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Abstract. Theoretical issues of computer science are traditionally taught
in a way that presupposes a solid mathematical background and are usu-
ally considered more or less unaccessible for students without this. An
effective methodology is described which has been developed for a target
group of university students with different backgrounds such as natural
science or humanities. It has been developed for a course that integrates
theoretical material on computer languages and abstract machines with
practical programming techniques. Prolog used as meta-language for de-
scribing language issues is the central instrument in the approach: Formal
descriptions become running prototypes that are easy and appealing to
test and modify, and can be extended into analyzers, interpreters, and
tools such as tracers and debuggers. Experience shows a high learning
curve, especially when the principles are extended into a learning-by-
doing approach having the students to develop such descriptions them-
selves from an informal introduction.

1 Introduction

The advanced studies in Computer Science at Roskilde University are offered
for students with a variety of different backgrounds such as natural science, hu-
manities, and social science basic studies. A distinct characteristic at Roskilde
is that 50% of the students’ work consists of project work which means that the
nominal time for lectures in the advanced studies is rather small compared with
most other universities and there is an obvious danger that the education may
concentrate on practical and application oriented aspects without the penetra-
tion of theoretical insight and understanding that is expected from a university
degree.

This situation has motivated the development of a new methodology for
teaching theoretical aspects of computer science which has proven its effective-
ness and that we believe can be inspiring in other teaching contexts where a
high and uniform mathematical knowledge cannot be expected. Recent educa-
tions that integrate humanities with information technology and elements of
computer science seem to be a field where methods such as those we have devel-
oped seem appropriate.

Notice: This paper appears in Computer Science Teaching 2004 to which any
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The methodology has been developed for a course that integrates theoretical
material on computer languages and abstract machines with practical program-
ming and language processing techniques. The notion of computer languages is
meant in a wide sense that covers a range of technologies and phenomena such as
user interface languages, software packages, programming languages, (abstract
and real) machine languages, and the language of Turing machines.

Experimentation and learning-by-doing are important in the approach but
instead of using specialized language processing tools we have relied on the logical
programming language Prolog: It is used as a meta-language that combines
formality and high expressibility with an interactive environment for incremental
testing of specifications. Prolog is experienced by students as a conceptually
simple, transparent, and uniform framework which they can use as a practical
tool also outside the course. Prolog is also an interesting object of study by
itself, being a refreshing alternative to object-oriented languages such as Java
which in Roskilde and many other universities is the students’ first programming
language.

The approach shows a high learning curve in computer science topics usually
considered to be difficult and complicated; we can mention examples such as
implementation of recursion in programming languages which is taught by hav-
ing the students to implement an interpreter, and Turing completeness and the
halting problem where the students experiment with an interpreter consisting of
very few lines of Prolog.

Finally, traditional methods for language processing are introduced such as
lexical analyzers and parsers, and the use of interpreters and translators as com-
ponents in practical systems’ development.

1.1 The conditions for teaching computer science at Roskilde
University

The study for a Master’s degree at Roskilde University takes five years and
starts with two years of basic studies in one of Natural Science, Humanities, or
Social Science. Following, each student chooses two different advanced topics,
each corresponding to one and a half year of study, and one of which can be
Computer Science. The student writes a Master’s Thesis in one of his or her
advanced topics, and there is also an option of integrating the two topics into an
extended thesis work. A distinct characteristic of all studies at Roskilde is that
50% of the students’ work is problem-oriented project work, thus leaving a net
3/4 year for course work at the advanced studies in Computer Science.

It is a challenge to design the overall study plan and individual courses: In
the same class, some students may have strong mathematical qualifications while
others have a very superficial, if any, relation to mathematics. Students are sup-
posed to have spent about one half year of their basic studies with introductory
computer science topics, including elementary programming, but this is often
not the case. Other students may have several programming projects in their
portfolio when arriving for the advanced studies. Some students have their full
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involvement in computer science and produce a Master’s thesis here, while for
others, computer science is simply their “secondary” advanced topic.

Certain issues that are important for all sorts of teaching become extra criti-
cal in this context. First of all, the presentation needs to be appealing and fruitful
for every single student in this heterogeneous audience. Secondly, extreme care
must be made in the selection of topics in order to provide a coherent course
with a reasonable covering, considering that each course has few nominal hours.
Finally, each course must be designed as a component of a full education com-
parable with any other five-year university education with computer science as
a major subject.

The students’ uneven mathematical background is another big challenge in
the teaching of these inherently mathematical and logical topics. In practice,
however, this problem is solved by the applied combination of rigorous structure
and hands-on experience: It appeals to the humanities students’ trained ability to
think at a high conceptual level which to a large extent can replace mathematical
experience. The mathematically inclined students can easily fill in any remaining
detail and, on the basis of this course, approach the hardcore literature on the
topics by themselves.

The course we refer to corresponds to one quarter of a semester (7.5 ECTS
points), which is implemented as 10 full course days plus home work. In the
appendix, a sketch of a course schedule is given.

An earlier version of the course was integrated in a full semester course with
the theme “Language and Technology” which included also machine and system
architecture, relational databases, introduction to computer networks, and a
project work.

1.2 Background and related work

A fundamental idea in our approach is to see each computer language as the rep-
resentative of an abstract machine in the sense introduced in the fundamental
paper by Dijkstra [13]. Dijkstra applies the notion for program modules, notic-
ing that each such introduces its own (small) nomenclature and semantics so
that programming is seen as a matter of building and combining abstract ma-
chines. The same principle has been applied under the name of virtual machine
to capture the different layers of hardware and software that comprise a mod-
ern computer in Tanenbaum’s incomparable book [32] “Structured Computer
Organization” (editions 1976, 1984, 1990, 1999).

