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This paper suggests a new construct to capture negative
hypothesis in database query languages. Counterfactual exceptions,
as the construct is called, are specialized constraints in queries, that
serve as means to suppress part of the database. The expressibility ob-
tained is closely related to what is captured by possible world coun-
terfactuals, but the semantic characterization becomes simpler and an
implementation can be obtained in a straightforward way. The logi-
cal semantics is described in terms of model and completion construc-
tions. An inference system is obtained by a modification of

. Also a generalization into a language with hypothetical impli-
cation goals and positive as well as negative hypotheses is suggested.

Most database query languages offer the expressive power of restrict-
ed first-order logic. Negative constraints in queries are typically ex-
pressed using negation as failure interpreted under the closed world
assumption. Such negative constraints provide the only means of sup-
pressing part of the database. For that purpose, however, negation as
failure is quite limited. Suppression expressed by negation as failure
falls down in cases where the negated atom does not naturally unify
to other atoms in the query.

To capture more expressivity as far as the indicated need of sup-
pression is concerned, we introduce in this paper a construct called

. A counterfactual exception is a negative
hypothesis specified in the query. Our concern is to express counter-
factual implication premises with a reading like “suppose it was not
so that ” and thereby suppress a part of the database correspond-
ing to in the evaluation of the query. For instance, in the query

, a counterfactual ex-
ception is embedded, “suppose it was not possible to fly”, and thereby
is expressed a need for a travel with any possible flights suppressed.
Thus for a database of travel information and the query above,
the idea is to evaluate against
updated with : . We are referring to
a world without flights, but in any other respect as close as possible
to the current world. The traditional treatment of this is by possible
world counterfactual implication as originally suggested by Lewis in
[10].

We propose a new mechanism treating negative hypotheses as ex-
ceptions to the predicates mentioned and achieve a much simpler se-
mantics, declaratively as well as procedurally, while still preserving a
mechanism which we believe to be useful for database applications.
Definition and examples are given in section 2.

In some cases negation as failure may serve the same purpose as
counterfactual exceptions and we have a close relation to possible
world counterfactual implication. We compare other approaches and

counterfactual exception in section 3. Querying can be described by
an extension of the rule and we show how this can
be implemented in a vanilla-like interpreter — which in turn indi-
cates that the mechanism can be implemented in more efficient ways
without additional overhead. We cover inference and discuss an inter-
preter in sections 4 and 5. We show, in section 6, how this framework
can be used to define a language with hypothetical implication goals
with positive as well as negative hypotheses and show how the mech-
anism can be combined with negation as failure. — We have consid-
ered in this paper only the function free case, but our framework can
be generalized to languages with function symbols. Finally we give a
perspective and discuss related work in section 7.

We consider deductive databases (or Datalog programs) consisting of
clauses of the form:

where are function free atoms; variables are universally
quantified within each clause. In the framework to be defined, we use
the notation to represent the informal query “if the exceptions
expressed by were the case, can hold?” The semantics is inher-
ently difficult as the premise might be inconsistent with the given
database; if we interpret as classical implication it becomes
uninteresting as anything follows from a false premise. Such coun-
terfactual implications has been studied in detail by several authors
[19, 10, 7, 16] and the most common way to achieve a reasonable in-
terpretation is by the possible world semantics originally suggested
by Lewis [10], saying that holds in any world “maximally similar”
with the real world (i.e., the database) in which holds. This con-
struction involves also tracing the necessary “reasons” why could
be the case and this is exactly where our mechanism differs; we illus-
trate the difference by means of examples in section 3 below.

We consider a restricted form of counterfactual implications, closed
formulas of the form

with

where are atoms, a conjunction of atoms; each subfor-
mula is called a . Any variable
quantified at the outermost level is said to be , all other vari-
ables in the ’s are . For simplicity we begin by considering the
case without global variables and thus with ground.
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3 COUNTERFACTUAL EXCEPTIONS,
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least model

consequence operator
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The semantics of the new implication arrow is defined by means of
a generalization of the traditional fixpoint semantics for logical pro-
grams (see [11]). Given a database , we will recognize a formula

as true if and only if where is
for under the exceptions defined as follow,

lfp

that is, as the least fixed point of the function , where is the
following generalized .

has a clause with a ground instance

with for all and is consistent

In other words, we allow those immediate consequences of clauses
in the database that do not conflict with the exceptions. Notice that
consistency in the special case applied here is decidable; we will be
more specific about this point below.

We illustrate the least model for the database consisting the
following three clauses,

.

Here we have that

, while

, and

.

Notice in the first example that stands for an empty set of ex-
ceptions and in this case the least model coincides with the usual least
model for the program .

