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Abstract. Programs for gene prediction in computational biology are
examples of systems for which the acquisition of authentic test data is
difficult as these require years of extensive research. This has lead to test
methods based on semiartificially produced test data, often produced by
ad hoc techniques complemented by statistical models such as Hidden
Markov Models (HMM). The quality of such a test method depends on
how well the test data reflect the regularities in known data and how
well they generalize these regularities. So far only very simplified and
generalized, artificial data sets have been tested, and a more thorough
statistical foundation is required.
We propose to use logic-statistical modelling methods for machine-learning
for analyzing existing and manually marked up data, integrated with the
generation of new, artificial data. More specifically, we suggest to use the
PRISM system developed by Sato and Kameya. Based on logic program-
ming extended with random variables and parameter learning, PRISM
appears as a powerful modelling environment, which subsumes HMMs
and a wide range of other methods, all embedded in a declarative lan-
guage. We illustrate these principles here, showing parts of a model under
development for genetic sequences and indicate first initial experiments
producing test data for evaluation of existing gene finders, exemplified
by GENSCAN, HMMGene and genemark.hmm.

1 Introduction

A computer program calculating a well-defined mathematical function is either
correct or incorrect, and testing is a systematic process aiming to prove the
software incorrect. One sort of test is black-box (or external) testing, which
consists of running selected data through the program and comparing observed
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and expected results; established methods exist for designing test data suites



that increase the chance of finding errors [1]. Systems for information retrieval
and extraction, on the other hand, have no such simple correctness criteria and
are evaluated by relative measurements such as precision and recall in manually
marked-up test data, e.g., the text corpora provided by the TREC and MUC
conferences [2, 3].

Gene finding programs, whose job is related to information extraction, aim
to predict the total number and locations of genes in sequences of up to 3 billion
letters. Here the situation is more subtle as a the production of marked-up test
sequences may require years of research. In addition to this, it may be a research
project in itself, to verify that a new gene suggested by a gene finder is correct.

Following the completion and release of the human genome sequence, a wide
range of gene finder programs have been published. The tools differ in which kind
of knowledge they integrate in gene modelling; from the fundamental ab initio
approach, like GENSCAN [4], where generalized knowledge of genes is used, to
the more opportunistic models, like GeneWise [5] and GenomeScan [6], where
already known sequences of genes, EST’s and proteins are used for finding genes
by sequence similarity. One major problem with the existing gene prediction
tools seems to be the lack of appropriate methods to evaluate their accuracy.
The two major groups of human genome sequencing, Celera and Ensemble both
predicted about 30,000 genes in the human genome [7, 8], but a comparison of
the predicted genes [9], revealed a very little overlap. This also seems to be
the problem with other gene prediction tools. Which tools are more correct, is
not easy to conclude, since most of the new predicted genes are not possible to
classify as either correct genes that have not been found yet, or false predicted
genes. This also applies to the underlying layer, of telling wrong exons (false
positives) from those that have not been found yet. Another problem with the
currently used training sets is that they usually consists of relatively simple
genes, like the leading Burset/Guigó training set [10], with generalized features
like containing few exons, all having tataboxes, having no overlapping genes and
so on. Therefore most gene finders get very good at finding simple structured
genes, and poor at finding the complex ones. The evaluation of gene finders
does also have a problem, with sometimes large overlaps between the data sets
used for training and the data sets used for estimating the accuracy of the gene
finders [11].

To partly overcome these problems, test methods have been proposes based
on semiartificially produced test data, typically by a combination of ad hoc
techniques and statistical models such as Hidden Markov Models (HMM). The
quality of such a test method depends on how well the test data reflect the reg-
ularities of known data and how well they generalize these regularities. So far
only very simplified, artificial data sets have been tested, and a more thorough
statistical foundation is required. A semiartificial data set [11] was generated to
overcome these problems, in which a large set of annotated genes were placed
randomly in an artificial, randomly generated intergenic background. This back-
ground sequence, however, is constructed in rather simplified, using a Markov
Model to generate GC content of 38%. The present work is intended as a further



step in this direction, demonstrating how the logic-statistical machine-learning
system PRISM, introduced by other authors [12, 13], can be used for the devel-
opment of more sophisticated and reliable models. Based on logic programming
extended with random variables and parameter learning, PRISM appears as a
powerful modelling environment, which subsumes HMMs and a wide range of
other methods, all embedded in a declarative language.

