Counterfactual exceptionsin deductive database queries

TroelsAndreasen and Henning Christiansen®

Abstract. This paper suggests a new construct to capture negative
hypothesis in database query languages. Counterfactual exceptions,
as the construct is called, are specialized constraints in queries, that
serve asmeansto suppress part of the database. The expressibility ob-
tained is closely related to what is captured by possible world coun-
terfactual s, but the semantic characterization becomes simpler and an
implementation can be obtained in a straightforward way. The logi-
cal semanticsisdescribedin termsof model and completion construc-
tions. Aninference systemis obtained by amodification of modus po-
nens. Also a generalization into alanguage with hypothetical impli-
cation goalsand positive aswell as negative hypothesesis suggested.

1 INTRODUCTION

Most database query languages offer the expressive power of restrict-
ed first-order logic. Negative constraints in queries are typically ex-
pressed using negation as failure interpreted under the closed world
assumption. Such negative constraints provide the only meansof sup-
pressing part of the database. For that purpose, however, negation as
failureis quite limited. Suppression expressed by negation asfailure
falls down in cases where the negated atom does not naturally unify
to other atoms in the query.

To capture more expressivity as far as the indicated need of sup-
pression is concerned, we introduce in this paper a construct called
counterfactual exceptions. A counterfactual exception is a negative
hypothesis specified in the query. Our concern is to express counter-
factual implication premises with a reading like “ suppose it was not
sothat M. ..” and thereby suppressapart of the database correspond-
ing to I in the evaluation of the query. For instance, in the query “1
want to travel from A to B, but | refuse to fly” , a counterfactual ex-
ception isembedded, “ supposeit was not possibleto fly”, and thereby
is expressed aneed for atravel with any possible flights suppressed.
Thus for a database D B of travel information and the query above,
the idea is to evaluate “ | want to travel from A to B” against DB
updated with Vfrom, to : —flight(from, to). We are referring to
aworld without flights, but in any other respect as close as possible
to the current world. The traditional treatment of thisis by possible
world counterfactual implication as originally suggested by Lewisin
[10].

We propose a new mechanism treating negative hypotheses as ex-
ceptions to the predicates mentioned and achieve amuch simpler se-
mantics, declaratively aswell as procedurally, while still preserving a
mechanism which we believe to be useful for database applications.
Definition and examples are given in section 2.

In some cases negation as failure may serve the same purpose as
counterfactual exceptions and we have a close relation to possible
world counterfactual implication. We compare other approaches and

1 Roskilde University, Computer Science Dept., PO.Box 260, DK-4000
Roskilde, Denmark

(© 1996 T. Andreasen and H. Christiansen

ECAI 96. 12th European Conference on Artificial Intelligence
Edited by W. Wahlster

Published in 1996 by John Wiley & Sons, Ltd.

counterfactual exception in section 3. Querying can be described by
an extension of the modus ponens rule and we show how this can
be implemented in a vanilla-like interpreter — which in turn indi-
cates that the mechanism can be implemented in more effi cient ways
without additional overhead. We cover inference and discussan inter-
preter in sections 4 and 5. We show, in section 6, how this framework
can be used to define alanguage with hypothetical implication goals
with positive aswell as negative hypotheses and show how the mech-
anism can be combined with negation as failure. — We have consid-
ered in this paper only the function free case, but our framework can
be generalized to languages with function symbols. Finally we givea
perspective and discuss related work in section 7.

