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Abstract. Previous results on confluence for Constraint Handling Rules,
CHR, are generalized to take into account user-defined state equivalence
relations. This allows a much larger class of programs to enjoy the ad-
vantages of confluence, which include various optimization techniques
and simplified correctness proofs. A new operational semantics for CHR
is introduced that reduces notational overhead significantly and allows
to consider confluence for programs with extra-logical and incomplete
built-in predicates. Proofs of confluence are demonstrated for programs
with redundant data representation, e.g., sets-as-lists, for dynamic pro-
gramming algorithms with pruning as well as a Union-Find program,
which are not covered by previous confluence notions for CHR.

1 Introduction

A rewrite system is confluent if all derivations from a common initial state end in
the same final state. Confluence, like termination, is often a desirable property,
and proof of confluence is a typical ingredient of a correctness proof. For a
programming language based on rewriting such as Constraint Handling Rules,
CHR, it ensures correctness of parallel implementations and application order
optimizations.

Previous studies of confluence for CHR programs are based on Newman’s
lemma. This lemma concerns confluence defined in terms of alternative deriva-
tions ending in the exact same state, which excludes a large class of interesting
CHR programs. However, the literature on confluence in general rewriting sys-
tems has, since the early 1970s, offered a more general notion of confluence
modulo an equivalence relation; this defines that alternative derivations only
need to end in states that are equivalent with respect to some equivalence re-
lation (and not necessarily identical). In this paper, we show how confluence
modulo equivalence can be applied in a CHR context, and we demonstrate in-
teresting programs covered by this notion that are not confluent in any previous
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versions. The use of redundant data representations is one example of what be-
comes within reach of confluence, and programs that search for one best among
multitudes of alternative solutions is another.

Ezxample 1. The following CHR program, consisting of a single rule, collects a
number of separate items into a (multi-) set represented as a list of items.

set(L), item(A) <=> set([A[|L]).

This rule will apply repeatedly, replacing constraints matched by the left hand
side by those indicated to the right. The query

?7- item(a), item(b), set([]).

may lead to two different final states, {set([a,b])} and {set([b,al)}, both
representing the same set. This can be formalized by a state equivalence relation
~ that implies {set (L)} =~ {set(L’)}, whenever L is a permutation of L’. The
program is not confluent when identical end states are required, but it will be
shown to be confluent modulo .

Our generalization is based on a new operational semantics that permits extra-
logical and incomplete predicates (e.g., Prolog’s var/2 and is/2), which is out
of the scope of previous approaches. It also leads to a noticeable reduction of
notational overhead due to a simpler structure of states.

Section [2 reviews previous work on confluence, in general and for CHR. Sec-
tions [3| and [4] give preliminaries and our operational semantics. Section [5| con-
siders how to prove confluence modulo equivalence for CHR. Section [6] shows
confluence modulo equivalence for a version in CHR of the Viterbi algorithm;
it represents a wider class of dynamic programming algorithms with pruning,
also outside the scope of earlier proposals. Section [7| shows confluence modulo
equivalence for the Union-Find algorithm, which has become a standard test
case for confluence in CHR; it is not confluent in any previously proposed way
(except with construed side-conditions). Section [8| comments on related work in
more details, and the final section provides a summary and a conclusion.

2 Background

A binary relation — on a set A is a subset of A x A, where x — y denotes
membership of —. A rewrite system is a pair (A, —); it is terminating if there
is no infinite chain ag — a1 — ---. The reflerive transitive closure of — is
denoted =. The inverse relation < is defined by {(y, z) | = — y}. An equivalence
(relation) = is a binary relation on A that is reflexive, transitive and symmetric.

A rewrite system (A, —) is confluent if and only if y <~z 5 ¢/ = 3z. y >
z </, and is locally confluent if and only if y <z — ¢/ = Jz. y = 2 < 2. In
1942, Newman showed his fundamental lemma [1]: A terminating rewrite system
1s confluent if and only if it is locally confluent. An elegant proof of Newman'’s
lemma was provided by Huet [2] in 1980.

The more general notion of confluence modulo equivalence was introduced in
1972 by Aho et al. [3] in the context of the Church-Rosser property.