We illustrate these principles here, showing parts of a model under develop-
ment in PRISM for genetic sequences and indicate first experiments producing
test data for evaluation of existing gene finders, exemplified by GENSCAN [4],
HMMGene [14] and genemark.hmm [15]. The advantage of the approach, that
we can demonstrate, is the relative ease and flexibility with which these proba-
bilistic models can be developed, while a claim that the approach may lead to
biologically more well-founded models needs to be supported by more extensive
testing.

PRISM embeds a both powerful and very flexible modelling language, which
makes it possible to embed biological knowledge about genome sequences. A
model in PRISM is parameterized by probabilities for random variables, and
training the model with known data generates estimates for these probabilities.
Using the same model, these probabilities can be used for generating artificial
data that mimic in a faithful way sufficiently many properties of the authentic
data. The generated data are marked up with information of where the model
decided to put in genes, and a given gene finder can be evaluated in a precise way,
by comparing its proposals for genes with those of the PRISM model (which,
here, would play the role of “true” ones). We describe an experiment testing the
three gene finders.

Section 2 gives a brief introduction to PRISM, and section 3 presents frag-
ments a PRISM model for genomic sequences, which is still under development.
Section 4 compares briefly with related work, before we show how our model
is used for testing three selected gene finders. Sections 5 and 6 describe and
evaluate the tests and compare the different gene finders. Section 7 discusses the
quality of the test data generated by our model, and section 8 gives perspective
and outline plans for future work.

2 Logic-Statistical Modelling in PRISM

By a modeling paradigm based on logic programs, we take a step upwards in
formal expressibility compared with those models traditionally used in sequence
analysis. Where HMMs are based on regular languages, SCFGs (Stochastic
CFGs) as their name indicates on context-free language, PRISM can specify
any Turing computable language. In practice, and to stay within computation-
ally tractable cases, we need to be more modest and employ the flexibility of
a general programming language to combine existing models and to introduce
auxiliary data structures whenever convenient.

PRISM [12, 13] represents a logic-statistical modelling system that combines
the logic programming language Prolog with probabilistic choice and machine



learning, and is implemented as an extension to the B-Prolog language [16]. It
includes discrete random variables called multi-valued random switches, abbrevi-
ated msw’s. The system is sound with respect to a probabilistic least Herbrand
model semantics, provided that the different msw’s are independent (see the ref-
erences above for details). As an example, we can declare a class of msw’s for
selecting one out of a four different letters at random as follows.

values( nextLetter(_), "ACGT").

Recall that a string such as "ACGT" is a list of character codes, and in gen-
eral the values directive describes a finite list of possible values. The term
nextLetter( ) includes a logical variable which means that, for any possible
value substituted for it, there exists an msw; e.g., nextLetter(t1), nextLetter
(t2). The following fragment shows how an msw typically is used within a rule;
the arrow-semicolon is Prolog’s generalized if-then-else construction; the nota-
tion 0’char indicates the relevant character code.

msw( nextLetter(t1), Letter),
(Letter = 0’A -> ...
; Letter = 0’C -> ...
; Letter = 0’G -> ...
; Letter = 0’T -> ... )

The dots indicate the different actions taken for the different outcomes. In this
way, it is straightforward to write HMM’s as PRISM programs (additional msw’s
may govern state transitions). Other models such as discrete Baysian networks,
Stochastic Context-Free Grammars [17], and Hierarchical HMM’s [18] can also
be described in straightforward ways, and PRISM can be seen as a high-level
tool for defining advanced and directly executable probabilistic models, as we do
in the present paper. Conditional probabilities can be represented using generic
msw names. For example, P (a = x|b = y) is indicated by the code msw(b,Y),
msw(a(Y),X).