Our style of semantic description in Prolog is a descendant of approaches
to formal descriptions of programming languages initiated by Hoare’s axiomatic
semantics [17], denotational semantics [21], and similar approaches. There is,
in fact, a strong similarity between our defining interpreters and Plotkin’s op-
erational semantics [27] which also is described in [38], the main difference is
that our version is written in an executable language. Another interesting tool is
Mosses’ SIS system [23] that executes denotational semantic definitions specified
in the lambda-calculus.
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The book by Abelson and Sussman [1] applies the functional programming
language Scheme for executable specifications in their advanced textbook that
goes much more in depth with programming language semantics than we do.
This book is intended exclusively for a mathematically highly competent and
inclined audience and so is the textbook by Slonneger and Kurtz [29] who use
Prolog as their language for implementing denotational and axiomatic seman-
tics. Although their goals are slightly different, their conclusion is similar to ours:
“Prolog proved to be an excellent tool for illustrating the formal semantics of
programming languages. . . . these laboratory exercises were highly successful in
motivating students. The hands-on experience helped demystify the learning of
formal semantics.” At the technical level, there is a minor difference as they use
Definite Clause Grammars in contrast to our interpreters and compilers that
work directly on abstract syntax trees conveniently written using Prolog’s oper-
ator notation. In comparison, our direct use of abstract syntax trees decomposed
by unification (as opposed to lists of tokens decomposed by syntactic patterns)
provides simpler descriptions that emphasize the structural aspects of language
as syntactic peculiarities are removed completely.

The recent textbook by Tucker and Noonan [34] takes an interesting ap-
proach by motivating the formal study of syntax, type systems, and denota-
tional semantics using a small imperative language and a set of implementation
tools and student projects written in Java. In comparison with our use of the
declarative Prolog language for executable specifications, Tucker and Noonan’s
use of Java and its object-oriented facilities focuses the students’ attention more
directly towards the development of practical and robust language processors.
In addition, this textbook gives a comprehensive covering of different program-
ming language paradigms and concepts, including event-driven and concurrent
programming.

The remarkable book “On Pascal Compilers” [15] must also be mentioned.
It is written as an introduction to compiling using a Pascal compiler written
in Pascal as case study. The entire source text is shown and explained in the
different chapters of the book, and the author has produced a piece of art in terms
of readable and well-structured code built around a recursive-descent parser.

It may be possible that our approach can be transferred to a functional
programming setting using instead, say, Haskell [3] or ML [22] as meta-language.
These languages may offer many of the same advantages as Prolog but the idea
still needs to be tested in practice.

Compiler writing in Prolog has been considered by several authors, e.g., [36,
24]. Semantics of programming languages specified in Prolog or Prolog-like lan-
guages (often implemented on top of Prolog) is not uncommon, e.g., [4, 6, 12,
26]. The close relation between attribute grammars [19] and Prolog has also
been inspiring for the referenced works, evident in the notation applied by [37]
and formally spelled out by [11].

Courses that go further into compiler construction often involve an assign-
ment for the students to produce a running compiler for some small language, and
dedicated tools can be used such as the classical Unix tools, Lex and Yacc [18],
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and Tanenbaum’s ACK tool kit [33]. See also [39] who reports a project-oriented
approach to teaching of compiler construction.

Finally we mention a few excellent textbooks on programming language se-
mantics [30, 38] which are inspiring background for any advanced student and
teacher of such topics, but which are inaccessible for the major part of the stu-
dent community we address with the present approach.

1.3 Overview

In the following we start explaining the properties of Prolog which made it the
obvious choice for our purposes. Next, we describe the abstract machine model
that underlies our teaching methodology; defining interpreters written in Prolog
are introduced as part of this model. A precise understanding of sequential ma-
chine languages with their extensions into imperative and procedural program-
ming languages is important knowledge for any computer scientist; we explain
the Prolog models used to describe these phenomena and how they are used
in the teaching: Semantics of machine language and while-programs by defining
interpreters; a compiler from while-programs to machine language which also
serves as a general introduction to compiling; type checking and semantics for
procedural languages with recursion. The following section shows other applica-
tions of Prolog as meta-language, including for describing a LISP-system, Turing
machines, and a self-interpreter for Prolog which is extended into a simple tracer
and debugger; relational algebra is introduced by having the students produce
an evaluator for it. It is explained briefly how traditional methods for syntax
analysis are fitted into a course based on our principles. A final section is in-
cluded with conclusions and perspectives; an appendix gives an example of a
course schedule.

Our methodology is currently documented in a locally printed textbook [8]
in Danish, which still needs to be matured into an internationally publishable
edition.

2 Why the strong emphasis of Prolog

Prolog is an obvious second programming language that shows the diversity of
the field for students brought up with a language such as Java. Prolog is a type-
less language in which any data structure has a denotation and with no need for
constructors and selection methods as these are embedded in Prolog’s unification.
Java, on the other hand, requires the programmer to produce large collections
of classes, interfaces, methods, and a test main method before anything can be
executed. The conflict between flexibility and conciseness on the one hand, and
security and robustness on the other is so obviously exposed in this comparison.
In our teaching we have used the first part of [5] as a textbook that we also
recommend to the reader who needs an introduction to Prolog.

Prolog appeals to an interactive and incremental type of program develop-
ment that is in strong contrast to Java and an object-oriented methodology. In
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Prolog one may start to write and test a program in order to achieve an un-
derstanding of some domain in question which seems not to be legitimate or
practical in the typed and objected-oriented Java view of the world. This is also
the spirit in which Prolog is presented to the students and the way it is applied
subsequently in the course.