The semantics for the general form of counterfactual implication
can be defined by expressing the existential quantification of global
variables at the meta-level as follows.

The formula follows from a database

whenever has an instance with .

The use of negation as failure in queries with counterfactual excep-
tions can be justified by an equivalent semantic definition based on
a generalized completion construction (cf. [1]). The clauses defining
a given predicate are joined together as a bi-implicature formula and
in our case we take into account the exceptions concerned with that
predicate. We use the notation comp for the for
under counterfactual exception . We leave out the definition and il-
lustrate the construction by the following examples.

comp

comp

comp

We can show the following equivalence between the completion and
the model-based semantics.

is an atom such that comp

We define, thus, the following semantics for negation as failure.

not holds iff

The following example illustrates the use of counterfactual exceptions
in database applications.

We will consider the following traveling information
database .

The counterfactual implication query “I want to travel from to ,
but I refuse to sail from to ”,

obviously succeeds since

.

The query “I want to travel from to , but I refuse to fly”,

succeeds since

.

The following expresses “I want to travel from to , but I refuse to
sail into the harbor of ”.

We can show the use of global variables in the query “I want to travel
from to a place where I do not arrive by train”.

We should stress that counterfactual exceptions also may concern in-
formation which is not represented as facts in the database but implied
from other facts. The following example may be relevant if you had
all your luggage stolen in on your last travel. “I want to travel from

to , but I refuse to pass by ”,

.

Having a careful look at the semantic definition, we observe that it is
forbidden to apply any via in the evaluation of
but it is still possible to use, say, for other purposes than
“linking” our traveler.

As mentioned in the introduction, we may view counterfactual excep-
tions as a means of suppressing part of the database. In the following,
we compare with negation as failure, which in some cases also may
apply for this purpose, and with the different semantics provided by
possible world counterfactual implication.
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4 INFERENCE UNDER COUNTERFACTUAL
EXCEPTIONS

5 AN INTERPRETER CAPTURING
EXCEPTIONS

applied

possible world counterfactual implication

counterfactual exceptions

modus ponens

head body

if and only if

clause( , )

% prove( , )

prove( , true):- !.

prove(Cf, (A,B)):-
!, prove(Cf, A), prove(Cf, B).

prove(Cf, A) :-
clause(A,B),
consistent(A, Cf),
prove(Cf, B).

A

dif(-,-)
dif( , )

dif

person X employee X ,
person X student X , . . .

X student X
person Y person X , student X

X

X,Y flight X, Y
travel a, d

a d
travel a, d , f light X, Y

q p

p DB q
DB

q DB

q p

p DB q

p DB q

DB rains copenhagen , cloudy X rains X

cloudy copenhagen
Q

Q rains copenhagen cloudy copenhagen

DB cloudy X rains X
Q

cloudy copenhagen
rains copenhagen

Q

Q cloudy copenhagen rains copenhagen

DB cloudy X rains X Q
DB rains copenhagen

Q

cloudy copenhagen
rains copenhagen

φ ψ φ
φ ψ

φ
DB

β β α

α
φ α

ψ DB ψ M

φ ψ φ ψ

s t
s t

Exceptions provide a way to express that something is to be ig-
nored, in the sense that it must not be in the evaluation of a
goal. Negation as failure is something quite different because it states
that something cannot be the case.

Consider the following database.

.

For this database, there is no difference between
and not . However, this is a

special case in the sense that the range of is restricted by the uni-
fication in the query.

Continuing example 2.1, we notice that
is independent of whether there exist flights (it suc-

ceeds even though there exists a travel from to which involves
flights). On the other hand not will of
course fail. In section 6 we describe a language providing both nega-
tion as failure and exceptions, and we describe principles for an im-
plementation.

For [10, 19, 7, 16], the
main concern is consistency between the hypothesis and (a revision
of) the database, thus is evaluated as follows:

is evaluated in possible worlds , obtained as revisions of
,

thus, is consistent with

For , we so to say narrow the scope to con-
sistency with the proof, thus is:

is evaluated in such that only formulas consistent with
are applied,
thus, is evaluated in such that is consistent with the proof.

We illustrate the difference between the two interpretations by means
of the following database example.

Within this database obviously holds. Now,
consider the query , embedding the hypothesis that “it does not rain
in Copenhagen”:

:

In the possible world interpretation the query expresses something
like “Suppose it was not raining, would it then be cloudy in Copen-
hagen?” and the answer becomes “no”, since the “world without rain
in Copenhagen”, (the hypothetical state of the database, that is) must
be

By exception, the query expresses “Even if it is not raining, can
it possibly be cloudy in Copenhagen?”. The answer again becomes
“no”, because it is not possible to derive with-
out applying .