We show an illustrative example of a model in PRISM, which also illustrates
the modular structure we apply in our sequence model. We imagine sequences
comprising three types of subsequences t1, t2, t3, put together in random order.
Each type represent sequences of the letters ACGT but with different relative
frequencies for each type. An annotated sequence can be described by a goal
as follows, having the annotations in a separate argument, and numbering the
letters starting from 1.

sequence("AAAACGCGCG",[t1(1,4),t2(5,10)])

The annotation is a sequence of descriptors for each subsequence. The following
msw’s govern the composition of subsequence of different types.

values(nextSubstringType(_),[t1,t2,t3]).
values(continueSeq,[yes,no]).



The argument to the first one describes the type of a previous subsequence; the
last one determines number of subsequence, the higher probability for yes, the
longer sequence.3 The following rule describes the composition at subsequence
level. An arbitrary “previous type” called start is assumed for the first subse-
quence, and an extra argument which keeps track of the position in the string
is added; evidently this is a HMM with 5 states, the last one being the implicit
final state.

seq(Seq,D):-seq(start,Seq,D,1).

seq(PrevType,Seq,[D1|DMore],N):-

msw(nextSubstringType(PrevType), SubT),

subSeq(SubT,D1,Seq,SeqMore,N,M),

msw(continueSeq, YesNo),

(YesNo=no -> SeqMore=[], DMore = []

; Mplus1 is M+1,

seq(SubT,SeqMore,DMore,Mplus1)).

For each type T , we need to add an appropriate clause subSeq(T,· · ·):-
· · ·. To finish this example, we assume identical definition (but individual prob-
abilities) for each type.

subSeq(Type,[L|SeqMore],SeqRest,N,M):-

msw(nextLetter(Type),L),

msw(continueSub(Type),YesNo),

(YesNo=no -> SeqMore=SeqRest, N=M

; Nplus1 is N+1,

subSeq(Type,SeqMore,SeqRest,Nplus1,M)).

Notice that we assumed an additional class of msw’s to govern the length
of each subtype (so this model resembles a 2-level Hierarchical HMM). Such a
program can be used in two ways in the PRISM system. In case the probabilities
are given in some way or another, the program can generate samples of annotated
sequences by a query ?-sample(sequence(S,A)) where PRISM executes the
msws by using a random number generator adjusted to the given probabilities.

PRISM can also run in learner mode, which means that the program is pre-
sented with a number of observed goals, from which it calculates the distribution
of probabilities that provides the highest likelihood for explaining the observed
data. PRISM uses some quite advanced algorithms and data structures in order
to do this in an efficient way; these topics are outside the scope of this paper
and we refer to [12, 13]. Training with a single observation (somewhat artificial)
being the short annotated sequence above, we get for t1 prob. 1.0 for A and for
t2 prob. 0.5 for each of C and G. After the training phase, sampling can be used
to create similar sequences, where the applied notion of similarity is given by the
program, i.e., the model for sequence structure that we designed above. PRISM
runs also on 64-bit architectures so it can address quite large amounts of storage.
The version used for out tests (1.9, 2006) can, with programs as the one shown,
easily handle data sets of around 10 sequences of 100,000 letters. For eukaryote
3 As is well-known, this gives a geometric distribution of lengths.



sequence analysis in general, this is a rather small number, and current research
aim at increasing this number drastically.4

3 A PRISM model of genomic sequences

The example above illustrates the overall structure of our approach to test data
generation for gene finders. A model of full genome sequences is under considera-
tion, but for the present task of testing gene finders we have limited to a model of
the intergenic regions. We argue that a detailed and biologically faithful model is
essential also for these regions, as they contain patterns and fragments that may
descend from obsolete functional regions, and thus may confuse a gene finder;
this is, in fact, what our experiments reported below seem to indicate.

