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Abstract. Translating time expression into absolute time points or du-
rations is a challenge for natural languages processing such as text min-
ing and text understanding in general. We present a constraint logic
language CLP(Time) tailored to text usages concerned with time and
calendar. It provides a simple and flexible formalism to express relation-
ships between different time expressions in a text, thereby giving a recipe
for resolving them into absolute time. A constraint solver is developed
which, as opposed to some earlier approaches, is independent of the order
in which temporal information is introduced, and it can give meaningful
output also when no exact reference time is available.

1 Introduction

Humans often prefer relative time expressions in text instead of explicitly time
stamping every event. Wordings like “two days later” are preferred when the
reference date is known, and it often gives good sense to the human reader even
without a reference date. For automated document analysis, correct identifica-
tion of the actual time or date may be important for text understanding and
data mining, where the goal may be to provide a time stamped list of events.

A document may also contain expressions that are relative to an implicit
time of writing. Here it may be interesting also to identify the time of writing.
References to known events may give a clue as in “Two years ago, when the last
Venus transit for the next 100 years took place, ...”, where a knowledge base of
astronomical events can help concluding that the text was written in 2014.

There are several problems involved in annotating a text with correct time
stamps. First of all, the time expressions, both relative and absolute, must be
identified; this a task for taggers and parsers for natural language. Secondly, the
relationship between the different time expressions must be determined (“two
years later than what?”), and thirdly, a bit of reasoning is needed to calculate
the correct time stamps from these relationships.

For the third task, constraint programming presents several advantages com-
pared to ad-hoc techniques. Constraints have been suggested for this earlier,
but has not gained popularity in any major text processing systems. We demon-
strate here how constraint logic programming (CLP) may give rise to an effective



mechanism for the third step, and also provide a flexible language in which to
express relationships between time expressions, thus also overlapping sub-task
two. CLP introduces a well-defined semantics, meaning that the calculated times
are correct solutions to the network of relationships set up by steps one and two.
It implies a robust and incremental evaluation scheme that is independent of the
order in which time expressions occur in the text: it can still manage if the only
absolute time is given at the very end of a text, or even if no absolute anchor
point in time is available. It also integrates in a natural way with knowledge
bases of known events which may help to situate a document in time.

We present a constraint logic language CLP(Time) equipped with a con-
straint solver tailored to the pragmatics of standard usages related to the Gre-
gorian calendar. It is implemented in the programming language of Constraint
Handling Rules [1], which provides a modular, rules-based and easily extendible
architecture. While time and duration in principle can be represented by inte-
ger and interval arithmetic, we develop specific datatypes relating to calendric
notions, so we may, e.g., add two months to a given month without knowing the
duration of those months or the year. It is language independent, but may be
extended with new sorts of constraints that reflect special usages. CLP(Time)
is currently being developed to support arbitrary intervals, such as “in the late
nineties” or “between May and August”, which is not described here.

Related work and state of the art are reviewed in section 2 as a background
for the present approach. The facilities of the constraint language are introduced
in section 3, and it is briefly shown how it can be tested together with Prolog’s
Definite Clause Grammars and with pre-tagged text. Section 4 demonstrates how
it applies for different sorts of text. The implementation of a constraint solver
with Constraint Handling Rules is sketched in section 5. Some conclusions and
ideas for future work are given in the final section.

2 Related work

To resolve time expressions in a text, one needs to 1) identify those expressions,
2) assign a formula to each such expression that sets the relationship to the
context of other time expressions in the text, and 3) to evaluate these formulas.1

The HeidelTime system [2,3], which is considered state of the art, is based on
a tagger which, via a specific rule format, can be adapted to different languages
and specific usages. Such rules are manually crafted, and they combine matching
of textual patterns with the building of a limited sort of arithmetic expressions;
this may involve relative distance to an assumed anchor time not specified ex-
plicitly in the rule. Evaluation has two different modes. In “narratives’ mode”,
all expressions are evaluated sequentially from the start of the document and