2 COUNTERFACTUAL EXCEPTIONS,
DEFINITION AND EXAMPLES

We consider deductive databases (or Datal og programs) consisting of
clauses of the form:

Ag+— A1 N...NA,

where Ay, ..., A, arefunction free atoms; variables are universally
quantified within each clause. In the framework to be defined, we use
thenotation ¢ —» 1) to represent theinformal query “if the exceptions
expressed by ¢ were the case, can) hold?’ The semantics isinher-
ently difficult as the premise ¢ might be inconsistent with the given
database; if weinterpret ¢ —» 1 asclassical implication it becomes
uninteresting as anything follows from a false premise. Such coun-
terfactual implications has been studied in detail by several authors
[19, 10, 7, 16] and the most common way to achieve areasonablein-
terpretation is by the possible world semantics originally suggested
by Lewis[10], saying that) holdsin any world “maximally similar”
with the real world (i.e., the database) in which ¢ holds. This con-
struction involves also tracing the necessary “reasons’ why ¢ could
be the case and thisis exactly where our mechanism differs; weillus-
trate the difference by means of examples in section 3 below.

We consider arestricted form of counterfactual implications, closed
formulas of the form

3 (p)
with
b= (V- mfr) Ave A ()

where ¢1, . . ., ¢, are aoms, ¢ a conjunction of atoms; each subfor-
mula V- --—¢; is called a counterfactual exception. Any varisble
quantified at the outermost level is said to be global, all other vari-
ablesinthe ¢;’sarelocal. For simplicity we begin by considering the
case without global variables and thus with ¢ ground.

The semantics of the new implication arrow is defined by means of
a generalization of the traditional fixpoint semantics for logical pro-
grams (see[11]). Given adatabase D B, wewill recognize aformula
¢ —» ¢ astrueif and only if) € My, , where M7, isleast model
for DB under the exceptions ¢ defined as follow,

MgB = pr(TgB)

that is, asthe least fixed point of the function 7%, .., where T3, . isthe
following generalized consequence operator.

T .(I) = {a| DB has aclause with aground instance
a<+ Pi A NGk
with 8; € I foral ¢ and ¢ A « isconsistent}

In other words, we allow those immediate consequences of clauses
in the database that do not conflict with the exceptions. Notice that
consistency in the special case applied here is decidable; we will be
more specific about this point below.

We illustrate the least model for the database D By consisting the
following three clauses,

{p(X) + o(X), p(a), q(b)}.

Here we have that

ME e = {p(a), q(b), p(b)}, while
M5 = {p(a), q(b)}, and
M) = {p(a)}.

Notice in the first example that ¢rue stands for an empty set of ex-
ceptionsand in this case the least model coincideswith the usual least
model for the program D B.

The semantics for the general form of counterfactual implication
can be defined by expressing the existential quantification of global
variables at the meta-level asfollows.

Theformula3X; - -- X, (¢ —» v) follows from adatabase DB
whenever ¢ —» ¢ hasan instance ¢’ —» 1’ with vy’ € M .

The use of negation as failure in queries with counterfactual excep-
tions can be justified by an equivalent semantic definition based on
ageneralized completion construction (cf. [1]). The clauses defining
agiven predicate are joined together as a bi-implicature formula and
in our case we take into account the exceptions concerned with that
predicate. We use the notation comp‘fj g for the completion for DB
under counterfactual exception ¢. We leave out the definition and il-
lustrate the construction by the following examples.

compiyte = (p(Z1) > (Z1= X N q(X)) V Z1 = a)
Nq(Z2) <> Z2 = b)
comp /st = (p(Z1) < ((Z1 = X Aq(X))V Z1 = a) A Z1 # b)
Na(Z2) <> Z2 =b)
= (p(21) ¢ (Z1= X A (X)) V Z1 = a)
N(Z2) & (Za=bAVY Z2 #Y))

We can show the following equivalence between the compl etion and
the model-based semantics.

VY —q(Y)
compp,

MY, = {a|aisanatom such that comp?, , = o}
We define, thus, the following semantics for negation asfailure.

not (¢ —») holdsiff ¢ ¢ M2,

L ogic Programming, Theorem Proving and Search

341

Thefollowing exampleillustratesthe use of counterfactual exceptions
in database applications.

Example 2.1 We will consider the following traveling information
database D B.