A sequence is characterized in our model by two intertwined structures. The
first level concerns the distribution of GC islands which are long stretches with
significantly higher frequencies for the two letters; GC islands are important as
their presence often indicates subsequences containing genes; remaining regions
of the sequences are called GC sparse. At a second level, the sequence is con-
sidered to consist of mostly arbitrary letters (coloured noise) interspersed with
so-called repeat strings, which are either subsequences of a known catalogue
of named strings, simple repeats (e.g., (ACCT)n meaning a repetition of the
indicated pattern), and low-complexity strings such as CT-rich which is a com-
bination of these letters. A marked up sequence is represented by structure of
the following form.

sequence(sequence-of-ACGT, GC-islands, repeats)

The first component is the bare sequence of letters, the second indicates positions
of GC islands and GC sparse, and the third one describes the repeats in the
sequence. The relationship between these two levels is somewhat tricky as a
given repeat substrings can appear in a GC island, in a GC sparse region, or
overlap both; however, there is a dependency in the sense that a repeat (or section
thereof) with many G’s and C’s tend to appear more often in GC islands. Since
GC islands tend to be much larger that repeats, they are considered the top level
structure. The lengths of GC islands and GC sparse regions are determined by
empirically determined minimum lengths combined with random variables that
decide whether to continue or stop, thus giving geometric distributions upon the
minimum lengths. Other random variables are given in two versions, one for GC
island and one for GC sparse.

This two-level structure is implemented by hiding the management of GC
islands in an abstract data type, which appears as an alternative version of
PRISM’s msw predicate with the following parameters.

msw(random-var, value, GC-islands, position)

4 E.g., using an array representation for sequences instead of Prolog lists as in the
current version, may reduce storage for each letter from 24 bytes (on a 64 bit archi-
tecture) to 2 bits!



If a variable, say x(a) is referred to at position 5000 in a sequence, we call
msw(x(a), V, · · ·, 5000) and the implementation choses, depending on how
position 5000 is classified, the relevant of msw(x(gcIsland,a),V) and
msw(x(gcSparse,a),V); in addition, the extended version of msw includes the
machinery that describes GC islands in terms of other random variables as ex-
plained. Abstracting away a few implementation details, the overall composition
of intergenic sequences can be presented as follows; notice that the choice of
repeat depends on the previous one, as biologists indicate that certain repeats
tend to come in groups; the letter sequences between repeats depend on those as
well since some repeats have a tendency to come close to each other. These letter
sequences are a kind of coloured noise, where the colours indicate the different
letter probabilities in GC islands vs. GC sparse regions.

seq(Seq,GCs,Reps):-

seq(dummy,Seq,GCs,Reps,1).

seq(Prev,Seq1,GCs,Reps,N1):-

msw(nextRepType(Prev),RepType,GCs,N1),

letters(Previous,RepType,

Seq1,Seq2,GCs,N1,N2),

N2i is N2+1,

(RepType=noMore -> Seq=[], Reps=[]

; RepType=namedRepeat ->

namedRep(Details,Seq2,Seq3,GCs,N2i,N3),

Reps=[named(Details)|Reps1],

seq(RepType,Seq3,GCs,Reps1,N3)

; RepType=simpleRepeat ->

simpleRep(· · ·), Reps=· · ·, seq(· · ·)
; RepType=lowComplexRep ->

lowCmplxRep(· · ·), Reps=· · ·, seq(· · ·)).
Predicates namedRep, simpleRep, lowCmplxRep describe the detailed structure
of the different sort of repeats. They apply their own random variables to govern
which substring is repeated; namedRep has access to an 11Mbyte catalogue of
known repeat string strings and employs random variables to determine which
portion of the named string is used and its direction: it may appear as a plain
copy, reversed, complement (i.e., with letters interchanged A↔T, C↔G), or
reverse complement. These predicates are defined in relatively straightforward
ways, although a few technicalities are needed in order to handle mutations,
which here means that a few “noise letters” have been inserted or deleted in the
sequences. Again, we used random variables to govern this and to control which
noise letters are chosen.