Definition 1 (Confluence modulo equivalence). A relation — is confluent
modulo an equivalence = if and only if

Va,y, 2’y o Sary Sy = 32,7

PS5 Sy

This shown as a diagram in Fig. Sethi [4] showed in 1974 that confluence
modulo equivalence for a bounded rewrite system is equivalent to the following
properties, a and f3; see also Fig.

Definition 2 (« & ). A relation — has the « property and the 8 property if
and only if it satisfy the o condition and the 8 condition, respectively:
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In 1980, Huet [2] generalized this result to any terminating system.

Definition 3 (Local confl. mod. equivalence). A rewrite system is locally
confluent modulo an equivalence = if and only if it has the o and B properties.

Theorem 1. Let — be a terminating relation. For any equivalence =, — is
confluent modulo = if and only if — is locally confluent modulo ~.

r——>y— — >z r—>Yy— — >z r—y— — >z
Py - E =7 y-=>2 -
(@) (B)
(a) Confluence modulo ~. (b) Local Confluence modulo =.

Fig. 1: Diagrams for the fundamental notions. A dotted arrow (single wave line)
indicates an inferred step (inferred equivalence).

The known results on confluence for CHR are based on Newman’s lemma. Ab-
dennadher et al [5] in 1996 seem to be the first to consider this, and they could
show that confluence (without equivalence) for CHR is decidable and can be
checked by examining a finite set of states formed by a combination of heads of
rules. A refinement, called observational confluence was introduced in 2007 by
Duck et al [6], in which only states that satisfy a given invariant are considered.

3 Preliminaries

We assume standard notions of first-order logic such as predicates, atoms and
terms. For any expression F, vars(FE) refers to the set of variables that occurs



in E. A substitution is a mapping from a finite set of variables to terms, which
also may be viewed as a set of first-order equations. For substitution ¢ and ex-
pression F, Eo (or E - o) denotes the expression that arises when o is applied
to E; composition of two substitutions o, 7 is denoted o o 7. Special substitu-
tions failure, error are assumed, the first one representing falsity and the second
runtime errors.

Two disjoint sets of (user) constraints and built-in predicates are assumed.
For the built-ins, we use a semantics that is more in line with implemented CHR
systems than previous approaches, and which allows not only logical built-ins
but also extra-logical devices such as Prolog’s var/1 and incomplete ones such
as is/2. While [BI6I7] collect built-ins in a separate store and determine their
satisfiability by a magic solver that mirrors a first-order semantics, we execute a
built-in right away, which means that it serves as a test, possible giving rise to
a substitution that is applied to form the subsequent state.

An evaluation procedure Eze for built-ins b is assumed, such that Exe(b) is
either a (possibly identity) substitution to a subset of vars(b) or one of failure,
error. It extends to sequences of built-ins as follows.

Eze(by) when Eze(by) € {failure, error},
Ezxe(by - Exe(by)) when otherwise Exe(by - Exe(by))

Eze((b1,b2)) =
we((by, b2)) € {failure, error},

Eze(by) o Exe(by - Exe(by)) otherwise

A subset of built-in predicates are the logical ones, whose meaning is given by
a first-order theory B. For a logical atom b with Exe(b) # error, the following
conditions must hold.

— Partial correctness: B = Voars(5) (b <> Juars(Bze(s))\vars (b) £re(D)).
— Instantiation monotonicity: Fze(b- o)) # error for all substitutions o.

A logical predicate p is complete whenever, for any p atom b that Eze(b) #
error; later we define completeness with respect to a state invariant. Any built-
in predicate which is not logical is called extra-logical. The following predicates
are examples of built-ins; € is the empty substitution.

1. Exe(t =t') = o where o is a most general unifier of ¢t and ¢; if no such unifier
exists, the result is failure.

2. Eze(true) is e.

Eze(fail) is failure.

Eze(t is t') = Exe(t = v) whenever t' is a ground term that can be inter-

preted as an arithmetic expression e with the value v; if no such e exists, the

result is error.

Eze(var(t)) is € if ¢ is a variable and failure otherwise.

Ere(ground(t)) is € when ¢ is ground and failure otherwise.

Eze(t ==1") is ¢ when ¢ and ¢’ are identical and failure otherwise.

Eze(t \=1") is ¢ when ¢ and ¢’ are non-unifiable and failure otherwise.

-
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The first three predicates are logical and complete; “is” is logical but not com-
plete without an invariant that grounds its second arguments (considered later).
The remaining ones are extra-logical.