{travel(X,Y) < link(X,Y),
travel(X,Y) < link(X, Z) A travel(Z,Y),
link(X,Y) + train(X,Y),
link(X,Y) + boat(X,Y),
link(X,Y) < flight(X,Y),
Flight(a, b), flight(b, ¢), flight(d,
train(a, b), train(c, d), boat(b, c) }

e), flight(e, a),

The counterfactual implication query “1 want to travel from a to d,
but | refuse to sail from b to c¢”,

(—boat(b, c)) —» travel(a, d)
obviously succeedssince
{ flight(a, b), flight(b,), train(c, d)} C M),
The query “1 want to travel from a to d, but | refuseto fly”,
(VX,Y - flight(X,Y)) —» travel(a, d)
succeeds since

travel(a,d) € M)y Yo flight(XY)
{train(a,b), tram(c, d), boat (b, c),
link(a,b), link(c, d), link(b, ¢),
travel(a, b), travel(c, d), travel (b, c),
travel(a, c), travel(a, d), travel(b, d) }.

The following expresses “| want to travel from a to d, but | refuseto
sail into the harbor of ¢”.

(VX —boat(X,c)) — travel(a, d)

We can show the use of global variablesin the query “I want to travel
from a to aplace where| do not arrive by train”.

X (VY ~train(Y, X)) —» travel(a, X))

We should stressthat counterfactual exceptions also may concernin-
formation whichisnot represented asfactsin the database but implied
from other facts. The following example may be relevant if you had
all your luggage stolenin ¢ on your last travel. “I want to travel from
atoe, butl refuseto passhby ¢”,

(VX =link(X,c)) A (VX -link(c, X))) —» travel(a,e).

Having a careful look at the semantic definition, we observethat it is
forbidden toapply any link(_, -) viacintheevaluation of travel(a, €)
but itisstill possibleto use, say, fligth(b, ¢) for other purposesthan
“linking” our traveler.

3 COUNTERFACTUAL EXCEPTIONS,
COMPARED

Asmentioned in the introduction, we may view counterfactual excep-
tions as ameans of suppressing part of the database. Inthe following,
we compare with negation as failure, which in some cases also may
apply for this purpose, and with the different semantics provided by
possible world counterfactual implication.

T. Andreasen and H. Christiansen

Exceptions provide a way to express that something is to be ig-
nored, in the sense that it must not be applied in the evaluation of a
goal. Negation asfailureis something quite different becauseit states
that something cannot be the case.

Consider the following database.

{person(X) + employee(X),
person(X) + student(X), ...}.

For thisdatabase, thereis no difference between (VX —student (X))
—» person(Y') and person(X), notstudent(X). However, thisisa
specia casein the sense that the range of X isrestricted by the uni-
fication in the query.

Continuing example 2.1, we notice that (VX,Y - flight(X,Y))
—» travel(a, d) isindependent of whether there exist flights (it suc-
ceeds even though there exists a travel from a to d which involves
flights). On the other hand travel(a, d), notflight(X,Y) will of
course fail. In section 6 we describe alanguage providing both nega-
tion as failure and exceptions, and we describe principles for an im-
plementation.

For possible world counterfactual implication [10, 19, 7, 16], the
main concern is consistency between the hypothesis and (arevision
of) the database, thus ~q —» p isevaluated asfollows:

e pisevaluatedin possible worlds D B’, obtained as —q revisions of
DB,
o thus, —qisconsistent with DB’

For counterfactual exceptions, we so to say narrow the scopeto con-
sistency with the proof, thus -q —» pis:

e pisevauated in DB such that only formulas consistent with —¢
are applied,
e thus, pisevauatedin D B suchthat —q isconsistent with the proof.

Weillustrate the diff erence between the two interpretations by means
of the following database example.