Named repeats were described in a simplified version in the marked up se-
quences we had available, as the exact portion used as well as its direction were
not given, only its name. To cope with this, we used a preprocess to determine
one unique best match of portion and direction and added it to the annota-
tions, where “best” is defined by a few heuristics and a lowest penalty scheme.
In addition, our best match algorithm adds best proposals for where and how



mutations have occurred. The use of preprocessing to provide unique best pro-
posals for lacking information in annotations appears to be essential for this
form of sequence analysis, as nondeterminism in a PRISM model can introduce
backtracking which may be very problematic due to the size of the data being
analyzed.

The model is now ready to be trained from a set of marked up sequences; the
actual training set is described below. PRISMs learning algorithm produces a set
of probabilities for the random variables that gives the highest likelihood for the
training data. With these probabilities, the model can thus generate artificial,
marked up sequences that are faithful to those properties of the training data
that are expressible in the model.

4 Previous Work

The first attempt to overcome the problem of not having large, precisely marked
data sets, for evaluation of gene finders was made by embedding random genes
in a random sequence approximating intergenic sequence [11]; 42 sequences with
accurate gene annotation were used, having an average length of 177160, con-
taining 4.1 genes with an average of 21 exons and 40% GC content. Knowledge
about repeated sequences, the existence of GC islands and pseudogenes were
not taken into account, and only a simple average GC frequency of 38% was
generated by using a fifth order HMM. Not surprisingly, the test of GENSCAN
on these sequences did show a lower rate of correct predictions. This is obvious
since ab initio programs like GENSCAN, recognizes genes by small sequences
like tata boxes, splicesites etc. and therefore are dependent on possible sequence
variations that will inform it about possibly being close to something relevant;
e.g., GC islands. Our approach is to concentrate on including more knowledge
about intergenic regions in the model, incorporating GC content variations and
intergenic repeats.

5 Results: Evaluation of three different gene finders

In this section we present results of testing three gene finders; GENSCAN, HM-
MGene and genemark.hmm, using the data generated by our model, as described
in a previous section. A significant drop in accuracy was observed [11] when test-
ing GENSCAN on the semi artificial training set described above. This could
be the first step in giving an accurate measure of gene finders, but due to the
simplicity of the data set, some degree of uncertainty is evident. Here we have
demonstrated a test of the three gene finders using a data set founded on a sta-
tistically better ground, and showing a relative high error rate. The model was
trained on a data set of 12 intergenic sequences from the human chromosome
17 (NCBI refseq NT 0101718.15), together with a list of specified positions of
repeated sequences and GC islands.5 We chose to use Repeatmasker [19] to find
5 One of the reasons for choosing chromosome 17 is due to the fact that it is a rather

well studied chromosome, and the relative gene density is high. This could mean



repeated sequences in these sequences, since this tool appears well established.
We used standard masking options for this. RepBase [20] was used for generating
a repeater catalogue, in order to train our model on actual repeater sequences.
Furthermore positions of GC island were detected by using CpGplot [21], also
using standard masking options.

After training our model, the learned probabilities were used to generate
12 sequences, together with annotations of inserted repeated elements and GC
islands. From these sequences test sets were assembled, with real genes inserted
between the generated sequences. Three test sets were created, each consisting
of four generated sequences with three real genes in between. The same three
genes are used in all three test sets, making it possible to compare the artificial
intergenic sequences alone. The sequences of the genes comprise the genomic
region of the gene, from 200 bp before to 200 bp after the CDS.6 The length
of the generated intergenic regions ranges from 2.2 kb to 30 kb. The three test
sets have varying lengths of; test set A (193,721 bp), test set B (170,545 bp),
and test set C (202,368 bp). We report the outcome of predicted exons in the
intergenetic regions, as this is the main area of interest in this paper. Therefore
only false positives are reported. For this we use the evaluation term; specificity,
which describes the relationship between wrong exons and the total number of
predicted exons, as described by [10]. The table below shows the results of the
tests performed on the three gene finders, using the three test sets. 