1 In the literature, e.g., [3], the term “normalization” has been used for the third phase.
Constraints provide more flexibility in phase 2 for specifying relationships. Phase 3
is a matter of a correct implementation of a constraint solver. Thus constraints tend
to make “normalization” a combination of phases 2 and 3.



in “news’ mode” every expression is evaluated relative to a fixed document cre-
ation time. Evaluation is problematic for narratives until a first absolute time
is met, and for news articles when document creation time is missing, but good
recall and precision figures are reported for selected classes of documents [3].
Handling of inconsistency (over-specification) is not described. Machine learning
have been used for identifying the time of writing for news articles from mentions
of historical facts, e.g., [4,5,6]; see also [7] for an overview and more references.

HeidelTime and other works referenced above do not use constraint tech-
nology for specification and evaluation of interdependencies, which could lead
to simpler and more transparent formulations; in fact constraint techniques are
not mentioned at all. Constraints, and especially constraint logic programming,
provide a uniform framework for expressing different dependencies and (under-)
specifications, which otherwise may give rise to a complex nomenclature (as
demonstrated by, e.g., [8,9]). Standard machine learning techniques have been
used to train recognizers of time expressions, but it helps only little for learning
how to evaluate them; we shall refrain from giving a literature overview of these
directions as the goals are different from ours.

Logically based formalisms for reasoning about time exist such as temporal
logics, the event calculus [10] or Allen’s theory [11], but they do not relate to
calendar conventions and everyday usages concerned with time and date. Con-
straint solvers related to time, dates and calendric data have been seen suggested,
e.g., [12,13]; these approaches involve very complex solving algorithms and do
not approach the problem of finding partial solutions in case of inconsistency.

No work has been found on constraint logic programming related to temporal
information in language usage. The work of [14] uses Constraint Handling Rules
(CHR) for relative time expressions in text already tagged with the methods
of [2,3] in order to correct for mistakes and unresolved expressions. This approach
used CHR as a programming language for flexible search back and forth in the
text in order to find reference points, but did not develop a proper constraint
solver as suggested in the present paper.

CHR has been used for semantic-pragmatic language analysis in combination
with parsers written in Prolog’s Definite Clause Grammar notation [15,16,17] or
using CHR for parsing [18,19]. CHR based techniques have been used for extract-
ing UML diagram from use case text [20,21]; this work includes an (although sim-
plistic) approach to pronoun resolution that has similarities to relative or indi-
rect time indications. Other applications of CHR for language processing include
parsing from Property Grammars [22], analyzing biological sequences [23,24] and
Chinese Word Segmentation [25].

3 A Constraint Language for Time Expressions

A constraint language called CLP(Time) is defined upon Prolog using its ex-
tension of Constraint Handling Rules [1]. We take over the basic nomenclature
of Prolog such as its terms, variables and operators, which may greatly en-
hance readability. In its present form, CLP(Time) can be tested immediately in



language analyzers written with Prolog’s Definite Clause Grammars and with
pre-tagged text imported from other systems. An implementation under devel-
opment is available at http://www.ruc.dk/~henning/clptime.

3.1 Datatypes and Basic Constraints of CLP(Time)

In the present version, the finest granule of time corresponds to dates, and dis-
tinguished types of terms are used to represent different units of time.

〈date〉 ::= date(〈month〉, n) 〈decade〉 ::= decade(〈century〉, n)
〈month〉 ::= month(〈year〉, n) 〈century〉 ::= century(n)
〈year〉 ::= year(〈decade〉, n)

The occurrences of “n” represent integer numbers of relevant size. For example,
the term date(month(year(decade(century(20),1),4),1),1) represents the
date of New Years day 2014.2 Terms or subterms may be replaced by variables,
so that decade(C,9) may represent “the nineties” in a yet unknown century.
Such terms should only be instantiated as to represent legal times according to
the Gregorian calendar since 1582. Type constraints are available, e.g., month(M)
states that variable M can only be bound to terms of type month (type constraints
for variables can be left out when the type is clear from context).