A study of Prolog motivates also considerations about the notion of a meta-
language: assert and retract take arguments that represent program text, the
same goes for Prolog’s approximation to negation-as-failure which essentially
is a meta-linguistic device within the language (see [16, 10] for discussion). The
problematic semantics of these features gives rise to a discussion of what require-
ments should be made to a meta-linguistic representation. Operator definitions
in Prolog comprise syntactic meta-language within the language, and are also a
perfect point of departure for a detailed treatment of priority and associativity
in programming language syntax.

When using Prolog as general purpose meta-language for computer language
notions (including programming languages), we rely on the following properties.

– Prolog terms with operator definitions provide an immediate representation
of abstract syntax trees in a textually pleasing form; see the following ex-
pression which with one operator definition for “:=” is a legal Prolog term:

while( x<y, (x:= x+y ; y:= y+1))
– Structurally inductive definitions are expressed straightforwardly in Prolog

by means of rules and unification, e.g.,
statement(while(C,S),· · ·):- condition(C,· · ·),

statement(S,· · ·), · · ·.
– Data types for, say, symbol tables and variable bindings, are easily imple-

mented by Prolog structures and a few auxiliary predicates.
– Last but no least: Prolog appears as an easily accessible framework compared

with, say, set and domain theory. Specifications are directly executable and
can be monitored in detail using a tracer; they can be developed and tested
incrementally and interactively. Students can easily modify or extend exam-
ples and test their solutions.

Typically, Prolog is introduced in two full course days in a workshop setting:
Short introductions combined with practical work at the computers. A striking
feature of Prolog (as compared to any other programming language that we are
aware of) is that it is possible to get around the whole language in such a short
time. Students will have obtained an understanding of the core of Prolog and
have written their own programs, and they have also tried to use the more tricky
parts, including cut and assert/retract. At this point, Prolog can be considered a
tool at hand for the students with their practical experience growing throughout
the course.

The teaching of Prolog, in addition to the straight matters of how to use it,
should also consider Prolog as an independent object of study, an instance of
the phenomenon of a general programming language, to be compared with, say,
Java along the lines discussed in the introduction to this section. General notions
can be stressed such as abstract and concrete syntax, syntactic sugar, details
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about operator precedence, semantics and pragmatic issues. This “exterior” view
of Prolog is complemented by presenting and having the students to dissect a
running system written in Java for a subset of Prolog which includes a detailed
implementation of Prolog’s unification.

3 A basic model of abstract machines and languages

As mentioned in the introduction, the notion of abstract machines is used to
characterize computer languages in the wide sense and distinguish them from
other sorts of languages.

The model is unsophisticated and quickly introduced to the students. A par-
ticular abstract machine is characterized by its input language which is a col-
lection of phrases or sentences, a memory which at any given time contains a
value from some domain of values, and finally a semantic function mapping a
phrase of the input language and memory state into a new memory state. For
simplicity, output is not explicit part of the definition but considered as part of
the “transparent” memory whenever needed.

Examples to show the versatility of the definition include machine language,
programming languages, interfaces of program modules, user interface languages,
and in order to stress the notion of state, a simple calculator and a database.

The model includes a general notion of implementation of one machine in
terms of another, and three different modes are defined, interpretation, trans-
lation and use of abstraction mechanisms in standard programming languages.
Details are straightforward and left out from the present paper.

Abstract and concrete syntax are introduced and distinguished in an infor-
mal way, and the representation of abstract syntax trees by Prolog terms is
emphasized. The set of abstract syntax trees for a context-free language can be
characterized by a recursive Prolog program consisting of rules of the form

cat0(op(T1,. . . , Tn)):- cat1(T1),. . . ,catn(Tn).

where op names an operator combining phrases of syntactic categories cat1, . . . ,
catn into a phrase of category cat0.

Syntax-directed definitions can be specified by adding more arguments cor-
responding to the synthesized as well as inherited attributes of an attribute
grammar [19]. Consistent with our abstract machine model, we introduce what
we call a defining interpreter which to each syntax tree associates its semantic
relation of tuples 〈s1, . . . , sk〉 by predicates of the form

cati(syntax-tree,s1,. . . ,sk)

Notice that we deviate slightly in the terminology from the abstract machine
model referring here to semantic relation instead of a function; this is to con-
form with the semantics of Prolog although we do not actually use the inherent
generalization to nondeterministic languages. As an example, a defining inter-
preter for an imperative language may associate with each statement a relation
between variable state before and after execution, which for a statement such as
“x:= x+1” contains among others the following tuples.
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〈[x=7] , [x=8]〉
〈[x=666] , [x=667]〉

〈[x=1,y=32] , [x=2,y=32]〉
〈[a=17,x=1,y=32] , [a=17,x=2,y=32]〉

This is basically the systematic framework in which different programming lan-
guage fragments are studied, and we show examples below that have been used
in our course.

Interpreters (for toy languages at least) written in this fashion are typically
brief and concise; they can be understood and tested rule by rule and are easy
to extend and modify. We show also how compilation and type checking can be
treated in similar ways.

4 Imperative and procedural languages

The semantics of the different layers of sequential machine language and of im-
perative and procedural languages, as well as their interrelation, are essential
topics for an understanding of how computers and information technology work.

In the following we show how these phenomena are characterized in our
Prolog-based style, putting emphasis on the spirit in which it is communicated
concretely in the teaching. We proceed by introducing a defining interpreter for
a simple machine-like language giving a continuation-style semantics for jumps
and control points. This serves the dual purposes of making the semantics of such
languages explicit and of introducing continuations as programming technique
and as semantic principle. Continuations are often considered a very difficult
concept to grasp but in the way presented here it appears quite obvious and
natural. Next is shown a defining interpreter for while-programs, formulated
in a straightforward recursive fashion without explicit continuations, thus em-
phasizing how it differs from the previous. Compilation of while-programs into
machine language is easily formalized as a syntax-directed translation written in
Prolog.

