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Abstract

A Hidden Markov Model (HMM) is a common statistical model which is widely used for

analysis of biological sequence data and other sequential phenomena. In the present paper

we show how HMMs can be extended with side-constraints and present constraint solving

techniques for efficient inference. Defining HMMs with side-constraints in Constraint Logic

Programming has advantages in terms of more compact expression and pruning opportunities

during inference. We present a PRISM-based framework for extending HMMs with side-

constraints and show how well-known constraints such as cardinality and all different

are integrated. We experimentally validate our approach on the biologically motivated problem

of global pairwise alignment.

KEYWORDS: hidden Markov model with side-constraints, inference, programming in stat-

istical modeling

1 Introduction

Hidden Markov Models (HMMs) are one of the most popular models for analysis

of sequential processes taking place in a random way, where “randomness” may

also be an abstraction covering the fact that a detailed analytical model for the

internal matters is unavailable. Such a sequential process can be observed from

outside by its emission sequence (letters, sounds, measures of features, all kinds of

signals) produced over time, and an HMM postulates a hypothesis about the internal

machinery in terms of a finite state automaton equipped with probabilities for the

different state transitions and emissions. A common inference for a given observed

sequence means to compute the “best” state transitions that the HMM may go

through to produce the sequence, and thus this represents a best hypothesis for the

internal structure or “content” of the sequence. HMMs are widely used in speech

recognition and biological sequence analysis (Rabiner 1989; Durbin et al. 1998).

� This work is supported by the project Logic-statistic modeling and analysis of biological sequence data
funded by the NABIIT program under the Danish Strategic Research Council.
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The efficiency of computations on HMMs heavily depends on the Markov

property. Decisions made during a process run depends only on a limited past.

Dynamic programming algorithms, such as Viterbi and Forward-Backward, are

then used to perform efficient inference. However, many problems would require

more complex dependencies among elements of the process. For example, it may be

interesting to constrain an HMM to visit only different states or limit the number

of visits to a given state. It is possible to model the all different constraint

for the states visited by extending the underlying finite state automaton, but for

the price of a factorial number of new states and with an obvious impact on

inference. As an alternative to modifying the HMM structure, we instead extend

the HMM with side-constraints (Sato and Kameya 2008; Roth and Yih 2005).

However, classical algorithms, such as Viterbi, must be modified to take care about

these side-constraints (Chang et al. 2008; Christiansen et al. 2009).

In this paper, we extend HMMs with side-constraints, leading to what we call

Constrained HMMs (CHMMs). Side-constraints are external constraints declared

in addition to those defined by the structure of an HMM. The concept of CHMMs

was introduced by Sato et al. in (Sato and Kameya 2008), although earlier and

unrelated systems have used the same or similar names (discussed in section 6).

The contribution of this paper is to define CHMMs as constraint logic programs

extended with probabilistic choices and to show how to employ this setting for more

efficient Viterbi computation, i.e., computation of the most probable explanation

of an observation. Moreover, defining HMMs with side-constraints in Constraint

Logic Programming has advantages in terms of more compact expression and

pruning opportunities during inference. We show how to implement CHMMs in

PRISM (Sato and Kameya 1997) and how to integrate well-known constraints, such

as cardinality and all different, into this framework. We validate our approach

experimentally on the biologically motivated problem of global pairwise alignment.

The paper is organized as follows: section 2 describes background on HMMs. In

section 3, we formally introduce the constraint model associated with a CHMM.

Section 4 describes our PRISM-based framework to define CHMMs. Section 5

presents an experimental validation. Finally, sections 6 and 7 present related work

and conclusions.

2 Background

Here we define Hidden Markov Models (HMM)s and illustrate their application to

the problem of pairwise global alignment.

2.1 Hidden Markov models

For simplicity of the technical definitions, we limit ourselves to a discrete Hidden

Markov Model with a distinguished initial state.