Now, consider the query , expressing the hypothesis that “it is
not cloudy in Copenhagen”:

:

By possible world interpretation the query expresses “Suppose it was
not cloudy, would it then be raining in Copenhagen?”. In this case we
have two possible states with “no clouds over Copenhagen”. The state

implies the answer “no” to ,
while the state obviously leads to

the answer “yes”. Thus the answer to by possible world interpre-
tation would be “don’t know”.

By exception, on the contrary, the query expresses “Even if it is not
cloudy, can it possibly be raining in Copenhagen?” and the answer
is “yes” — we do not need to apply to derive

.

As noticed above, a query with exception means that only
formulas that are consistent with should be used in the proof of .
We can use this principle to formalize a deductive system for such
queries by the following modification of .

Assume a fixed exception (posed in the query) and a database
. For simplicity, we give the rule in a form suited for the ground

case; nonground clauses and queries are covered by considering the
sets of their ground instances.

when consistent

The resulting deductive system is obviously sound and complete, i.e.,
where is the proof relation defined by

this deductive system.

The deductive system can be made into a running interpreter by a
modification of the well-known Vanilla interpreter. The underlying
Prolog semantics provides a correct handling of variables in queries
and clauses, which we had abstracted away in the deductive system.

The clauses of the database are represented by a predicate
with variables given as Prolog variables. The

exceptions appear as an explicit argument in the interpreter in order to
provide the necessary communication through the global variables.

The completion semantics gives a hint for an implementation of the
consistency condition. The selected atom must satisfy a condition
of non-unifiability with each atom appearing negatively in the excep-
tions. To this end, we use a declarative predicate as is
found in, e.g., Sicstus Prolog [18]. A call will delay a test
for syntactic inequality until the moment that and are sufficiently
instantiated to tell them either identical or non-unifiable; this provides
a “lazy” evaluation strategy whose overall behaviour is consistent with
the ground-case deductive system above.

Each exception gives rise to a condition derived in the following
way; a straightforward call to between two atoms is not suffi-
cient. We have to distinguish between local and global variables and
also take into account any possible aliasing expressed by local vari-
ables. We analyze the arguments in each exception’s atom in the fol-
lowing way.
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6 NEGATIVE COUNTERFACTUALS IN
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c G

dif(c,X) dif(G,X) X
A

fail

dif(X ,X ) X X

dif(-,-)

A

A = p(X1, X2, X3, X4, X5)
-> dif((X1,X2,X4), (a,G,X5)) ; true

-> ,

A = flight( , ) -> fail ; true

dif(-,-)

dif

link(X,Y):- dif(Y,c), boat(X,Y).

link(X,Y,G):- dif(Y,G), boat(X,Y).

prove

An argument which is a constant or global variable must al-
ways be different from the corresponding argument in the selected
atom. This amounts to a test or where
refers to the corresponding argument in the selected atom .
A local variable occurring only once will always unify with the
corresponding argument of the selected atom. This corresponds to
always .
A local variable which occurs as the th as well as the th argument
implies a test where and refers to the corre-
sponding arguments of the selected atom.

Finally, these tests are merged together in a single call to
to express their disjunction.

Consider, as an example, an exception
where is constant and a global vari-

able. When refers to the selected atom, the consistency test can be
implemented by the following piece of Prolog code.

The syntax denotes an if-then-else construction in
Prolog.

In case of an “exhaustive”exception such as ,
the consistency test falls down to the following.

The answers provided by this interpreter consists of bindings to vari-
ables together with a (perhaps empty) collection of unresolved

calls. Under the assumption of infinitely many constant
symbols, this represents a satisfiable set of equations and inequali-
ties, so the interpreter is sound. Concerned with completeness, it is
easy to prove to following statement: “If it were the case that Pro-
log had used breadth-first search for selecting clauses, then this meta-
interpreter would have been logically complete.”

The metainterpreter is suited for prototyping and it is easy to imag-
ine a much more efficient implementation as a straightforward mod-
ification of a Datalog interpreter written in some low-level language.
Negation as failure will work immediately for queries without global
variables; we consider the case with global variables in section 6 be-
low.

Efficient Prolog programs can be produced by partially
evaluating the meta-interpreter with respect to a particular set of ex-
ceptions. For each clause in the original database,we get a new clause
extended with code for those exceptions that concern the predicate in
the head of the clause.

We consider first a case without global variables occurring in the
exception. We continue example 2.1 and consider queries of the fol-
lowing form.

Each clause concerned with the predicate will be equipped with
a test as shown in the following example.

Global variables are treated similarly to constants, except that an ad-
ditional argument must be added to each predicate to provide com-
munication in global variables. Considering queries of the following
form,

,

the partially evaluated program will now include the following clause.