The practice in previous semantics [56J7] of conjoining built-ins and testing
them by satisfiability leads to ignorance of runtime errors and incompleteness.

To represent the propagation history, we introduce indices: An indezed set
S is a set of items of the form z:i where ¢ belongs to some index set and each
such ¢ is unique in S. When clear from context, we may identify an indexed set
S with its cleaned version {z | z:i € S}. Similarly, the item x may identify the
indexed version x:i. We extend this to any structure built from indexed items.

4 Constraint Handling Rules

We define an abstract syntax of CHR together with an operational semantics
suitable for considering confluence. We use the generalized simpagation form as
a common representation for the rules of CHR. Guards may unify variables that
occur in rule bodies, but not variables that occur in the matched constraints. In
accordance with the standard behaviour of implemented CHR systems, failure
and runtime errors are treated the same way in the evaluation of a guard, but
distinguished when occurring in a query or rule body, cf. definition [7, below.

Definition 4. A rule r is of the form
Hl\HQ <:>g|C,

where Hy and Hy are sequences of constraints, forming the head of the rule, g
is a guard being a sequence of built-ins, and C' is a sequences of constraints and
built-ins called the body of r. Any of Hy and Hs, but not both, may be empty.
A program is a finite set of rules.

For any fresh variant of rule r with notation as above, an application instance
r" is given as follows.

1. Let v’ be a structure of the form
Hy7\ Hom <=> C70
where T is a substitution for the variables of Hy, Ha, Exe(gT) = o & {failure, error},
and it holds that (Hy \ Ho)T = (H1 \ H2)70,
2. v" is a copy of ' in which each atom in its head and body is given a unique
index, where the indices used for the body are new and unused.

The application record for such an application instance is of the form
r@ il, e ,in
where i1, ...,1, s the sequence of indices of Hy, Hy in the order they occur.

Guards are removed from application instances as they are a prior: satisfied.

A rule is a simplification when H, is empty, a propagation when Hs is empty;
in both cases, the backslash is left out, and for a propagation, the arrow symbol
is written ==>. Any other rule is a simpagation. The following definition will
become useful later on when we consider confluence.



Definition 5. Consider two application instances r; = (A; \ By <=> C;), i =
1,2. We say that r1 is blocking ry whenever By N (A U Bs) # 0.

For this to be the case, r1 must be a simplification or simpagation. Intuitively,
it means that if r; has been applied to a state, it is not possible subsequently
to apply 7. In the following definition of execution states for CHR, irrelevant
details of the state representation are abstracted away using principles of [§].
To keep notation consistent with Section [2] we use letters such as x, y, etc. for
states.

Definition 6. A state representation is a pair (S,T), where

— S is a finite, indexed set of atoms called the constraint store,
— T is a set of application records called the propagation history.

Two state representations S1 and Sy are isomorphic, denoted S1 = Sy whenever
one can be derived from the other by a renaming of variables and a consistent
replacement of indices (i.e., by a 1-1 mapping). When X is the set of all state
representations, a state is an element of X /= U {failure, error}, i.e., an equiva-
lence class in X induced by = or one of two special states; applying the failure
(error) substitution to a state yields the failure (error) state. To indicate a given
state, we may for simplicity mention one of its representations.

A query q is a conjunction of constraints, which is also identified with an
initial state {q',0) where ¢’ is an indexed version of q.

To make statements about, say, two states x, y and an instance of a rule r, we
may do so mentioning state representatives z’, ¢y’ and application instance 7’
having recurring indices.

In contrast to [BI6I7], we have excluded global variables as they are easy to
simulate: A query ¢(X) is extended to global('X’, X), q¢(X), where global/2 is a
new constraint predicate; X’ is a constant that serves as a name of the vari-
able. The value wval for X is found in the final state in the unique constraint
global('X’, val). References [Bl6J7] use a state component for constraints waiting
to be processed, plus a separate derivation step to introduce them into the con-
straint store. This is unnecessary as the derivations made under either premises
are basically the same. Our derivation relation is defined as follows; here and in
the rest of this paper, W denotes union of disjoint sets.

Definition 7. A derivation step +— from one state to another can be of two

types: by rule v or by built-in |i>, defined as follows.