Through all these steps, students solve problems involving extensions and
modification of the Prolog programs involved. We have tried different ways to
teach topics related to type checking and implementation of recursive procedures;
the most successful that we sketch below has been to have the students by
themselves develop type checker and interpreter for a simple Pascal-like language
from a brief and informal introduction to the notions.

4.1 A defining interpreter for a machine language

A machine language is characterized as sequences of simple state transformations
executed in their textual order, however broken by jump instructions whose
meaning depends on the labels in the current program. In order to provide a
formal presentation to the students, we introduce a simplified machine language
by means of the following sample program represented as a Prolog list. It is
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assumed that a computer with a running Prolog session attached to a projector
is available in the lecture room.

The (yet) uncommented example, by the names chosen for the instructions,
is intended to trigger the intuition of the existence of some abstract machine.

[ push(2),
store(t),

7, fetch(x),
push(2),
add,
store(x),
fetch(t),
push(1),
subtract,
store(t),
fetch(t),
push(0),
equal,
n_jump(7)]

Without any further introduction, the teacher can execute this program by hand
on the blackboard in a dialogue with the students. The semantics of such pro-
grams assumes a stack (that we can represent as a Prolog list) and a stor-
age of variable bindings (represented conveniently as lists of “equations”, e.g.,
[a=17,x=1,y=32]. Two auxiliary predicates are introduced in order to work
with stores.

store(VariableID, Value, Store, UpdatedStore)
fetch(VariableID, Value, Store)

The necessary Prolog code to implement these are shown to the students with
the behaviour tested in the lecture room or by having the students to do small
exercises themselves.

The central predicate in a defining interpreter is the following. The first
argument represents a sequence of instructions (a continuation) to be executed
and the second one passes the entire program around to all instructions to give
the contextual meaning of labels.

sequence(Sequence, WholeProgram, CurrentStack, CurrentStore,
FinalStack, FinalStore)

Before giving the details of this, we set up a definition for a whole program as
follows.

machine_program(Prog, FinalStack, FinalStore):-
sequence(Prog,Prog,[],[],FinalStack,FinalStore).

The meaning of simple statements that transform the state is given by tail-
recursive rules such as the following: Do whatever state transition is indicated
by the first instruction and give the resulting state to the continuation.
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sequence([push(N)|Cont], Prog, S0, L0, S1, L1):-
sequence(Cont, Prog, [N|S0], L0, S1, L1).

sequence([fetch(Var)|Cont], Prog, S0, L0, S1, L1):-
fetch(Var,X,L0),
sequence(Cont, Prog, [X|S0], L0, S1, L1).

sequence([add|Cont], Prog, [X,Y|S0], L0, S1, L1):-
YplusX is Y + X,
sequence(Cont, Prog, [YplusX|S0], L0, S1, L1).

These rules are tested on the computer and compared with drawings on the
blackboard if needed. The similar rule for subtraction is a good point for dis-
cussing the order of the arguments:

sequence([minus|Rest], Prog, [X,Y|S0], L0, S1, L1):-
YminusX is Y - X,
sequence(Rest, Prog, [YminusX|S0], L0, S1, L1).

At this stage, the audience is warmed up for the more interesting cases. The
unconditional jump instruction is defined as follows; it is assumed that the di-
verse usages of the append predicate have been exercised thoroughly with the
students at an earlier stage.

sequence([jump(E)|_], P, S0, L0, S1, L1):-
append(_, [E|Cont], P),
sequence(Cont, P, S0, L0, S1, L1).

Executing a few examples, perhaps complemented by a drawing on the black-
board — and within a few minutes the students have grasped the principle of a
continuation and continuation semantics.

The following two rules defining conditional jumps serve as an immediate
repetition of the principle.

sequence([n_jump(E)|_], P, [0|S0], L0, S1, L1):-
append(_, [E|Cont], P),
sequence(Cont, P, S0, L0, S1, L1).

sequence([n_jump(_)|Cont], P, [1|S0], L0, S1, L1):-
sequence(Cont, P, S0, L0, S1, L1).

Now we need only provide the rules for skipping over labels in a sequence and
for stopping a run.

sequence([Label|Rest], P, S0, L0, S1, L1):-
integer(Label),
sequence(Rest, P, S0, L0, S1, L1).

sequence([],_,S,L,S,L).
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The entire defining interpreter is now finished and can be tested on the sample
program shown as introduction (and the students are receptive to the teachers
proclamations concerning precise language definitions at the one hand and the
implementation of various languages by an interpreter on the other).

As a final piece of candy, the following rule is added as the first one to the
interpreter:

sequence([Inst|_],_,_,_,_,_):-
write(Inst), write(’ ’), fail.

This turns the specification into a functioning tracer, thus emphasizing the ad-
vantages of having formal specifications integrated in a general purpose, inter-
active programming environment.

The following exercises are given to the students in order to provide a hands-
on feeling and to give them an impression of the power of being able to design
and implement themselves new language constructions and facilities.

– Extend language and interpreter with instructions for subroutines: jump_sub(to-
label, return-to-label) and return. Provide an interesting sample program
in the extended language for testing the solution.

– Write a Prolog program checking that labels are used in a consistent way
(part of exercise is to define what that means). Prize is given for the most
elegant solution.

– Examples are shown of how subsequences of instructions can be replaced by
other and more efficient ones. Write a Prolog predicate that performs such
optimizations.