We will show here how our notion of counterfactual exceptions can
be integrated in a language with hypothetical implication goals in the
body of a clauses.

An operational semantics for implication goals in a language with-
out negative constructs can be derived from the classical deduction
theorem (see, e.g., [3]),

iff .

Thus, in order to prove , extend the program with the clauses
contained in and prove in the usual way. This principles has been
used in the design of several programming languages, we can refer to
[4, 13, 5, 6, 14, 12].

In our language, we can have exceptions as well as positive clauses
as hypothesesand we have also included negation as failure. The over-
all structure of the language is given by the following grammar.

database ::= clause clause exception exception
clause ::= atom goal goal
goal ::= atom database goal goal not goal

Global variables in an exception may be quantified at the level of the
surrounding implication goal or at the clause level.

The database component of a hypothetical implication goal will
serve as an extension to the current database in such a way that the
order in which the clauses and exceptions have been added is pre-
served. A given set of hypotheses is written as where refers
to clauses, to the exceptions. We can thus write the database avail-
able at the th level of embedded implication as
where is a sequence constructor, is the initial database.

The semantics is defined by a deduction system that determines a
relation between such layered databases and goals; as before, the
deduction system is described for ground queries and clauses, the gen-
eral case is covered by considered the set of all their ground instances.

The rule for hypothetical implication goals shifts the premises into
the database component.

In the modified rule we let a given clause be restricted
by exceptions that are more recent that the clause but not by previous
ones that the clause is supposed to override.

when consistent, 1

Negation as failure is covered as follows.

not iff we do not have

We can construct an implementation for this language by a straight-
forward extension of the Vanilla-like interpreter shown in section 5.
The current database should be passed as an additional argument to
the predicate. A ground representation (i.e., with constants to
name variables) is recommended here whereas variables in the query
should appear as Prolog variables; the must, then,
include an explicit instance-of condition to create variants of database
clauses with new Prolog variables. Notice that global variables may
appear as Prolog variables in the database argument. For a background
on these rather technical matters, see [8].
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prove((not Goal), DB):-
when(ground((Goal,DB)), + prove(Goal,DB)).

+

dif(-,-)
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In the implementation of negation-as-failure, we use co-routines
in order to avoid the unsound behaviour demonstrated by most Pro-
log systems. The following Prolog clause, which uses special Sicstus
Prolog constructs, will do the job.

An invocation of it will delay the call in the body until it becomes
ground; “ ” is Sicstus Prolog’s notation for the traditional approxi-
mation of negation as failure which is sound for ground goals. If end
of execution is reached and there are still such delayed calls, the com-
putation is characterized as floundering and no answer is provided.
However, if all clauses are range restricted this cannot happen.

A concrete syntax and an actual implementation of the language
has been developed and described in [15].

We have suggested the use of counterfactual exceptions as hypotheses
in database queries as a means to limit the relevant answers by sup-
pressing certain parts of the database. We have also shown how this
mechanism fits into a language with hypothetical implication goals
and negation as failure. The approach is related to possible world coun-
terfactual implication [10], but is characterized by a straightforward
semantics and implementation.

Logic programming with exceptions have been studied previously
by [9]. They consider only exceptions being part the program, not
as hypotheses likely to be inconsistent the actual database. On the
other hand, they can define exceptions by arbitrary clauses. This im-
plies that answer sets are not unique, as is the case in our approach.
The clauses we obtain by partially evaluating our interpreter, exam-
ple 5.1, appear as optimized versions of the outcome of the transfor-
mation suggested by [9], improved also in the sense, that the use of
the technology makes our programs terminate in mean-
ingful states in cases where the corresponding programs of [9] give
up as floundering.

Metalevel negation as featured in Reflective Prolog [2] can be used
to express our counterfactual exceptions as well as the mechanism of
[9]. The programmer supplies, at the metalevel, “solve” rules which
extends the basic interpretation strategy for the object language to-
gether with “solve not” rules. A goal is consider to hold if can be
proved by the “solve” predicate unless “solve not” also holds for it.
In the present context, we can consider Reflective Prolog a powerful
implementation language, which leaves it up to the programmer to
decide upon the logical semantics of the object language.

We notice that the referenced approaches [9, 2] can handle a sub-
stantial portion of Reiter’s default logic [17], where we cover only a
small part. We have concentrated on a conceptually and technically
simpler mechanism while still retaining an interesting expressibility
with respect to database querying. The use of global variables appear-
ing simultaneously in the exceptions as well as in the positive part of
the query seems to be unique to our approach.

In section 6 we mentioned a number of other languages with hy-
pothetical implication goals but we are not aware of other approaches
with exceptions in the hypotheses. It seems possible that our approach
can be combined with that of [9] to include the more general kinds of
exceptions as hypothesis.