Apply: (S@ H, @ Hy, T) v (SW H, & C,T')
whenever there is an  application instance r of the form
Hy\ Hy <=> C with applied(r) € T, and T' is derived from T by 1) remov-
ing any application record having an index in Hy and 2) adding applied(r)
i case T s a propagation.

Built-in: ({b} & S, T) +% (S, T) - Eze(b).



A state z is final for query q, when q s 2z and no step is possible from z.

The removal of certain application records in Apply steps means to keep only
those records that are essential for preventing repeated application of the same
rule to the same constraints (identified by their indices).

As noticed by [6], an invariant can make more programs confluent as unusual
states, that never appears in practice, are avoided. An invariant may also make
it easier to characterize an equivalence relation for states.

Definition 8. An invariant is a property I(-) which may or may not hold for
a state, such that I(x) Nx +— y = I(y). An I-state is a state x with I(z),
and an I-derivation is one starting from an I-state. A program is I-terminating
whenever all I-derivations are terminating. A set of allowed queries Q may be
specified, giving rise to an invariant reachableg(z) < g € Q: ¢ s 2.

A (state) equivalence is an equivalence relation = on the set of I-states.

Theorem [1| applies specifically for CHR programs equipped with invariant I and
equivalence relation ~. When = is identity, it coincides with a theorem of [0]
for observable confluence. If, furthermore, I < true, we obtain the classical
confluence results for CHR [9].

The following definition is useful when considering confluence for programs
that use Prolog built-ins such as “is/2”.

Definition 9. A logical predicate p is complete with respect to invariant I
whenever, for any p atom b in some I-state that Exe(b) # error.

As promised earlier, “is/2” is complete with respect to an invariant that guar-
antees groundness of the second argument of any call to “is/2”.

Ezxample 2. Our semantics permits CHR programs that define constraints such
as Prolog’s dif/2 constraint and a safer version of is/2.

dif (X,Y) <=> X==Y | fail.
dif (X,Y) <=> X\=Y | true.
X safer_is Y <=> ground(Y) | X is Y.

5 Proving Confluence Modulo Equivalence for CHR

We consider here ways to prove the local confluence properties a and S from
which confluence modulo equivalence may follow, cf. Theorem [I} The corners in
the following definition generalize the critical pairs of [5]. For ease of usage, we
combine the common ancestor states with the pairs, thus the notion of corners
corresponding to the “given parts” of diagrams for the « and § properties,
cf. Fig. The definitions below assume a given I-terminating program with
invariant I and state equivalence ~. Two states x and z’ are joinable modulo =~
whenever there exist states z and 2’ such that z ¥ z &~ 2/ <4 2.



Definition 10. An a-corner consists of I-states x, y and y' with y # y' and

two derivation steps such that y dia |£> y'. An a-corner is joinable modulo ~
whenever y and y' are joinable modulo =.

A B-corner consists of I-states x, ' and y with x # x’' and a derivation step
such that ' ~ z y. A B-corner is joinable modulo ~ whenever ¥’ and y are
joinable modulo .

Some corners are critical, meaning that their satisfaction of the a or 8 property
is not trivial.

ops § . - .
Definition 11. An a-cornery dias Yy or f-corner v’ =~ x N y is critical if
one of the following properties holds.

ay: v and § are application instances where v blocks 6 (Def. @

Qg 7y is an application instance of a rule whose guard g contains an extra-logical
built-in, and 6 is a built-in with vars(g) Nwars(d) # 0.

as: v and § are built-ins with ~ being extra-logical or not complete wrt. I, and
vars(y) N vars(d) # 0.

. . o s
B: there exists no state y' and single derivation step of ¥’ such that x’ — vy =~ y.

Critical S-corners are motivated by the experience that often the & step can be
formed trivially by applying the same rule or built-in of v in an analogous way
to the state z’. By inspection and Theorem |1} we get the following.

Lemma 1. Any non-critical corner is joinable modulo ~.

Theorem 2. A terminating program is confluent modulo =~ if and only if all its
critical corners are joinable modulo ==.

Without invariant, equivalence and extra-logicals, the only critical corners are
of type aq; here [5] has shown that joinability of a finite set of minimal critical
pairs is sufficient to ensure local confluence. In our case, this cannot be reduced
to checking such minimal states, but the construction is useful as a way to group
the cases that need to be considered. We adapt the definition of [5] as follows.