DB = {rains(copenhagen), cloudy(X) < rains(X)}

Within this database obviously cloudy(copenhagen) holds. Now,
consider the query @1, embedding the hypothesisthat “it doesnot rain
in Copenhagen”:

Q1: —rains(copenhagen) —» cloudy(copenhagen)

In the possible world interpretation the query expresses something
like “ Suppose it was not raining, would it then be cloudy in Copen-
hagen?’ and the answer becomes“no”, since the “world without rain
in Copenhagen”, (the hypothetical state of the database, that is) must
be DB’ = {cloudy(X) + rains(X)}

By exception, thequery Q1 expresses”Evenif itisnot raining, can
it possibly be cloudy in Copenhagen?’. The answer again becomes
“no”, becauseit isnot possibleto derive cloudy(copenhagen) with-
out applying rains(copenhagen).

Now, consider the query @, expressing the hypothesis that “it is
not cloudy in Copenhagen”:

Q2: ~cloudy(copenhagen) —» rains(copenhagen)

By possible world interpretation the query expresses"” Supposeit was
not cloudy, would it then be raining in Copenhagen?’. In this case we
have two possible stateswith “no clouds over Copenhagen” . Thestate
DB’ = {cloudy(X) « rains(X)} impliesthe answer “no” to Q,
while the state DB"' = {rains(copenhagen)} obvioudy leads to

L ogic Programming, Theorem Proving and Search 342

the answer “yes’. Thus the answer to Q; by possible world interpre-
tation would be “don’t know”.

By exception, onthe contrary, the query expresses“Evenif itisnot
cloudy, can it possibly be raining in Copenhagen?’ and the answer
is“yes’ — we do not need to apply cloudy(copenhagen) to derive
rains(copenhagen).

4 |INFERENCE UNDER COUNTERFACTUAL
EXCEPTIONS

As noticed above, aquery ¢ —» 1 with exception ¢ meansthat only
formulas that are consistent with ¢ should be used in the proof of .
We can use this principle to formalize a deductive system for such
queries by the following modification of modus ponens.

Assume a fixed exception ¢ (posed in the query) and a database
DB. For simplicity, we give therule in aform suited for the ground
case; nonground clauses and queries are covered by considering the
sets of their ground instances.

W when ¢ A o consistent
The resulting deductive systemisobviously sound and complete, i.e.,
{¢| DB F? ¢} = MY, where - isthe proof relation defined by
this deductive system.

5 ANINTERPRETER CAPTURING
EXCEPTIONS

The deductive system can be made into a running interpreter by a
modification of the well-known Vanilla interpreter. The underlying
Prolog semantics provides a correct handling of variablesin queries
and clauses, which we had abstracted away in the deductive system.
The clauses of the database are represented by a predicate
cl ause(head, body) withvariablesgivenasPrologvariables. The
exceptions appear asan explicit argument in theinterpreter in order to
provide the necessary communication through the global variables.

% prove(¢, ¢)
prove(., true):- !.
prove(df, (A B)):-
1, prove(d, A,
prove(Cf, A :-
cl ause(A B),
consi stent (A, Cf),
prove(Cf, B).

ifandonly if ¢ —» v

prove(Cf, B).

The completion semantics gives a hint for an implementation of the
consistency condition. The selected atom A must satisfy a condition

of non-unifiability with each atom appearing negatively inthe excep-

tions. To this end, we use a declarative di f (-, -) predicate asis
foundin, e.g., Sicstus Prolog [18]. A call di f (s, t) will delay atest

for syntactic inequality until the moment that s and ¢ are sufficiently

instantiated to tell them either identical or non-unifiable; this provides
a“lazy” evaluation strategy whose overall behaviour isconsistent with
the ground-case deductive system above.

Each exception gives rise to a condition derived in the following
way; a straightforward call to di f between two atoms is not suffi-
cient. We have to distinguish between local and global variables and
also take into account any possible aliasing expressed by local vari-
ables. We analyze the arguments in each exception’s atom in the fol-
lowing way.