– Design and implement an extension of the tracer so it becomes a debugger
with possibility to change variables, affect outcomes of conditional jumps and
(optionally) allow arbitrary number of undo’s of execution steps. (The last
topic is perfect training for those students who want to master the powerful
control device provided by Prolog’s backtracking.)

Moving up to the meta-pedagogical level, we conclude that this (part of a)
lecture with exercises, built around a seemingly innocent example, in a compact
but digestive way has established important pieces of knowledge and methodol-
ogy that otherwise may be quite an obstacle for many students.

4.2 A defining interpreter for while-programs

The detailed comments to the previous examples have indicated the spirit in
which we communicate an understanding of computer languages to the stu-
dents; the following examples are given in a more compact way. Now we consider
while-programs of which the following sample, representing Euclid’s algorithm
for greatest common divisor, is a prototypical example.

a:= 221 ; b:= 493 ;
while( a =\= b,

if( a>b, a:= a-b, b:= b-a))
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Notice that this expression, with its straightforward textual appearance, is a
syntactically correct Prolog term representing an abstract syntax tree. A defining
interpreter consists of the following predicates.

program(program, final-storage)
statement(statement, storage-before, storage-after)
expression(expression, storage, integer)
condition(condition, storage, {true, false})

Some of the rules of this interpreter are shown in the following; the most impor-
tant ones are for the if and while statements. Notice that we reuse the storage
structure and auxiliaries from the previous example.

program(P, Storage) :- statement(P, [], Storage).

statement((Var := Expression), L1, L2):-
expression(Expression, L1, Value),
store(Var,Value,L1,L2).

statement( (S1 ; S2), L1, L3):-
statement(S1, L1, L2),
statement(S2, L2, L3).

statement( if(Cond, Smt1, Stm2), L1, L2):-
condition(Cond, L1, Value),
(Value = true -> statement(Stm1, L1, L2)

; statement(Stm2, L1, L2)).

statement( while(Cond, Stm), L1, L2):-
condition(Cond, L1, Value),
(Value = true -> statement(

(Stm ; while(Cond, Stm)),L1,L2) ; L1=L2).

expression(Variable, L, V):- atom(Variable),
fetch(Variable,V,L).

expression( Int, _, Int):- integer(Int).

expression( (Exp1 + Exp2), L, Res):-
expression( Exp1, L, V1),
expression( Exp2, L, V2),
Res is V1 + V2.

condition( true, _, true).

condition( false, _, false).
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condition( (Exp1 = Exp2), L, Res):-
expression( Exp1, L, V1),
expression( Exp2, L, V2),
(V1 = V2 -> Res = true ; Res = false).

Exercises are provided so that the students can experiment with and extend this
defining interpreter in order to get a deeper understanding of how it works.

– Run a sample program which includes a while loop with Prolog’s debugger
switched on as to record all primitive actions involved.

– Extend the language with an expression of the form result is( statement,
variable) with the intended semantics that the statement is executed and
then the value of the variable defines the value of the expression. Special
attention should be paid to possible side-effects on other variables.

– Extend the language with a for loop.
– Extend the interpreter with a simple tracing facility.

In case the students have been presented earlier for Hoare logic, for instance in a
previous programming course, there is another good exercise in formalizing this
as an interpreter in Prolog.

4.3 A compiler for while-programs

The structure of our defining interpreters can also be adapted to describe com-
pilers. Above, we considered a semantics for while-programs defined in terms
of state transformations and now we consider an alternate semantics capturing
meanings by means of sequences of machine instructions.

We introduce two auxiliary predicates, one to generate new unused target
language labels and another one providing syntactic sugar for putting together
sequences of instruction sequences and single instructions. They are illustrated
in the following example query.

?- new_label(L1), new_label(L2), C1 = [push(1),add],
C2 <- L1 + push(7) + L2 + C1.

L1 = 117
L2 = 118
C1 = [push(1),add]
C2 = [117,push(7),118,push(1),add]

Depending on the level of their experience in Prolog programming, the students
may be given as an exercise to program these auxiliaries or the definitions are pre-
sented in the lecture. Now a simple, non-optimizing compiler for while-programs
can be presented as follows (selected rules only).
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program(P, K):- statement(P, K).

statement((S1 ; S2), C):-
statement(S1, C1),
statement(S2, C2),
C <- C1 + C2.

statement((Var := Exp), C):-
expression(Exp, C1),
C <- C1 + store(Var).

statement( if(Cond, Stm1, Stm2), C):-
condition(Cond, CondC),
statement(Statement1, C1),
statement(Statement2, C2),
new_label(L2), new_label(L_end),
C <- CondC +

n_jump(L2) +
C1 +
jump(L_end) +

L2 + C2 +
L_end.

statement( while(Cond, Stm), C):-
condition(Cond, CondC),
statement( Stm, C1),
new_label(Lstart), new_label(Lend),
C <- Lstart + CondC +

n_jump(Lend) +
C1 +
jump(Lstart) +

Lend.

expression(Number, C):-
integer(Number),
C <- push(Number).

expression( Variable, C):-
atom(Variable),
C <- fetch(Variable).

expression((Exp1 + Exp2), C):-
expression(Exp1, C1),
expression(Exp2, C2),
C <- C1 + C2 + add.
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These rules can be tested one after one during the lecture as they are introduced.
Finally, we can combine the compiler with the defining interpreter for machine
programs as follows.

?- program( ( a:= 221 ; b:= 493 ;
while( a =\= b,

if( a > b,
a:= a-b,
b:= b-a))), C),

machine_program( C, _, L).