Definition 12. An «-critical pattern (with evaluated guards) is of the form
<510'1, {R1}> (T—ll <S,®> IE) <SQO'2, {R2}>

whenever there ezist, for k = 1,2 indezed rules v, = (Ax\ By <=> gi | Ck), and
application record Ry, = (r;@Qd%, ... ,iﬁk) where ¥, . .. ,iﬁk is the list of indices in
Ay, By, and S, Sy and Ss are determined in the following way.

— Let Hy = Ay U By, k = 1,2, and split By and Hs into disjoint subsets by
By = B{ W BY and Hy = Hy, W HY, where BY and HY must have the same
number of elements > 1.

— The set of indices used in By and HY are assumed to be identical, and any

other index unique, and o is a most general unifier of BY and a permutation
of HY.



- S:A1UBl UAQUBQ, Sk :S\Bka, k‘: 1,2.
— o = Eze(gro) and gy has no extra-logical built-ins, k = 1,2.

An «-critical pattern (with delayed guards) is of the form

(S1,{R1}) &4 (S,0) & (S, {R2}),

where all parts are defined as above, except in the last step, that one of g, contains
either an extra-logical built-in or its evaluation leads to a logical built-in b with
Eze(b) = error; the guards gro are recognized as the unevaluated guards.

The constraints needed to produce the derivation steps that ensure joinability
may not appear in the patterns of Definition[I2} but are implied by the invariant.
To cope with this, we proceed as follows.

Definition 13. An «a-critical corner y i3 y' is covered by an aq-critical
pattern with evaluated guards of the form (S, Ay) & (S, 0) = (Sa, A2), when-
ever there exist a set of indered constraints ST, a substitution ot and a set of
application records AT such that I({(Se™ U ST, AT)) holds and

y=(S10t USH A UAY), z = (Sot USHAY), y = (Saot UST, Ay U AT).

An aq-critical corner y 3 y' is covered by an ai-critical pattern with
delayed guards of the form (S, Ay) <4 (S,0) 3 (Sy, Ay), whenever there exist a
set of indexed constraints ST, a substitution ot and a set of application records
AT such that I({(So™ U ST, AT)) holds and

y = {(S1ot UST)Eze(g10™), Ay UAT), 2= (SotUST, AT),
y' = ((S20" U ST)Ere(g20"), A2 U AT);
g1, g2 are the unevaluated guards of the pattern.

Analogously to previous results on confluence of CHR, we can state the following.

Lemma 2. For a given I-terminating program with invariant I and equivalence
~, the set of critical aq-patterns is finite, and any critical oy -corner is covered
by some critical aq-pattern.

Our work is currently intended for manual proofs and we do not assume any
formal and decidable ways of specifying I and &, which would be needed for
fully mechanizable proof methods. It is straightforward to define critical as- and
ag-patterns and formulate analogous versions of Lemma [2] (left out for reasons
of space). These are not needed in our examples as the ay and a3 properties will
appear to be trivial. It is not possible to cover -corners by patterns in a similarly
syntactic way as two of the participating states are related only semantically by
~. However, we can reuse the developments of [5] and joinability results derived
by their methods, e.g., using automatic checkers for classical confluence [10].



Lemma 3. If a critical aq-pattern m (viewed as an «y-corner) is joinable under
I and the identity equivalence, any ai-corner covered by w is joinable under I
and ~=.

Ezample 3 (. example ct’d). We formulate invariant and equivalence and prove
confluence. The propagation history can be ignored as there are no propagations.

I: I(z) holds if and only if # = {set(L)} U Items, where Items is a set of
item/1 constraints whose argument is a constant and L a list of constants.

~: x ~ o if and only if x = {set(L)} U Items and =’ = {set (L)} U Items
where Items is a set of item/1 constraints and L is a permutation of L’.

There are no built-ins and thus no critical as- or as-patterns. There is only one
critical ap-pattern, namely

{set([BIL]),item(A)} <1 {set(L),item(A),item(B)} > {set([AIL]),item(B)},

where L, A, and B are terms such that I holds for the indicate states. Joinability
for any corner covered by this pattern is shown by applying the rule to the two
“wing” states to form two states {set([B,A,|L])} =~ set([A,B, |L])}.

