father(?B, ?_)))),
dif(A,B) ).

The for_all predicate is implemented in Prolog as follows; it generates all
solutions for the first argument and succeeds if and only if the second argument
succeeds in all cases.

for_all(P,T):- \+ ( call(P), (call(T) -> fail ; true) ).

It is intended to represent the logical statement ∀(P→ T), but clearly it suffers
from the deficiencies of Prolog’s approximation to negation as failure.

We have now what is needed to implement a predicate for updating the
database such that new observations can be explained.

update(KB, Obs, NewKB):-
extensionals(UpdateFacts),
NewKB = \ ( ?KB & ?UpdateFacts ),
demo( NewKB, Obs ),
close_constraints( NewKB ),
integrity_check( NewKB ).

Given a knowledge base KB and some observed facts Obs, a new knowledge
base NewKB is produced. The close_constraints predicate is a facility in the
system which instantiates remaining metavariables to prototypical values. In
this example, it terminates the open program tail of UpdateFacts and provides,
thus, a correct behaviour of the naively implemented for_all device. The
following test query shows the overall behaviour of the update predicate.
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?- update( \kb0, \\sibling(mary,bob), N).

N = \ (kb0 & [(father(john,bob):-true)]) ? ;

N = \ (kb0 & [(mother(jane,bob):-true)]) ?

?- update( \kb0, \\ (sibling(mary,bob), mother(joan,bob)), N).

N = \ (kb0&[(father(john,bob):-true),(mother(joan,bob):-true)]) ?

4.3 Default reasoning

In [38] it is shown that default reasoning can be simulated as a special case
of abduction. Here we show an example from [38] formulated in our system,
although in our framework we find it more direct to generate instances of the
default rule without introducing an auxiliary abducible predicate; we compare
the two approaches following our example. We will later extend the example
with abduction and induction.

We represent the factual knowledge together with exceptions to the defaults
as an object program in the following way; the second clause defines an exception
to the fly predicate given by a default rule below.

:- object_module( kb0,

\[ (bird(X,yes):- penguin(X,yes)),
(fly(X, no):- penguin(X,yes)),
penguin(tweety, yes),
bird(john, yes) ]).

Due to the lack of negation in our system, we have encoded a truth value in
each predicate. Consistency of such a program is defined as follows.

consistent(T):-
for_all( ( constant_(C), constant_(YN1), constant_(YN2),

demo(T, \\ ( ?P/2-[?C, ?YN1], ?P/2-[?C, ?YN2]))),
YN1=YN2 ).

This shows an alternative notation for atoms that allows to parameterize over
the predicate symbol. The consistent condition is satisfied whenever, for any
predicate p and any individual c we do not have p(c, yes) and p(c, no) at the
same time.

This definition of consistency is suited for grounded program representations,
typically after demo and close_constraints have done their job. For larger
applications it may be worthwhile writing a new version of the consistent
predicate to have it execute co-operatively with demo.

A default rule such as
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fly(X, yes):- bird(X, yes)

is not used as a normal rule, only ground instances of it that do not violate the
overall consistency should appear in object level proofs. Ground instances of
the default rule are defined at the metalevel as follows.

:- block default_instance(-).

default_instance( \ (fly( ?X, yes):- bird( ?X, yes) )):-
constant_(X).

A first version of a query mechanism for single facts can now be put together
as follows.

query(KB, Q):-
default_instance( D ),
demo( \ ( ?KB & [?D]), Q),
close_constraints( \ ( ?KB & [?D]) ),
consistent( \ ( ?KB & [?D]) ).

The following test queries show the overall behaviour of the query predicate.

?- query( \kb0, \\fly(john,yes)).
yes

?- query( \kb0, \\fly(tweety,yes)).
no

A test print will show for the first query, that the default instance

\ (fly(john,yes):- bird(john,yes)

is used. Free metavariables can also be used in the query.

?- constant_(I), constant_(YN), query( \kb0, \\fly(?I,?YN)).

I = \\\tweety
YN = \\\no ? ;

I = \\\john
YN = \\\yes ? ;

no

Without the constraints constant_(I) and constant_(YN) we would also get
answers saying that I and/or YN could be names of object languages variables.

In [38] default logic is simulated by an abductive framework by introducing
an auxiliary abducible predicate birds_fly and moving the exceptions to the
integrity constraints. The default rule is made part of the database in the
following form; we use our own notation for comparison.
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fly(X, yes):- bird(X, yes), birds_fly(X, yes).

New birds_fly facts can be abduced provided they do not violate the following
integrity constraint.

∀X penguin(X, yes) → fly(X, no).

This can also be programmed in our system by a suitable for_all expression.