C = [ stack(221),store(a),stack(493),store(b),
2,fetch(a),fetch(b),not_equal,n_jump(3),
fetch(a),fetch(b),greater,n_jump(0),
fetch(a),fetch(b),minus,store(a),jump(1),

0,fetch(b),fetch(a),minus,store(b),
1,jump(2),
3],

L = [a=17,b=17]

Exercises given to the students consist of adapting this compiler to the extensions
proposed earlier in exercises related to the defining interpreter. The optimizer
for machine programs considered in an earlier exercise can be applied at different
level of granularity.

The purpose of presenting this little compiler to the students is manyfold:
It illustrates the notions of a compiler and of syntax-directed translation and it
makes the distinction between interpretation and compilation clear. It shows how
standard imperative constructs are mapped into machine language and may serve
as an appetizer for more serious studies of compilers, for example [2]. Finally,
it serves as an introduction to the larger learning-by-doing exercise described in
the following section.

4.4 Do-it-yourself recursive procedures

Instead of always presenting ready solutions to the students, it is also motivat-
ing, once they have become familiar with the principles, to let them work out
nontrivial examples by themselves.

In the following, we sketch a larger exercise in which a class of students had
to produce a type checker and an interpreter for a Pascal-like language with ar-
rays and side-effects. The following, recursive quicksort program is prototypical;
notice that an “^” operator is used for array-indexing.
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program(
(var(n,int); var(a, int_array(4))),
declare_proc( qsort, left, right,

(var(i,int); var(j,int); var(x,int); var(w,int)),
(i:= left; j:= right; x:= a^( (left+right)//2) ;
repeat( (while(a^i<x, i:= i+1) ;

while(x<a^j, j:=j-1) ;
if(i=<j, (w:=a^i; a^i:= a^j; a^j:= w;

i:= i+1; j:= j-1))),
% until

i > j); % end repeat
if( left<j, proc_call(sort,left, j)) ;
if( i < right, proc_call(sort,i,right)) )

), % end proc qsort

% main program:
(n:= 4; a:= [30,10,40,20];
proc(qsort,1,n); write(a)))

The syntax, including scope and type principles, and the semantics of the lan-
guage were described informally to the students and their task was to produce
type checker and interpreter to be tested on a number of sample programs,
including the one shown above.

The students had programming experience in advance with this sort of lan-
guage but the presentation of this assignment was their first systematic intro-
duction to types and type checking. In order to simplify their work, they were
given auxiliary predicates for working with symbol tables and runtime stacks,
but with only a sketchy explanation of how to use them. So the students’ task
was to put together the whole machinery and test it.

The prescribed time for the work was one week on half time, including writ-
ing a small report documenting their solutions; they could work in groups of up
to three students. The most experienced students had type checker and inter-
preter running after four or five hours, and all students in a class of some 30
students solved the task within the prescribed time. All solutions were accept-
able and there was no obvious difference between those produced by students
with a mathematical background and by those without. In general, the students
characterized this exercise as a difficult and challenging one, but also that it had
been one of the most interesting ones from which they had learned quite a lot.

We show some fragments of a possible solution. Let us make precise some
assumptions about the language. Procedures take always two integer parameters,
and variable declarations may introduce integer and array variables. There are no
local procedures, so the runtime stack can be organized as a list of stack frames,
each being a list of bindings; looking up a variable can be done by looking first
in the topmost frame and if not found here, in the bottom frame. Recursive calls
are possible within a procedure and to previously declared procedures.
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The type checker can be defined by a predicate tc_cat(tree, current-table,
updated-table) for those syntactic categories cat whose phrases are intended to
introduce new nomenclature, and with fewer arguments for other syntactic cat-
egories. A sufficient type checker rule for a single procedure declaration is the
following.

tc_proc_decl(
declare_proc(ProcId,ParId1,ParId2,LocalVarDecls, Stm),
Table1, Table2):-
tc_identifier(ProcId),
Table2 = [(ProcId, procedure2) | Table1],
tc_identifier(ParId1), tc_identifier(ParId2),
Table3 = [(ParId2, int),(ParId1, int)|Table2],
tc_var_decl(LocalVarDecls,Table3,Table4),
tc_statement(Stm,Table4).

Correct typing of a procedure call is expressed in the following way.

tc_statement( proc_call(ProcId, Exp1, Exp2),Table):-
symbol_tabel_find(ProcId, Table, procedure2),
tc_expression(Exp1,Table,int),
tc_expression(Exp2,Table,int).

For the interpreter, we give the flavour of a solution by showing the most com-
plicated rule which is the one for procedure calls. Each statement is executed
relative to a table of procedure closures plus a runtime stack and produces an
updated runtime stack. The procedural meaning of local variable declarations is
to extend a current stack frame with “locations” for the variables as to produce
a new frame.

statement(proc_call(ProcId, Exp1, Exp2),
ProcTable, Stack1, Stack2):-

member( proc(Id,ParId1, ParId2, LocalVarDecls, Stm),
ProcTable),

expression(Exp1, Stack1, ParValue1),
expression(Exp2, Stack1, ParValue2),
var_decl(LocalVarDecls,
[(ParId2,ParValue2),(ParId1,ParValue1)], StackFrame),

statement(Stm, ProcTable, [StackFrame|Stack1], [_|Stack2]).

Although the overall structure of rules as the one above is simple, the correct
positioning of the logical variables is a difficult task. Here Prolog’s short cycle
of incremental program development and testing is a great advantage. Having
completed this rule, the student has gained a very clear understanding of what
goes on when a procedure is activated in a call-by-value language.
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5 Other course elements involving Prolog as
meta-language

We sketch briefly a number of other examples which have been used in our course.
Logic circuits modelled in Prolog is a standard example used in many Prolog text
books and is obvious to apply in our context due to the meta-linguistic aspects
(modelling the language of logic circuits); we refrain from giving details. The
following examples show different aspects of Prolog as well as other languages
and programming tools.