T. Andreasen and H. Christiansen

e An argument which is a constant ¢ or global variable G must al-
ways be different from the corresponding argument in the selected
atom. Thisamountsto atestdi f (¢, X) ordi f (G X) where X
refersto the corresponding argument in the selected atom A.

e A local variable occurring only once will aways unify with the
corresponding argument of the selected atom. This correspondsto
alwaysf ai | .

e Alocal variablewhich occursasthe ith aswell asthe jth argument
impliesatest di f (X;, X;) where X; and X; refers to the corre-
sponding arguments of the selected atom.

Finally, these tests are merged together inasinglecall todi f (-, -)
to express their digunction.

Consider, as an example, an exception
VL1Ly —p(a,G, L1, Lo, L) where a isconstant and G aglobal vari-
able. When A refers to the selected atom, the consistency test can be
implemented by the following piece of Prolog code.

A= p(Xl, X2, X3, X4, X5)
-> dif((X1, X2, X4), (a, G X5)) ;

The syntax --- -> ..., ... denotes an if-then-else construction in
Prolog.

Incaseof an“exhaustive” exceptionsuchasVX,Y - flight(X,Y),
the consistency test falls down to the following.

A=flight(.)

The answers provided by this interpreter consists of bindings to vari-
ables together with a (perhaps empty) collection of unresolved
di f (-, -) cals. Under the assumption of infinitely many constant
symbols, this represents a satisfiable set of equations and inequali-
ties, so the interpreter is sound. Concerned with completeness, it is
easy to prove to following statement: “If it were the case that Pro-
log had used breadth-first search for selecting clauses, then this meta-
interpreter would have been logically complete.”

The metainterpreter is suited for prototyping and it iseasy toimag-
ine amuch more efficient implementation as a straightforward mod-
ification of a Datalog interpreter written in some low-level language.
Negation asfailure will work immediately for queries without global
variables; we consider the case with global variablesin section 6 be-
low.

true

-> fail ; true

Example5.1 Efficient Prolog programs can be produced by partially
evaluating the meta-interpreter with respect to a particular set of ex-
ceptions. For each clauseinthe original database, we get anew clause
extended with code for those exceptionsthat concern the predicatein
the head of the clause.

We consider first a case without global variables occurring in the
exception. We continue example 2.1 and consider queries of the fol-
lowing form.

(VL—-link(L, c)) —» - - -

Each clause concerned with the link predicate will be equipped with
adi f test as shown in the following example.

link(X,Y):- dif(Y,c), boat(XY).

Global variables are treated similarly to constants, except that an ad-
ditional argument must be added to each predicate to provide com-
munication in global variables. Considering queries of the following
form,

IG((VL-link(L,G)) = ---G - -+,
thepartially evaluated programwill now includethefollowing clause.
link(XY,Q:- dif(Y,Q, boat(XY).

L ogic Programming, Theorem Proving and Search

343

6 NEGATIVE COUNTERFACTUALSIN
HYPOTHETICAL IMPLICATION GOALS

We will show here how our notion of counterfactual exceptions can
beintegrated in alanguage with hypothetical implication goalsin the
body of a clauses.

An operational semantics for implication goalsin alanguage with-
out negative constructs can be derived from the classical deduction
theorem (see, e.g., [3]),

FrE¢—vy iff TU{¢}=v.

Thus, in order to prove ¢ — 1), extend the program with the clauses
contained in ¢ and prove v in the usual way. This principles has been
used in the design of several programming languages, we can refer to
[4, 13,5, 6, 14, 12].

In our language, we can have exceptions aswell aspositive clauses
ashypothesesand we havea soincluded negation asfailure. The over-
all structure of the language is given by the following grammar.

(database)::= (clause) - - - (clause) (exception) - - - (exception)
(clause)::= (atom) «+ (god) - - - (goal)
(goal)::= (atom) | (database)—»(goal) - - - (goal) | not (goal)

Global variablesin an exception may be quantified at the level of the
surrounding implication goal or at the clause level.