Definition 2.1

A Hidden Markov Model (HMM) is a 4-tuple 〈S, A, T , E〉, where

• S = {s0, s1, . . . , sm} is a set of states which includes an initial state referred to

as s0;
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• A = {e1, e2, . . . , ek} is a finite set of emission symbols;

• T = {(p(s0; s1), . . . , p(s0; sm)), . . . , (p(sm; s1), . . . , p(sm; sm))} is a set of transition

probability distributions representing probabilities to transit from one state to

another;

• E = {(p(s1; e1), . . . , p(s1; ek)), . . . , (p(sm; e1), . . . , p(sm; ek))} is a set of emission

probability distributions representing probabilities to emit each symbol from

each state.

We define a run of an HMM as a pair consisting of a sequence of states s(0)s(1) . . . s(n),

called a path and a corresponding sequence of emissions e(1) . . . e(n), called an

observation, such that

• s(0) = s0;

• ∀i, 0 � i � n − 1, p(s(i); s(i+1)) > 0 (probability to transit from s(i) to s(i+1));

• ∀i, 0 < i � n, p(s(i); e(i)) > 0 (probability to emit e(i) from s(i)).

The probability of such a run is defined as
∏

i=1..n p(s
(i−1); s(i)) · p(s(i); e(i)).

2.2 An example HMM: Pairwise global alignment

As an example of an HMM that we later extend with constraints, we consider the

problem of aligning two sequences. Sequence alignment is among the most common

tasks in computational biology, where it is used to discover preserved regions from

a common ancestor. Notice that we here use a so-called pair HMM (Durbin et al.

1998) which emits two sequences at the same time, and which is a straightforward

extension of the definition above.

In the global alignment problem, two sequences x and y must be aligned optimally,

based on a scoring scheme for comparison of different alignments. In probabilistic

modeling, a probability is associated with each pair of symbols emitted from a

state and similarly a probability for introducing gaps, δ, and extending gaps, ε, in

the alignment of the sequences is defined. The probability of an alignment is then

the product of probabilistic transitions performed to recognize the alignment. In

biology, these probabilities are defined to reflect observed statistics about sequence

mutation and conservation.

Fig. 1. A pair HMM for pairwise global alignment of sequences. States, represented by

squares for emitting states and circles for silent states, are connected by arrows representing

transitions labeled with probabilities.

Fig. 1 shows an HMM capable of generating a pair of aligned sequences. When

given two sequences to align, then a path from the initial state, begin, such that
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the model emits the two sequences, corresponds to an alignment. The initial state,

begin, does not emit symbols. The match state emits a pair of symbols (xi, yj),

one for each sequence corresponding to alignment of the symbol at position i in

sequence x and the symbol at position j in sequence y. Emitted symbols can be

identical or different. A difference represents a potential mutation between the two

sequences. The insert state emits only the next symbol of sequence x, effectively

aligning position xi to a gap in y. Oppositely, the delete state aligns a symbol yj
to a gap in sequence x.

The following example shows an alignment of two short protein sequences, where

the third line indicates the state sequence of this alignment abbreviated with the first

letter of the state name:

Sequence x: H G K K G A A Q V

Sequence y: K G P K K A Q A

alignment : b i i i m m m d d m m m

In this context, a common task is to find the optimal alignment. This means to find

a state sequence that can recognize the two sequences and has maximal probability.

A second task is to calculate the probability to observe an emission sequence. A

third type of inference is parameter learning, where we are given a set of alignments

and estimate the “best” parameters for the model, where best usually means that

they maximize likelihood of the alignments.

3 A constraint model for HMM with side-constraints

In this section, we give a formal definition of CHMMs and propose a constraint

model for CHMM runs. Then, the computation of the most probable path is adapted

for CHMMs.

3.1 Constrained hidden Markov model

A CHMM extends an HMM with constraints that limit the set of valid runs and

leave fewer paths to consider for any given sequence.