5.1 LISP modelled with assert-retract

This example goes definitely to the limit of our paradigm of using Prolog as
a logical specification language. In this way, the presentation becomes a bit
provocative and can initiate discussions about what requirements should be made
in general to a specification and to a meta-language.

By means of Prolog’s assert and retract facilities, we define an interpreter
for a small LISP-like language with function definitions and variable assignments
modelled as side-effects. This way we provide a model of an interactive LISP
environment [20]. Here follow a few rules that show the principle; notice also the
pragmatic aspect present in error messages in some rules.

lisp([quote,X], X).

lisp( [plus,X,Y], Value):-
lisp(X, Xvalue),
lisp(Y, Yvalue),
Value is Xvalue + Yvalue.

lisp([car,X], Value):-
lisp(X, Xvalue),
(Xvalue = [Value | _] -> true
;
nl, write(’CAR of non-list: ’),
write(Xvalue), abort).

lisp([setq,Var,X], Xvalue):-
lisp(X, Xvalue),
asserta((lisp(Var, Xvalue):- !)).

The last rule gives rise to a discussion of binding times and a critique of Prolog
for the lack of indication of different binding times for Var, X and for Xvalue; this
is another way of showing the problems inherent in the nonground representation
of Prolog in itself.

The following rule for function definitions with a single parameter emphasizes
the problem but shows also many interesting programming language aspects such
as extensibility, parameter transmission and, again, different binding times.
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lisp([defun, F, Param, Body], F):-
asserta((lisp( [F, Arg], Value):- !,

lisp(Arg, ArgValue),
asserta((lisp(Param, ArgValue):- !)).
lisp( Body, Value),
retract((lisp(Param, ArgValue):- !)) )).

This rule gives the teacher a good reason to criticize the nonground represen-
tation for very practical reasons: It makes the specification almost unreadable.
This suggests the design of a new syntax (from [7]) for a ground representa-
tion with one or more prefix asterisks to indicate binding time for represented
variables.

lisp([defun, F, Param, Body], F):-
new_asserta(

(lisp([F, *arg], *value):- !,
lisp(*arg, *argValue),
new_asserta((lisp(Param, *argValue):- !)).
lisp(Body, *value),
new_retract((lisp(Param,*argValue):- !)))).

The exercises given to the students are the following:

– Extend the interpreter to handle the eval function and test it on given
examples.

– Implement a version with call-by-name parameters.
– Examine the given interpreter and add complete error messages; what does

“complete” mean?
– Analyze the interpreter to figure out what happens when formal parameter

names are setqed inside the body of a functions. Discuss different possible
semantics and test them.

As options for the more advanced students having a special interest in Prolog
programming, the following extra tasks are proposed.

– Write a definition of a nullary predicate run_lisp that adds a read-eval-print
loop upon the interpreter.

– Add a debugging facility to the interpreter.
– Implement the suggested new_asserta and new_retract predicates.
– Write program transformers that can apply to the body of function defini-

tions, e.g., getting rid of explicit parameter references and using substitution
by means of Prolog variables instead.
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5.2 Turing machines

Most computer science educations at university level do not leave much time for
the study of computability and decidability issues. This may be because other
and more practical issues are given higher priority and the fact that an in-depth
study of these matters is not considered so relevant for a majority of students.

However, we find it important for historical and philosophical reasons that
students are given an introduction so they know that such issues exist and have
some idea of what they mean, so to speak giving a qualified impression of what
computers can and can’t.

Again, a running implementation of an interpreter in Prolog is an excellent
way to illustrate a Turing-machine and to provide a truly dynamic model, es-
pecially when a tracing facility is added. The definition of such an interpreter
is straightforward and not shown here. The existence of the interpreter shows
that Prolog is Turing-complete, and playing with it warms up the student for
the proof of undecidability of the halting problem. Exercises consist of writing
small Turing-machines (including a “copy machine” often used in the mentioned
proof) and extending the interpreter to handle multi-tape machines.

5.3 Playing with Vanilla and Prolog source-to-source compilation

The familiar Vanilla self-interpreter for Prolog [35] is a perfect example to illus-
trate the notion of a self-interpreter.

solve(true).
solve((A,B)):- solve(A), solve(B).
solve(A):- clause(A,B), solve(B).

It may appear a bit absurd and useless to the students until we begin modifying
it into a tracer by adding the following material to its last rule.

solve(A):-
trace_code((write(’Enter ’), write(A), nl),

(write(’Fail ’), write(A), nl)),
clause(A,B),
trace_code((write(’Try ’), write((A:- B)), nl ),

(write(’Drop ’), write((A:- B)), nl)),
solve(B),
trace_code((write(’Succeed ’), write(A), nl)).

trace_code( Forwards, Backwards):-
Forwards ; Backwards, fail.

Further extensions make it into a debugger which allows the user to affect pro-
gram execution similarly to standard Prolog debuggers.

Efficiency measuring of programs can also be incorporated in the interpreter,
but we can also use source-to-source compilation instead (and thus provide an
opportunity to show this phenomenon). Half a page of Prolog code can imple-
ment a translator that retracts each clause of the form
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Head:- Body

and asserts another one of the form

Head:- CountClauseEntranceAndBacktrack, Body,
CountClauseExitAndRe-entrances

where the added pieces of code maintain global counters for each clause.
This is an entertaining and systematic way to study and characterize pro-

gramming tools, and interesting exercises can be given to the students of ex-
tending or implementing similar tools.

5.4 Do-it-yourself relational algebra

In a section above we showed how type checking and implementation of recursive
procedures can be taught by having the students to develop an implementation
in Prolog. We have used the same methodology in a broader scoped course for
an introduction to relational algebra, and we may suggest it be applied also in
a standard database course.