 
 Genscan Hmmgene Genemark.hmm 
Predicted genes in testset A 7 12 10 
Predicted genes in testset B 10 11 11 
Predicted genes in testset C 11 11 10 

Average number 9.33 11.33 10.33 
Gene Specificity  
(Wrong genes /  
predicted genes) 

0.68 0.74 0.71 

Average number of 
predicted exons 

54.99 83 41.66 

Wrong exons in testset A 50 79 24 
Wrong exons in testset B 29 55 34 
Wrong exons in testset C 33 73 28 

Average number of wrong 
exons 

37.33 69 28.67 

Exon Specificity  
(Wrong exons / predicted 

exons) 

0.68 0.83 0.69 

 
Table 1: Results from the tests on gene finders; GENSCAN, HMMGene, and gene-

mark.hmm. Specificity describes the relationship between wrong hits and total hits,

where 0 is a perfect result and 1 means all predicted exons are wrong.

All the results show a large error rate, both regarding the number of genes and
exons predicted. All gene finders have a gene specificity of about 0.7, which is
rather high. This result is probably due to the training of the gene finders on
single exon-genes, making them more likely to predict many and short genes. As
to the results showing the exon specificity, the same high error rate of approxi-
mately 0.7 is seen in GENSCAN and genemark predictions. Here HMMGene has

that most genes are accounted for, and the intergenic sequence therefore is more
accurate to use.

6 The genomic sequence comprising all exons and introns of the gene.



an even higher error specificity of 0.83. These results seem to indicate that all the
tested gene finders overpredict, when faced with intergenic sequences containing
repeated sequences and GC islands.

6 Comparison of the tested gene finders

To determine if the quite similar high error rate is caused by the gene finders
finding the same exons, we made a comparison of the predicted set exons. The
figure below illustrates the combination of the three predictions, where the pre-
dicted exons are considered the same if they match in either end of the other
exon.

 

 
 Figure 1: The predictions of the three tests were joined to find exons that are the same.

The given numbers are an average value of the three tests performed.

The result of this comparison shows that very few of the predicted exons are in
fact the same. HMMGene has the highest number of predicted exons appearing
only within its own prediction. The average number of 17 exons being present in
all three predictions, and 37.66 exons being present in at least two predictions, is
also not a very high number compared to a total number of 125 predicted exons.
These results states that the same error rate between the three gene finders
is not a consequence of the predicted exons being the same. In contrary, these
differing results are probably due to differences in the underlying models of the
gene finders. Therefore the results of table 1 could indicate that the precision of
the tested gene finders are much lower than anticipated.

7 Appropriateness of the generated data

If the test we are performing is to be used to evaluate a gene finder, the testdata
must reflect the essential properties of natural data, and appear as authentic
copies. Including most possible dependencies and variables in the data is not
possible, but all important features that could affect the outcome of the test must
be accounted for. In our model we believe all important features are accounted
for, but to examine if this is really the case, an analysis of the three test sets



were performed. The length of the intergenic sequences, as well as GC islands and
repeated elements did in fact resemble those of the training set. The tool used
for finding CG islands in the training material, was also used on the artificial
data, to observe if the overall pattern resembled the one of real sequences. The
figure below illustrates the GC frequency in data set A, and a section of real
sequence from the region the training material was taken from.

  
 
 

Real data

 
Test set A

Figure 2: GC frequencies in real vs. model generated data.