Expressions of the different types can be formed by adding or subtracting
units of a number of granules of similar size. Examples:

date(month(year(decade(century(20),1),4),1),1) + 3 days

month(Y,1) + 12 months

The first one refers to the 4th of January 2014 and the second one to the month of
January in the year following whatever year Y may end up representing. Equality
terms of the same type can expressed using constraints *=* and order of time
by *<* and *=<*. Examples:

Y1 *=* Y0 + 1 years

month(Y,3) *=<* M, M *<* month(Y1,5), Y1 *=* Y + 1 years

month(Y,3) *=<* M, M *<* month((Y + 1 years),5)

The first one means that Y1 and Y0 are years with Y1 being one greater than
T0. Two next ones state in different ways that M is a month between March
in the year given by Y and April the following year; the comma understood
as conjunction. Restrictions on possible values for numerical variables can be
specified by interval notation as follows; notice that this compound expression
denotes a single year with some uncertainty and not an interval of several years.

Y *=* year(decade(century(20),1),4) + N years, N in [3;6]

2 This notation makes it easy to write different conditions involving time, but may
seem clumsy for writing specific dates. Utilities are supplied for this so that the date
shown can be created and assigned to variable D by mk date(2014-01-01,D).

http://www.ruc.dk/~henning/clptime


Additional constraints are available for stating the day of the week, a leap year,
etc.. For example,

D1 *=* D0 + N days, N in [1;7], dayOfWeek(D1,2)

means that date D1 stands for “next Tuesday” relative to D0.
A constraint failed(· · · ) is used for handling inconsistencies caused by prob-

lems in the text; it should not be used in specifications of dependencies, but used
solely by the constraint solver; described in the end of section 5.

3.2 Using CLP(Time) with Definite Clause Grammars and Prolog

CLP(Time) can be used directly from Prolog programs, in particular its gram-
mar notation as demonstrated in the following fragment.

event(E,D) --> event(E), [happened, on], date(D).

date(D) --> [the], ordinal(O), [of], month(Mn), year(Yn),

{mk_year(Yn,Y), D *=* date(month(Y,Mn),O}.

year(_) --> [].

year(N) --> [N], {integer(N)}.

event(venus_transit) --> [the, transit, of, ’Venus’].

Parsing the fragment such as “The transit of Venus happened on the sixth of
June”, produces a syntax tree node event(e,d), where e describes the event
and d a date whose value is to be determined by the constraint solver. Calling a
constraint within the curly bracket part of a grammar rule means to cast it off
into the constraint store, so that the constraint solver can evaluate it.

Pre-tagged text may be converted into a Prolog list and processed by gram-
mars as above, adapted to take the different tags into account. CHR can also be
used for traversing a text represented as token constraints indexed by position
numbers as done by [14] or using CHR Grammars [19].

4 Semantics and Evaluation of Time Expressions

Here we demonstrate how CLP(Time) can model time dependencies in different
sorts of texts. Since this paper is not about syntax analysis, we show text frag-
ments (first column below) together with constraints (second column) modelling
their content with respect to time and indicate the solutions (third column) pro-
duced incrementally by the solver. The function symbols that define the data
types for the different time units are abbreviated to save space.

4.1 Narrative with Initial Time Indication

The following shows a text where every time expression can be evaluated im-
mediately from the value of the previous one, similarly to the narrative mode of
HeidelTime [2,3].

It all began in 1864 . . . Y0 *=* y(de(c(18),6),4) Y0 = y(de(c(18),6),4)

. . . three years later . . . Y1 *=* Y0 + 3 years Y1 = y(de(c(18),6),7)

. . . the 17th of May that year . . . D2 *=* d(m(Y1,5),17) D2 =
d(m(y(de(c(18),6),7),5),17)



4.2 Narrative without Anchor Time or with Anchor Time at the
End

Also without a given anchor time, CLP(Time) and its constraint solver still
give meaningful output as it propagates also partly know information as far as
possible.