The database component of a hypothetical implication goal will
serve as an extension to the current database in such a way that the
order in which the clauses and exceptions have been added is pre-
served. A given set of hypothesesiswritten as D;C; where D; refers
to clauses, C; to the exceptions. We can thus write the database avail -
able at the nth level of embedded implicationas DoCo e - - - e D,,C,,
where e is a sequence constructor, DoCy istheinitial database.

The semantics is defined by a deduction system that determines a
relation - between such layered databases and goals; as before, the
deduction systemisdescribed for ground queries and clauses, the gen-
eral caseiscovered by considered the set of all their ground instances.

Therulefor hypothetical implication goals shiftsthe premisesinto
the database component.

DOCO ®:---0 Dncn L] Dn+1cn+l l_ 1;[)
DOCO ®---0 Dncn l_ Dn+lcn+l —» 1;[)

In the modified modus ponens rule we let a given clause be restricted
by exceptionsthat are more recent that the clause but not by previous
ones that the clause is supposed to override.
DoCoO”'ODnCnl—ﬂ chll—ﬁ%a
DoCoe---0D,C, Fa

whenC; A+~ ANCp ANaconsistent, 1 <i < n

Negation asfailure is covered asfollows.

DBFnot¢ iff wedonothave DBF ¢

We can construct an implementation for this language by a straight-
forward extension of the Vanilla-like interpreter shown in section 5.
The current database should be passed as an additional argument to
thepr ove predicate. A ground representation (i.e., with constantsto
name variables) is recommended here whereas variablesin the query
should appear as Prolog variables; the modus ponensrule must, then,
include an explicit instance-of conditionto create variants of database
clauses with new Prolog variables. Notice that global variables may
appear as Prolog variablesin the database argument. For abackground
on these rather technical matters, see [8].

T. Andreasen and H. Christiansen

In the implementation of negation-as-failure, we use co-routines
in order to avoid the unsound behaviour demonstrated by most Pro-
log systems. The following Prolog clause, which uses special Sicstus
Prolog constructs, will do the job.

prove((not Goal), DB):-

when(ground((Goal ,DB)), \+ prove(Coal,DB)).
An invocation of it will delay the call in the body until it becomes
ground; “\+”" is Sicstus Prolog’s notation for the traditional approxi-
mation of negation as failure which is sound for ground goals. If end
of execution isreached and there are still such delayed calls, the com-
putation is characterized as floundering and no answer is provided.
However, if all clauses are range restricted this cannot happen.

A concrete syntax and an actual implementation of the language

has been developed and described in [15].

7 PERSPECTIVESAND RELATED WORK

We have suggestedthe use of counterfactual exceptionsas hypotheses
in database queries as a means to limit the relevant answers by sup-
pressing certain parts of the database. We have also shown how this
mechanism fits into a language with hypothetical implication goals
and negation asfailure. Theapproach isrelated to possibleworld coun-
terfactual implication [10], but is characterized by a straightforward
semantics and implementation.

Logic programming with exceptions have been studied previously
by [9]. They consider only exceptions being part the program, not
as hypotheses likely to be inconsistent the actual database. On the
other hand, they can define exceptions by arbitrary clauses. Thisim-
plies that answer sets are not unique, as is the case in our approach.
The clauses we obtain by partially evaluating our interpreter, exam-
ple 5.1, appear as optimized versions of the outcome of the transfor-
mation suggested by [9], improved also in the sense, that the use of
thedi f (-, -) technology makes our programs terminate in mean-
ingful states in cases where the corresponding programs of [9] give
up as floundering.

Metalevel negation asfeatured in Refl ective Prolog [2] can be used
to express our counterfactual exceptions as well asthe mechanism of
[9]. The programmer supplies, at the metalevel, “solve” rules which
extends the basic interpretation strategy for the object language to-
gether with “solve_not” rules. A goal is consider to hold if can be
proved by the “solve” predicate unless “solve_not” also holds for it.
In the present context, we can consider Reflective Prolog a powerful
implementation language, which leaves it up to the programmer to
decide upon the logical semantics of the object language.