To check the 8 property, we notice that any §-corner is of the form

{set(L'),item(A)} U Items ~ {set (L), item(A)} U Items + {set ([AIL])} U Items

where L and L’ are lists, one being a permutation of the other. Applying the
rule to the “left wing” state leads to {set ([A|L']1)} U Items which is equivalent
(wrt. =) to the “right wing” state. As the program is clearly I-terminating, it
follows that it is confluent modulo =.

6 Confluence of Viterbi Modulo Equivalence

Dynamic programming algorithms produce solutions to a problem by generat-
ing solutions to growing sub-problems, extending those solutions already found.
The Viterbi algorithm [T1] finds a most probable path of state transitions in a
Hidden Markov Model (HMM) that produces a given emission sequence Ls, also
called the decoding of Ls; see [12] for a background on HMMs. There may be
exponentially many paths but an early pruning strategy ensures linear time. The
algorithm has been studied in CHR by [I3], starting from the following program.

:- chr_constraint path/4, trans/3, emit/3.

expand @ trans(Q,Q1,PT), emit(Q,L,PE), path([L|Ls],Q,P,PathRev) ==
P1 is PxPT*PE | path(Ls,Q1,P1,[Q1|PathRev]).

prune @ path(Ls,Q,P1,_) \ path(Ls,Q,P2,_) <=> P1 >= P2 | true.

The meaning of a constraint path(Ls,q,p, R) is that Ls is a remaining emission
sequence to be processed, g the current state of the HMM, and p the probability
of a path R found for the already processed prefix of the emission sequence.



To simplify the program, a path is represented in reverse order. Constraint
trans(q,q ,pt) indicates a transition from state ¢ to ¢’ with probability pt,
and emit (q,/Z, pe) a probability pe for emitting letter £ in state q.

Decoding of a sequence Ls is stated by the query “HMM, path(Ls,q0,1,[]1)”
where HMM is an encoding of a particular HMM in terms of trans and emit
constraints. Assuming HMM and Ls be fixed, the state invariant I is given as
reachability from the indicated query. The program is I-terminating, as a new
path constraint introduced by the expand rule has a first argument shorter than
that of its predecessor. Depending on the application order, it may run in be-
tween linear and exponential time, and [I3] proceeds by semantics preserving
program transformations that lead to an optimal execution order.

The program is not confluent in the classical sense, i.e., without an equiva-
lence, as the prune rule may need to select one out of two different and equally
probable paths. A suitable state equivalence may be defined as follows.

Definition 14. Let (HMM U PATHS,,T) ~ (HMM U PATHS,,T) whenever:
For any indezxed constraint (i: path(Ls,q,P,R1)) € PATHS; there is another
(i: path(Ls,q,P,Ry)) € PATHSy and vice versa.

The built-ins used in guards, is/2 and >=/2, are logical and complete with re-
spect to I so there are no ais- or as-critical corners. For simplicity of notation, we
ignore the propagation histories. There are three critical oy patterns to consider:

prune  prune

(i) y +— x — gy, where x contains two path constraints that may differ only
in their last arguments, and y and y’ differ only in which of these constraints

. ~ /
that are preserved; thus y = 3.
prune expand

(i) y — x — Yy where x = {m,m,7,n}, m; = path(L,q,P;,R;) for
1=1,2, P > P5, and 7,7 the trans and emit constraints used for the expansion
step. Thus y = {m,7,n} and y' = {m, w2, 75, 7,n} where 7} is expanded from
7. To show joinability, we show the stronger property of the existence of a state

/

z with y > 2z <4 y/. We select z = {m1, 7], 7,m}, where 7] is expanded from
7r1E| The probability in 7] is greater or equal to that of 75, which means that a
pruning of 7 is possible when both are present. Joinability is shown as follows.

expand prune prune expand

/ / /
Yy = z {771’77177T2,T77I} A {771’77177'[-2771-2’7’77} Yy

(#i) As case ii but with Py > Py and y = {ma, 7,n}; proof similar and omitted.

Thus all a-critical corners are joinable. There are no critical 8 corners, as
whenever z’ &~ z s y, the rule r can apply to ' with an analogous result, i.e.,
there exists a state y’ such that 2/ +» ¢/ &~ y. This finishes the proof of confluence
modulo ~.