4.4 Abduction in default reasoning

The principle for abduction shown in section 4.2 applies unchanged in the con-
text of default logic. Again, we must formalize what kind of abducibles, we will
allow demo to introduce.

:- block extensionals(-).

extensionals( \ []).

extensionals( \ [ (bird(?C, yes):- true) | ?More ]):-
constant_(C),
extensionals( More ).

extensionals( \ [ (penguin(?C, yes):- true) | ?More ]):-
constant_(C),
extensionals( More ).

The procedure for abductive update is similar to the first-order case, except
that we replace demo by the query predicate developed in section 4.3, which
represents provability in this particular default setting. No integrity constraints
are needed for this problem.

update(KB, Obs, NewKB):-
extensionals(UpdateFacts),
query( \ (?KB & ?UpdateFacts), Obs),
NewKB = \ ( ?KB & ?UpdateFacts ).

The following query shows that the only possible explanation why peter flies is
that peter is a bird.

?- update( \kb0, \\fly(peter, yes), N).

N = \ (kb0 & [(bird(peter,yes):-true)]) ? ;

no
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4.5 Induction of defaults-with-exceptions from examples

Due to the declarative nature of the demo predicate, we can easily extend the
previous examples of default reasoning with induction.

In the following example, we must imagine a situation in our early childhood
where we have become aware of a number of individuals and the categories to
which they belong, and we observe that some of them fly and some do not.
The exercise to follow corresponds to the formation of a concept of flying in the
concrete form of a default rule with exceptions.

In order to mechanize this, we have to define formally at the metalevel the
sorts of rules, we will allow the system to invent. The following predicates define
for given object level predicates P, Q, and Ex the shape of a default rule “any Q
is also a P” and an exception rule “. . . except those that are Ex”. Note that X
stands for a particular object language variable.

default_rule( P, \ (?P-[X, yes]:- ?Q-[X, yes] )):-
predicate_(P), predicate_(Q).

exception_rule(P, \ (?P-[X, no]:- ?Ex-[X, yes] )):-
predicate_(P), predicate_(Ex).

We need the following metalevel predicates in order to characterize object pro-
grams consisting of instances of a random default rule and object programs
consisting of exception rules. We assume predicates

– default instances(D, I),
I a program of ground instances of D, and

– exception rules(P, E),
E a program of exceptions rules for the predicate P ,

The induction problem can be stated by the following predicate aha.

aha(Facts, Obs, Default, Excs):-
default_rule(Pred, Default),
default_instances(Default, DefIs),
exception_rules(Pred, Excs),

demo(\ (?Facts & ?Excs & ?DefIs), Obs),

close_constraints(\ (?Facts & ?Excs & ?DefIs) ),
consistent(\ (?Facts & ?Excs & ?DefIs) ).

We test this using the following knowledge base describing some individuals and
their categories, but with no knowledge about flying.
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:- object_module( facts,
\[ (bird(X,yes):- penguin(X,yes)),

(bird(X,yes):- cock(X,yes)),
penguin(tweety, yes),
bird(john, yes),
bird(peter,yes),
cock(andrew,yes) ]).

The following queries show the discovery of default-with-exceptions from two
different sets of observations.

?- aha(\facts, \\ (fly(john,yes), fly(peter,yes), fly(tweety,no),
fly(andrew,no)),

D,E).

D = \ (fly(X,yes):-bird(X,yes))
E = \[(fly(X,no):-penguin(X,yes)),(fly(X,no):-cock(X,yes))]

?- aha(\facts, \\ (fly(john,yes), fly(peter,yes), fly(tweety,no),
fly(andrew,yes)),

D,E).

D = \ (fly(X,yes):-bird(X,yes))
E = \[(fly(X,no):-penguin(X,yes))]

In both cases, the same default rule appears, and one or two exceptions are
needed depending on whether or not the cock andrew is observed to fly.

The aha predicate can be extended so that more than one default rule can
be generated at the same time and we can allow more conditions in their bodies,
positive as well as negative; this is a matter of writing more general versions of
the metalevel predicates default_rules and exception_rules.

4.6 Abduction in a tiny fragment of linear logic

Linear logic [23] is an extension of first-order logic which makes it possible to
reason about aspects of process and time in a logical setting. Lolli [33] is a
programming language based on linear logic in quite the same way as Prolog is
a simplification of first-order logic. Compared with our object language HCL,
Lolli is enriched in several respects and here we focus on the property that some
formulas are considered as resources in the sense that they are consumed when
used in a proof.