Figure 2 seems to indicate that the pattern of the GC percentage in the artifi-
cial data resembles the real data. However, when comparing the annotated GC
islands and the ones found by CpGPlot, there is a slightly higher amount of GC
islands in the CpGPlot. This is probably due to the fact that our model oper-
ates on absolute frequencies and the CpGPlot presumably uses a more complex
model with relative frequencies. This difference in GC island reporting could
help explaining why the three tested gene finders predict too many exons, but
it does not explain all of them since the results from the three gene finders, as
explained, differed greatly. These facts may also indicate the weakness of our
model that it uses a first-order HMM to describe GC islands; a higher order, say
3 or 4, may seem more appropriate.

Furthermore an analysis of the dispersed repeated elements was carried out.
Using Repeatmasker to find repeated sequences in the artificial data, and com-
paring them to the annotated elements, showed a very good match between
these. Nearly all of the repeated sequences were found. The alignments of the
detected repeaters returned by Repeatmasker showed a similar pattern of mu-
tations in the artificial repeater sequences, compared to those in the training
set, which thereby verifies our method for generating mutations. From this we
conclude that the model generates fairly realistic artificial intergenic sequences,
though this training set, as mentioned, is to be considered as an example of
what the model could be trained on. Therefore the evaluation of GENSCAN,
HMMGene and genemark will not be an absolute assessment. For this a larger
training set is needed, making the probabilities of the model more thoroughly
based. We believe however, that this new method of evaluating gene finders, is
a new step in the way of finding a more accurate measure for the precision of
gene finders.



8 Perspectives and Future Work

A further development of the model presented in this paper, will be a more com-
prehensive model, which takes more specialized features into account, together
with the inclusion of genes. The major issue for a successful training of the model
is a larger and better marked up set of sequences; At this point perfectly marked
up genomic sequences, which include both genetic and intergenic regions remain
sparse and difficult to access.

The use of artificial data sets is a subject under debate. As discussed by [22]
the use of artificial data sets have not been used much, since it is very difficult
to reflect the whole complexity of real data sets. But how many details must be
included in a model for artificial data generation? As [22] state, the goal must
be to include those characteristics of real data which may affect the performance
of real data sets. Multivariable dependencies are also very important in terms
of reflecting real data, and can often be very difficult to reproduce. PRISM
however, seems to be a rather powerful modelling tool, which also are capable
of reflecting multivariable dependencies, by the inclusion of one msw in another
(see section 2). Even if these characteristics are accounted for, the ideal data
mining method for one data set might not be ideal for another set. Furthermore,
undiscovered correlations could influence the outcome of a given model. Our
model only accounts for those characteristics verified by a biological expert, and
therefore undiscovered multivariable dependencies are naturally not included.
Another important issue, as mentioned, is the balance between including enough
information in the model to make it realistic, and including too much, which
results in overfitting. This will also be very important to have in mind, when
expanding the model. Another important issue is the balance between over-
fitting and generalization, and the granularity of the model; while a fine-grained
model is well suited when large training sets are available but likely subject of
over-fitting in case a few training data, it is the other way round for a coarse
model which may the the best out of few training date data and and too little
out of large sets. Only testing and analyze indicate the right level.

As noticed above, we believe that the specific model described in this paper
can be improved concerning the modeling of GC island by using a higher order
HMM, and we may also refer to [23] who discusses consequences of different
orders, and proposes an extension to HMM which may be interesting to apply
in PRISM-based models.

Our experiences indicates that the elegance of logic programming is not in-
compatible with the processing of large data sets. With the present technology
we can handle around one million letters, which is clearly to little, although with
reasonable execution times are reasonable, and plans for extensions of PRISM in-
cludes specialized representations for sequences (as opposed to list structures!) as
well as adaptation to computer clusters. We hope that the continued refinement
of this sort of models of genome sequences, based on a very flexible, powerful
and theoretically well-founded paradigm, may lead to models that can be used
in future gene finders that provide a higher accuracy than what we can observe
at present.



The overall approach of using artificially test data produced by sophisticated,
statistical models and machine learning was here motivated by the conditions
for sequence analysis, that authentic test data are difficult to require. Similar
methods may also have their relevance for embedded systems, with the statistical
model simulating a world, and context-aware systems.
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