. . . some year . . . Y0 Y0 (uninstantiated)

. . . three years later . . . Y1 *=* Y0 + 3 years Y1 *=* Y0 + 3 years

. . . the 17th of May that year . . . D2 *=* d(m(Y1,5),17) D2 = d(m(Y1,5),17)

. . . the 18th of June Y3 *=* Y1 + 1 years Y3 *=* Y0 + 4 years
the following year . . . D3 *=* d(m(Y3,6),18) D3 = d(m(Y3,6),18)

. . . which was 1867 . . . Y3 *=* y(de(c(18),6),8) Y3 = y(de(c(18),6),8)
Y1 = y(de(c(18),6),7)
Y0 = y(de(c(18),6),4)
D3 =

d(m(y(de(c(18),6),8),6),18)
D2 =

d(m(y(de(c(18),6),7),5),17)

If the story had ended immediately before the last phrase, the collected result
can still be taken as meaningful output. When a time point that serves as anchor
is introduced at the end, everything resolves into definite times.

The following examples show that the solver adds offsets to dates whenever
it is safe, and propagates other safe information, but needs to delay in case an
end of a month, whose number of days is uncertain, is exceeded.

— D1 *=* D1 =
d(m(y(De,7),2),20) + 10 days d(m(y(De,7),3),2)

— D2 *=* D2 *=*
d(m(y(c(19,De),Y),2),20) d(m(y(c(19,De),Y),2),20)

+ 10 days + 10 days
D2 =
d(m(y(c(19,De),Y),3), )

In the first example, we add 10 days to Feb. 20 in a year ending with -7 so we
know that the month has 28 days, and the addition and shift of month is safe.
In the second we do the same but concerned with a February month in some
unknown year in the 20th century. The addition cannot be made, but the year
and new month being 3=March can be propagated into D2 which may trigger
yet other evaluations to be made.

4.3 News Style Article with Mixed Anchor Points

Here we illustrate a news style text which also has narrative style relationships.

(day of newspaper DayOfPrint *=* DayOfPrint =
is 2014-06-23) d(m(y(de(c(20),1),4),6),23) d(m(y(de(c(20),1),4),6),23)

. . . 2 years ago . . . DayOfPrint *=* d(YearOfPrint,_) YearOfPrint = y(de(c(20),1),4)
Y0 *=* YearOfPrint - 2 years Y0 = y(de(c(20),1),2)

. . . the Venus transit took D1 *=* D1 =
place June 6 . . . d(m(Y0,6),6) d(m(y(de(c(20),1),2),6),6)

. . . and a week later . . . D2 *=* D1 + 7 days D2 =
d(m(y(de(c(20),1),2),6),13)



This example may be varied, assuming that the issue date for the newspaper
is not known, but there is a knowledge base about astronomical events and the
dates when they occurred in terms of a predicate event(event,date). Then we
might have as result in the second line that Y0 is still unknown, and then in
the third line a call event(venus transit,d(m(Y0,6),6)) would instantiate
Y0=y(de(c(20),1),2) and following that YearOfPrint=y(de(c(20),1),4).

5 A Constraint Solver for CLP(Time)

As mentioned, the constraint solver is implemented in Constraint Handling
Rules [1] (CHR). For reasons of space, we can only give a very brief sketch of
the principles. CHR can be understood as rewriting rules over constraint stores;
it has different sorts of rules, but in the fragment shown below we use only sim-
plification rules. A rule of form constraints-before <=> guard | constraints-after
can apply if a collection of constraints matching the pattern constraints-before is
found in the store and the test in guard succeeds; in that case constraints-before
are replaced by constraints-after. The after part may also refer to auxiliary code
written in Prolog. We show here some of the rules for processing constraints of
the form “· · · *=* date + n days” (they are preceded by rules that brings all
applications of plus into this form). The version shown here is slightly simplified
as it ignores constraints of the form “in numeric-interval”.

T *=* date(M,Dn) + N days <=>

ground(Dn), ground(N), DnN is Dn+N,

lastSafeDateInMonth(M,Max),

DnN =< Max

|

T *=* date(M,DnN).

T *=* date(M,Dn) + N days <=>

ground(Dn), ground(N), DnN is Dn+N,

lastDateInMonth(M, Max), DnN =< Max

|

T *=* date(M,DnN).