Our point here is to show that demo easily can be modified in order to adopt
this sort of context control. For simplicity, we assume here that any clause is a
resource in this way. To implement this, we extend the demo predicate with an
argument representing the proof defined as a list of names of the clauses that are
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applied. As side-condition on the proof, we use a predicate no dups list(· · ·)
accepting only lists without duplicates; it can be implemented exactly as the
no-duplicates constraint, cf. section 2.4. With this we can define a new demo
predicate which implements this tiny fragment of linear logic as follows.

demo_lin(P,Q):- no_dups_list(Proof), demo(P, Q, Proof).

The proof predicate demo_lin can be used for abduction in exactly the same
way as demo. Let, e.g., abducible(· · ·) describe programs of facts of the sort
drink(tuborg), drink(another tuborg), etc. The following query,

?- abducible(D),
demo_lin(\ [(drunk:-drink(X),drink(Y),drink(Z))] & D, \\drunk).

will generate answers where D contains at least three facts.
Metainterpreters for subsets of Lolli described by [33] (Lolli in Prolog) and [7]

(Lolli in Lolli) implement the control aspect of Lolli and it should be possible
to incorporate our instance constraints as to obtain the desired reversibility.

Lolli has a rich collection of operators and a drawback of the present Demo
system is its lack of syntactic extensibility. In a forthcoming version of the
system, it will be possible to define enrichments to the object language which
will extend the naming relation and the domains of the systems’ constraint.
This will make it more obvious to use our techniques for a substantial subset of
Lolli.

4.7 A natural language example

This example is concerned with the relation between simple still-life scenes and
sentences about them. The example illustrates also how integrity constraints
can imply new abducibles to be generated.

Let T be a HCL program describing a number of things in the world together
with some of their properties, e.g., thing(the flower), thing(the vase),
thing(the table), container(the vase). An actual scene is described by
another program of facts about the immediate physical relation between the
objects, e.g., in(the flower, the vase), on(the vase, the table). Utter-
ances about a scene are defined by an HCL program, declared as a module
grammar in the following way.

:- object_module( grammar,

\ [ (sentence(S):- simple(S)),
(sentence(S):- folded(S)),
(simple([X, is, on, Y]):-

thing(X),
thing(Y),
on(X,Y) ),
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(simple([X, is, in, Y]):-
thing(X),
thing(Y),
in(X,Y) ),

(folded([X, is, PREP, Y]):-
simple([X, is, _, Z]),
simple([Z, is, PREP, Y]) )

]).

The folded sentence allows us to say ‘the flower is on the table’ instead of
the longer ‘the flower is in the vase, the vase is on the table’. Assuming also
modules things and scene defining a particular scene as above, we can use the
metainterpreter to execute queries in the normal deductive way, e.g., for testing
the correctness of a given sentence.

?- demo( \ (grammar & things & scene),
\\ sentence([the_flower, is, on, the_table]).

This model can be extended with abduction so that the program component
scene can be generated “backwards” from sentences about it. In other words,
the problem to be solved is to construct explanations in terms of ‘in’ and ‘on’
facts which can explain the stated sentences. Any such explanation must satisfy
some integrity constraints with respect to the actual things theory; an in fact,
for example, must satisfy the following metalevel predicate.

scene_fact(T, \ (in(?A,?B) :- true)):-
constant_(A),
constant_(B),
demo(T, \\ (thing(?A), container(?B))),
dif(A,B).

The dif(A, B) condition serves, together with other conditions, to preserve a
sensible, physical interpretation of the programs generated. We can write a
similar rule for ‘on’ and then pack the whole thing together as a predicate
scene description(dT e, dSe) satisfied whenever S is a sensible scene built
from the objects defined by T . An example of the abductive problem can now
be stated by the following query.

?- scene_description( \things, X),
demo( \ (grammar & things & ?X),

\\(sentence([the_flower, is, on, the_table]))).

The system produces the following three answers.
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X = \[(on(the_flower,the_table):-true)]
X = \[(on(the_flower,the_vase):-true),

(on(the_vase,the_table):-true)]
X = \[(in(the_flower,the_vase):-true),

(on(the_vase,the_table):-true)]

We can also extend the example by abducing a things program T in parallel
with the scene. In case a fact in(the_dog, the_house) is abduced, the in-
tegrity constraint will abduce in turn as part of T the facts thing(the_dog),
container(the_house). Furthermore, the integrity constraint concerned with
T (not shown) will trigger the abduction of thing(the_house).

In principle, the example can be extended further with induction, leaving
part of the grammar unspecified and having demo to generate it from sample
sentences. However, to be of any use, this will require that we are able to
formalize at the metalevel, what it means for a grammar to be a good grammar.

4.8 A classical case in diagnosis

Diagnosis as described by Reiter [53] can be viewed as a special case of abduc-
tion, but with the extra requirement that minimal explanations are preferred.

We illustrate how diagnosis can be modeled in our system by considering an
example from [53], of identifying the faulty components in a logical circuit defin-
ing a full-adder. The interesting issue here, compared with previous examples,
is the characterization of minimality.