1 It may be the case that m; was produced and pruned at an earlier stage, so the
propagation history prevents the creation of 7 anew. A detailed argument can
show, that in this case, there will be another constraints 77 in the store similar to
w1 but with a > probability, and 77 can be used for pruning w5 and obtain the

desired result in that way.



7 Confluence of Union-Find Modulo Equivalence

The Union-Find algorithm [14] maintains a collection of disjoint sets under union,
with each set represented as a tree. It has been implemented in CHR by [15]
who proved it nonconfluent using critical pairs [5]. We have adapted a version
from [0], extending it with a new token constraint to be explained; let UFyoxen
refer to our program and UF to the original without token constraints.

union @ token, union(A,B) <=> find(A,X), find(B,Y), link(X,Y).
findNode @ A "> B \ find(A,X) <=> find(B,X).

findRoot @ root(A) \ find(A,X) <=> A=X.

linkEq @ link(A,A) <=> token.

1link @ root(A) \ link(A,B), root(B) <=> B "> A, token.

The > and root constraints, called tree constraints, represent a set of trees. A
finite set T" of ground tree constraints is consistent whenever: for any constant a
in T', there is either one and only one root (a) € T, or a is connected via a unique
chain of > constraints to some r with root(r) € T. We define sets(T) to be
the set of sets represented by T, formally: the smallest equivalence relation over
constants in T that contains the reflexive, the transitive closure of ~>; set(a,T)
refers to the set in sets(T') containing constant a.

Our allowed queries are ground and of the form TUU U {token}, where T is
a consistent set of tree constraints, and U is a set of constraints union(a;,b;),
where a;,b; appear in T. The invariant I is defined by reachability from these
queries. By induction, we can show the following properties of any I-state S.

— Either S =T UU U {token}, where T is a consistent set of tree constraints
and U a set of union constraints whose arguments are in 7', or
- S =TUUU{link(A;,A45)} U F; UF; where T,U are as in the previous
case, and for i =1, 2,
e if A; is a constant, F; = (), otherwise
e [, ={find(a;,4;)} or F; = {(a; = A;)} for some constant a;.

As shown by [15], UFq is not confluent in the classical sense, which can be related
to the following issues.

(i) When the detailed steps of two union operations are intertwined in an un-
fortunate way, the program may get stuck in a state where it cannot finish
the operation as shown in the following derivation.
root(a), root(b), root(c), union(a,b), union(b,c) fa
root(a), root(b), root(c), link(a,b), link(b,c) >
b “> a, root(a), root(c), link(b,c)

(ii) Different execution orders of the union operations may lead to different data
structures (representing the same sets). This is shown in the following deriva-
tions from a query gy = {root(a),root (b),root(c),union(a,b)7union(b,c)}.
qo = root(a), root(c), b ~> a, union(b,c) s root(a), b "> a, ¢ "> a
qo i root(a), root(b), ¢ > b, union(a,b) fa root(b), b "> a, ¢ "> b

We proceed, now, to show that UFioen is confluent modulo an equivalence =,
defined as follows.



— TUU U {token} ~T"UU U {token} whenever sets(T") = sets(T").
- TUUU{link(4;, A0} UF UF, ~ T"UU U {1link (A}, A5} U F{ U F}
whenever sets(T) = sets(T") and for i = 1,2, that
e if A; is a constant and (by I) F; = (), then A} is a constant, set(A;,T) =
set(A;,T") and F =
e if A; is a variable and F; = {find(a;,A4;)} for some constant a;, then
F! = {find(a}, A} and set(a;,T) = set(a;, T'),
e if A; is a variable, F; = {(a; = A;)} for some constant a; with root(a;) €
T then F! = (a; = A})}, root(a}) € T" and set(a;, T) = set(al,T").

There are no critical as- and ag-patterns. The aj-patterns (critical pairs) of
UF toxen are those of UFy and a new one, formed by an overlap of the union
rule with itself. We reuse the analysis of [I5] who identified all critical pairs for
UFy; by Lemma [3] we consider only those pairs, they identified as non-joinable.