We notice that the referenced approaches[9, 2] can handle a sub-
stantial portion of Reiter’s default logic [17], where we cover only a
small part. We have concentrated on a conceptually and technically
simpler mechanism while still retaining an interesting expressibility
with respect to database querying. The use of global variables appear-
ing simultaneously in the exceptions as well asin the positive part of
the query seems to be unique to our approach.

In section 6 we mentioned a number of other languages with hy-
pothetical implication goalsbut we are not aware of other approaches
with exceptionsin the hypotheses. It seems possible that our approach
can be combined with that of [9] to include the more genera kinds of
exceptions as hypothesis.

L ogic Programming, Theorem Proving and Search

REFERENCES

(1

(2

(3

(4

(5]

(6]

(7

(8

(9

(1]
(11]

[12]

[13]

[14]

[19]

[16]

[17]
(18]

[19]

Clark, K.L., Negation asfailure. Logic and Data Bases, Gallaire, H., and
Minker, J. (eds.), Plenum Press, pp. 293-322, 1978.

Costantini, S., and Lanzarone, G.A., Metalevel negation and non-
monotonic reasoning. Methods of Logic in Computer Science 1, pp.
111140, 1994.

Enderton, H.B., AMathematical I ntroduction to Logic. Academic Press,
1972.

Gabbay, D.M. and Reyle, U., N-Prolog: An extension of Prolog with hy-
pothetical implications. Journal of Logic Programming 2, pp. 319-355,
1984.

Giordano, L. and Martelli, A., A modal reconstruction of blocks and
modulesinlogic programming. International Logic Programming Sym-
posium, 1991.

Giordano, L., Martelli, A., and Rossi, G., Extending Horn clause logic
with implication goals. Theoretical Computer Science, 1991.

Ginsberg, L.M., Counterfactuals. Artificial Intelligence 30, pp. 35-79,
1986.

Hill, PM. and Gallagher, J.P, Meta-programming in Logic Program-
ming. To be published in Volume V of Handbook of Logic in Artificial
Intelligence and Logic Programming, Oxford University Press.
Currently available as Research Report Series 94.22, University of
Leeds, School of Computer Studies, 1994.

Kowalski, R.A., and Sadri, F, Logic programming with exceptions.
Proc. of Eighth International Conference on Logic Programming, MIT
Press, pp. 598613, 1991.

Lewis, D, Counterfactuals. Harward University Press, 1973.

Lloyd, J.W., Foundations of logic programming, Second, extended edi-
tion. Springer-Verlag, 1987.

Miller, D., Lexical scoping as universal quantification, Proc. of Sixth
International Conference on Logic Programming, MIT Press, pp. 268—
283, 1989.

Monteiro, L. and Porto, A., Contextual Logic Programming, Proc. of
Sixth International Conference on Logic Programming, MIT Press, pp.
284-302, 1989.

Nait Abdallah, M.A., lons and local definitions in logic programming,
Lecture Notes in Computer Science 210, pp. 60—72, Springer-Verlag,
1986.

Ochotorena, C., A database language with hypothetical implementation
goals. Unpublished report. Roskilde University, 1995.

Pereira, L.M., Aparicio, JN., and Alfares, J.J., Counterfactual reasoning
based on revising assumptions. Logic Programming, Proceedings of the
1991 Internal Symposium, MIT Press 1991.

Reiter, R., A logic for default reasoning. Artificial Intelligence 13, pp.
81-132, 1980.

S CSusProlog user’'smanual . Version 3#0, SICS, Swedish Institute of
Computer Science, 1995.

Stalnaker, R., A theory of conditionals. Sudies in Logical Theory, ed.
Reicher, N., Oxford University Press, 1968.

T. Andreasen and H. Christiansen