T *=* date(M,Dn) + N days <=>

ground(Dn), ground(N), DnN is Dn+N,

lastDateInMonth(M,Max), DnN > Max

|

Dn1 is DnN-Max-1,

T *=* date(M1,1) + Dn1 days,

M1 *=* M + 1 months.

The two first rules apply when an addition can be made giving a new day-of-
month guaranteed not to lead into the following month. The first one uses the
auxiliary predicate lastSafeDateInMonth; if the month is completely unspeci-
fied or is a Feb. in an unknown year, it returns 28, and when more information
is present it returns the highest safe number (28 or 29 for Feb., 30 or 31 for oth-
ers). The second rule takes care of cases not caught by the first rule using a more



precise test (due to the first rule, actually only involved when the incremented
date will be a 29th, 30 or 31). The last rule applies when the incremented date
is in a later month.

Inconsistency Handling

An inconsistent set of constraints may arise due to misconceptions in a text.
A basic constraint solver, incapable of handling inconsistency, may include the
following rule.

T *=* month(Y,Mn) <=> T=month(Y,Mn).

It is executed when an absolute date is entered or an increment has been suc-
cessfully added. An inconsistency manifests itself by the left and righthand sides
being non-unifiable, and thus the execution of the equality predicate will result
in the whole computation failing – which is logically correct as there is no so-
lution to the total set of constraints. We can avoid this and still get a partial
solution using a constraint failed(· · · ) in the following way.

T *=* month(Y,Mn) <=> (T=month(Y,Mn) -> true ; failed((T=month(Y,Mn))).

The arrow-semicolon notation stands for if-then-else, so if the unification suc-
ceeds, everything is fine, otherwise we record that failure would have occurred
if the unification had been enforced. Evaluations before and after the critical
point are still executed. The constraint solver can be extended, so it indicates
the position of a possible source of inconsistency in the text.

6 Conclusions

A constraint logic language CLP(Time) is introduced which can specify a wide
range of dependencies between time expression in a natural language text. A con-
straint solver is demonstrated that can evaluate these expressions independently
of the order in which anchoring times may be introduced, and it can produce
meaningful results also when such anchors are absent. These properties, which
do not hold for some state-of-the-art systems, are inherent in constraint solv-
ing, so the main message of this paper is to advocate constraint technologies for
resolving time expressions.

CLP(Time) is intended to be used together with language analyzers capable
of setting up relevant constraints, which is not a trivial task, and the results
obtained will critically depend on the quality of the language analyzer. However,
realistic tests together with a capable analyzer are yet to be made. Fragments of
the constraint solver programmed in a rule-based fashion were shown, indicating
a highly modular and easily extendible structure. This makes it a reasonable
task to add new facilities, for example to match special usages in a particular
language or more specific, idiomatic expressions used in a particular corpus.



For the implementation, we avoided finite domain techniques that have some
drawbacks for calendric data. These techniques are not fitted for an incremen-
tal, detailed propagation of values necessary to figure out, say, that adding two
days to a date which is the 28th of some yet unknown month in the 1900 years
will preserve the century (and carry over variables referring to decade, year in
decade and perhaps to the month), as we have demonstrated. Furthermore, a
finite domain constraint solver typically works in two phases, first it collects and
simplifies constraints, then at the end there is a grounding phase that attempts to
assign concrete values to the variables; this is opposite to the incremental prop-
agation of as much information as possible as we have aimed at. The modular
structure of an implementation in Constraint Handling Rules makes it possible
to add rules one by one for different special cases taking care of the particulari-
ties of calendric data and relationships that distinguish them from plan integer
arithmetic. As mentioned, CLP(Time) and its constraint solver is currently be-
ing extended to handle different sorts of time intervals that we did not describe
in the present paper. Our approach to handle inconsistency introduces a new
research topic of identifying a best or minimal repair of an inconsistent set of
time constraints, where our current version just pics an arbitrary one determined
by the constraint solver’s internal evaluation order.
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