The topology of the full-adder circuit can be described by the following
object program.

:- object_module( fulladder,
\ [ (fulladder(A, B, CarryIn, Sum, CarryOut):-

xorgate(x1, A, B, X),
andgate(a1, A, B, Y),
andgate(a2, X, CarryIn, Z),
xorgate(x2, CarryIn, X, Sum),
orgate( o1, Y, Z, CarryOut) )] ).

Each gate in the circuit is marked by an identifier, say a1, and its function is
determined by a fact of the form status(a1, S). If S = ok, the gate behaves
correctly as defined by a truth table, in case S = not ok, the behaviour is
unpredictable. This is defined by the following object program, where we only
show the parts concerned with ‘and’ gates.

:- object_module( gates,
\ [ (andgate(Ident, In1, In2, Out):-

status(Ident, ok),
and(In1, In2, Out) ),
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(andgate(Ident, In1, In2, Out):- status(Ident, not_ok) ),
. . .
and(0, 0, 0), and(0, 1, 0), and(1, 0, 0), and(1, 1, 1),
. . .
]).

In case the status facts for all gates indicate ok, the circuit implements a correct
full adder function, in which case the result fulladder(1,1,0,1,0) would hold.
If an illegal result such as fulladder(1,1,0,1,1) is observed it means that
one or more of the status facts must indicate not_ok. By an explanation is
understood a set of status facts that makes it possible to prove the observed
results. We assume a metalevel predicate explanation which define the shape of
programs of status facts, one for each gate in the full adder. Now explanations
can be found as follows.

?- explanation(E),
demo( \ (fulladder & gates & ?E), fulladder(1,1,0,1,1)).

This query yields a total of 37 answers, one of which states that all components
are unpredictable. Clearly this can explain any behaviour, but it is not a very
useful explanation. A diagnosis is defined as a minimal explanation D, meaning
that if any status of not_ok in D is changed into ok, the observed behaviour
cannot be explained anymore. The definition suggests an obvious way of imple-
menting a test whether an explanation found also is a diagnosis, but this can
be optimized in several ways.

First of all, we can use the information provided by the minimal solutions
already found to exclude any explanation that is an extension of an existing one.
Assume, for example, we have found a diagnosis D stating that the x1 and a2
gates are those that are not_ok. We can exclude extensions of D by setting up
the following condition when searching for a next solutions; the metavariables
Sx1 and Sa2 are expected to refer to the parts of the new explanation sought
that stand for the status value for x1 and a2.

dif((Sx1,Sa2),(\\\not_ok,\\\not_ok))

We can write a predicate not_contained_in(Previous, E) which sets up such
dif constraints, one for each diagnosis in a list Previous.

In practice, it turns out to be easy, referring to the procedural semantics
of the underlying Prolog system, to arrange the definition of the explanation
predicate so that the first explanation found will be a minimal one. With this in
mind, we can implement the diagnosis problem as follows; a call all_diagnoses(Obs, [], Ds)
will generate as the value for Ds the list of all correct diagnoses for the given
observations Obs.

all_diagnoses(Obs, Previous, All):-
explanation(D),
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not_contained_in(Previous, D),
demo( \ (fulladder & gates & D), Obs),
!, all_diagnoses(Obs, [D | Previous], All).

all_diagnoses(_,Ds,Ds).

With the observation fulladder(1,1,0,1,1), the answer provides two diag-
noses, one stating that x1 is out of order, and another that x2 is out of order.

For more complex systems than logical circuits, it may be recommended not
to trust the procedural argument about minimal explanations being generated
first. In this case, add a call to a predicate minimize(E,D,Obs) to the definition
of all_diagnoses which extracts a diagnosis D from an explanation E generated
by the call to demo.
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[27] Hilbert, D., Über die Grundlagen der Logik und der Arithmetik. Verhan-
delungen des Dritten Internationalen Mathematiker-kongress in Heidelberg
vom 8. bis 13. August 1904, Teubner, pp. 174–185, 1905.
(English translation in [25], pp. 129–138).

[28] Hill, P.M., Gallagher, J.P., Meta-programming in Logic Programming. To
be published in Volume V of Handbook of Logic in Artificial Intelligence
and Logic Programming, Oxford University Press.
Currently available as Research Report Series 94.22, University of Leeds,
School of Computer Studies, 1994.

[29] Hill, P.M. and Lloyd, J.W., Analysis of meta-programs. Meta-programming
in Logic Programming. Abramson, H., and Rogers, M.H. (eds.), MIT Press,
pp. 23–51, 1989.

[30] Hill, P.M. and Lloyd, J.W., The Gödel programming language, MIT press,
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