They identified eight non-joinable critical pairs; the first one (“the unavoid-
able” pair) concerns issue (71). Its ancestor state {find(B, A), root(B), root(C),
link(C, B)}, is excluded by I: any corner covered, B and C must be ground,
thus also the 1link constraint, which according to I excludes a find constraint.
This can be traced to the effect of our token constraint, that forces any union
to complete its detailed steps, before a next union may be entered. However,
issue (i) pops up in the new pattern for UFyoxen, ¥ <1 @ + y where:

x = {token,union(A, B),union(4’, B')}
y = {find(A, X),find(B,Y),1link(X,Y),union(A’, B')}
y' = {find(A’, X'),find(B’,Y’),1ink(X’,Y’),union(A, B)}

To show joinability of any corner covered by this pattern means to find z, 2’ such

that y Es 2 a2 < 1. This can be done by, from y, first executing all remaining
steps related to union(A, B) and then the steps relating to union(A’, B') to
reach a state z = TUU U {token}. In a similar way, we construct z’ =T'UU U
{token}, starting with the steps relating to union(A’, B’) followed by those of
union(A, B). It can be proved by induction that sets(T) = sets(T"), thus z = 2’.

Next, [15] identifies three critical pairs, that imply inconsistent tree con-
straints. The authors argue informally that these pairs will never occur for a
query with consistent tree constraints. As noticed by [6], these arguments can
be formalized using an invariant. The last four pairs of [15] relate to issue (i)
above; [I5] argues these to be avoidable when assuming procedural properties
of implemented CHR systems (which may seem a bit unusual in a context con-
cerned with confluence). In [6], those pairs are avoided by restricting allowed
queries to include only a single union constraint; we can allow any number of
those, but avoid the problem due to the control patterns imposed by the token
constraints and formalized in our invariant I.

This finishes the argument that UFioxen satisfies the a property, and by
inspection of the possible derivation steps one by one (for each rule and for the
“=" constraint), it can be seen that there are no critical 8 corners. Thus UFtoxen
is locally confluent modulo ~, and since tree consistency implies termination, it
follows that UFioken is confluent modulo =.



8 Discussion and detailed comments on related work

We already commented on the foundational work on confluence for CHR by [5],
who, by the use of Newman’s lemma, could devise a method to prove confluence
by inspecting a finite number of critical pairs. This formed also the foundation
of automatic confluence checkers [BI7II0] (with no invariant and no equivalence).

The addition of an invariant I in the specification of confluence problems for
CHR was suggested by [6]. The authors considered a construction similar to our
ap-corners and critical ap-patterns. They noted that critical a;-patterns usually
do not satisfy the invariant, so they based their approach on defining a collec-
tion of corners based on [-states as minimal extensions of such patterns. Local
confluence, then, follows from joinability of this collection of minimally extended
states. However, there are often infinitely many such minimally extended states;
this happens even for a natural invariant such as groundness when infinitely
many terms are possible, as is the case in Prolog based CHR. versions. We can
use this construction (in cases where it is finite!) to further cluster the space of
our critical corners, but our examples worked quite well without this.

Of other work concerned with confluence for CHR, we may mention [16] who
considered confluence for non-terminating CHR, programs, used recently by [17]
for a specific type inference problem. We may also refer to [I8] that gives an
overview of CHR related research until 2010, including on confluence.

9 Conclusion and future work

We have introduced confluence modulo equivalence for CHR, which allows a
much larger class of programs to be characterized as confluent in a natural way,
thus increasing the practical relevance of confluence for CHR.

We demonstrated the power of the framework by showing confluence modulo
equivalence for programs that use a redundant data representation (the set-as-
lists and Union-Find programs) and a dynamic programming algorithm (the
Viterbi program); all these are out of scope of previous confluence notions for
CHR. With the new operational semantics, we can also handle extra-logical and
incomplete built-in predicates, and the notational improvements obtained by
this semantics may also promote new research on confluence.

As a first steps towards semi- or fully automatic proof methods, it is im-
portant to notice that classical joinability of a critical pair — as can be decided
by existing confluence checkers such as [I0] — provide a sufficient condition for
joinability modulo any equivalence.

Thus only classically non-joinable pairs — in our terminology oy patterns —
need to be examined in more details involving the relevant equivalence; however,
in some cases there may also be critical oy, az and 3 patterns that need to
be considered. Machine supported proof methods for these parts need formal
and decidable specifications of (i) invariant and (%) equivalence, which may be
supplied by additional CHR programs. For (i), it may be done by checking for
violations, and for (i), such a program may normalize states into a canonical
form that can be compared in a straightforward way.
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