A small example of a database is informally introduced with the notions
of a relational schema (with named, untyped attributes) and database tuples,
and operations union, intersect, where 〈simple-condition〉, and join where
the latter is defined in terms of coinciding attribute names. A representation of
tabelled relations is shown with schema and tuples given as Prolog facts, e.g.:

schema(costumer, [costumer_no, costumer_name, costumer_city]).
tuple( costumer, [k17, jensen, roskilde]).
tuple( costumer, [k29, hansen, copenhagen]).

The students’ task is now to complete the definitions for the schema and tuple
predicates so that an arbitrary relational expression can be interpreted as first
argument.

The conditions were the same as for the task on recursive procedures de-
scribed above, one week on half time, including writing a small report docu-
menting the solutions. This task has been given to several classes of students
and all students usually succeed in producing an acceptable solution, although
join often causes problems. The students’ comments on working with this task
are usually very positive.

6 Syntax analysis

Traditional methods for lexical analysis and parsing are integral components of
our course. Prolog is used as a ready-at-hand tool for the students to implement
finite state machines, deterministic as well as nondeterministic. Top-down pars-
ing is illustrated perfectly by Prolog’s built-in Definite Clause Grammars [25],
and bottom up-parsers by an analogous grammar formalism CHRG [9] developed
on top of Constraint Handling Rules [14] which is a recent extension to some
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Prolog versions (e.g., SICStus Prolog [31]) that provides a natural paradigm for
bottom-up evaluation. A better choice may be to stay within a Prolog framework
also when considering bottom-up parsing; we refer to [28] who show how this
can be done.

Now a quick and effective introduction can be given to standard implementa-
tion principles for finite state machines (table controlled or compiled into control
structures) and for top-down parsers in the shape of an LL(1) recursive-descent
parser.

As a conclusion of the course, the students are shown a full implementation
in Java of a subset of Prolog, including lexical analysis, parsing, representation
of abstract syntax trees in an object-oriented language, and an interpreter which
exposes a detailed implementation of Prolog’s unification procedure.

7 Conclusion and perspectives

Theoretical computer science issues can be taught in an entertaining and con-
crete way which, unlike traditional approaches, appeals to a wide range of stu-
dents for which a uniform mathematical background cannot be taken for granted.

We have explained a methodology based on a combination of a simple, un-
derlying model of abstract machines and the use of Prolog as general definition
and implementation language. A combination of qualities of Prolog makes it well
suited for the purpose: Conceptual simplicity and high expressibility with a core
language consistent with a subset of first-order logic; syntactic extensibility that
allows a direct notation for abstract syntax trees in a textually acceptable form;
a rule-based structure that fits perfectly with an inductive style of definition.
Last but not least: Prolog is an interactive language that appeals to incremental
development, testing, and experimentation with an extremely short turn-around
time from idea → implementation → observation → revision or extension of
idea.

Another approach to teaching these concepts is to apply a collection of dif-
ferent tools, for instance specialized compiler writing tools and animated tools
with fancy graphics for, say, Turing machines, machine languages, etc.; several
such tools can be found on the Internet. However, such a collection of tools lacks
transparency seen from the student’s mind. Prolog as we have used it here, has
declarative and operational semantics that are fairly easy to grasp for a start, and
its use as primary tool throughout the course strengthens this understanding.

With the methodology we have described, we want to stress that the concepts
treated are not just theory for its own sake, but contain valuable understanding
about highly practical matters. Lexical analysis and parsing are indispensable
for any program developer, and interpretation and translation are powerful tools
for the development of larger systems. Even the technique exposed in the toy-like
defining interpreters provides a very powerful tool for experimental prototype
development.

The methodology has been applied with good success at Roskilde Univer-
sity and looking back, it appears to have served two purposes: Providing a solid
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minimum of knowledge that every computer science student needs indifferently
of specialization, and secondly as an appetizer and introduction for those want-
ing to specialize in compiler construction and other language implementation
techniques or deeper studies in theoretical computer science.

8 Appendix: A sample course schedule

The following table shows the schedule for a version of a course designed ac-
cording to our methodology as it was given in spring 2001. The actual course
may change slightly from semester to semester so not all items mentioned in the
present paper are found in this particular schedule. The course corresponds to
25% of a student’s work in one semester and is concentrated on 10 full course
days. When nothing else is indicated below, each course day consists of lectures
and practical problem solving related to the day’s lecture. A considerable amount
of homework is expected from the students.

1
Introduction: Abstract and concrete syntax, semantics, pragmat-
ics, language and meta-language.
Prolog workshop I: The core language, incl. structures.

2
Prolog workshop II: Lists, operators, assert/retract, cut, negation-
as-failure.

3
Abstract machines: Definitions of a.m., interpreter, translator, etc.
Prolog workshop II contd.

4
Language and meta-language, Prolog as meta-language. Seman-
tics of sequential and imperative languages; defining interpreters
and a small compiler.

5
Declarations, types, type checking, context-dependencies, recur-
sive procedures.

6
Introduction to and practical work with large exercise: do-it-your-
self recursive procedures, interpreter and type checker.

7
Conclusion and comments to large exercise.
Turing-machines, decidability and computability, Turing univer-
sality, the halting problem, Turing machines in Prolog.

8
Constraint logic programming: Introduction to CLP(R) and CHR;
CHR Grammars for bottom-up parsing.

9
Syntax analysis: Lexical analysis and parsing; recursive-descent
parsing

10
Overview of phases in a traditional compiler.
Dissection of an implementation of Prolog in Java.
Evaluation of the course.
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