Definition 3.1

A constrained HMM (CHMM) is defined by a 5-tuple 〈S, A, T , E, C〉 where 〈S, A, T , E〉
is an HMM and C is a set of constraints, each of which is a mapping from HMM

runs into {true, false}.
A run of a CHMM, 〈path, observation〉 is a run of the corresponding HMM for

which C(path, observation) is true.

Notice that we define constraints in a highly abstract way, independently of

any specific constraint language. In the following, constraints over finite domains

(Van Hentenryck et al. 1995) are used, although other constraint languages such as

CLP (Q) and CLP (R) could have been used as well.

3.2 Runs of a CHMM as a constraint program

In this section, we propose to model runs of CHMM by a constraint program over

finite domains. In this context, a run of CHMM is a solution of the constraint

program.
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Let 〈S, A, T , E, C〉 be a CHMM and n the sequence length. A constraint program

for runs is given by the following predicate.

run([s(0), S1, . . . , Sn], [E1, . . . , En])

where each variable Si and Ei represents the state and the emission at the step i.

The domains of Si and Ei, are given as dom(Si) = S \ {s0} and dom(Ei) = E. The

run predicate is specified as follows.

run([s(0), S1, . . . , Sn], [E1, . . . , En]) is true iff

∃s(1) ∈ dom(S1), . . . , ∃s(n) ∈ dom(Sn) and

∃e(1) ∈ dom(E1), . . . , ∃e(n) ∈ dom(En),

C(s(0)s(1) . . . s(n), e(1) . . . e(n)) is true, s(0) = s0 and

p(s(0); s(1)) · p(s(1); e(1)) . . . p(s(n−1); s(n)) · p(s(n); e(n)) > 0. (1)

Formula (1) states that s(0)s(1) . . . s(n) and e(1) . . . e(n) is a run of the HMM that satisfies

C . By the definition of run/2, (local) relationships between Si and Si+1 and Si and

Ei can be established, since the probability of a run must be positive. Indeed,

valuation of Si to s(i) and Si+1 to s(i+1) can be part of a solution of the constraint

program whenever p(s(i); s(i+1)) > 0. These relationships between variables of run/2

are modeled by the following constraints,

trans(Si−1, Si) and emit(Si, Ei), for all i, 1 � i � n

where Si, Si+1 and Ei are the variables of run/2. These constraints are defined as

follows.

• trans(Si, Si+1) is true iff ∃s(i) ∈ dom(Si) and s(i+1) ∈ dom(Si+1) such that

p(s(i); s(i+1)) > 0;

• emit(Si, Ei) is true iff ∃s(i) ∈ dom(Si) and e(i) ∈ dom(Ei) such that p(s(i); e(i)) > 0.

Section 4 below shows an implementation of this framework such that a solution of

the constraint program corresponds to a valid derivation of a PRISM program.

3.3 Example: Constrained pairwise global alignment

We consider the HMM presented in section 2.2 and extend it into a CHMM by the

following set of constraints,

C = {cardinality atmost(Nd, [S1, . . . , Sn], delete),

cardinality atmost(Ni, [S1, . . . , Sn], insert)} .

A constraint cardinality atmost(N,L,X) is satisfied whenever L is a list of

elements, out of which at most N are equal to X. In a biological context, it is

reasonable to consider only alignments with a limited number of insertions and

deletions given the assumption that the two sequences are related.

As described above, we can consider this CHMM as a constraint program

run([s(0), S1, . . . , Sn], [E1, . . . , En])
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Fig. 2. Rewriting rules for the computation of most probable paths for CHMM.

where dom(Si) ∈ {match, delete, insert}, dom(Ei) ∈ {A,C,D, . . . ,W , Y }1 and the

constraints C are as described above.

3.4 Computation of the most probable path for a CHMM

The Viterbi algorithm (Viterbi 1967) is a dynamic programming algorithm for

finding a most probable path corresponding to a given observation. The algorithm

keeps track of, for each prefix of an observed emission sequence, the most probable

(partial) path leading to each possible state, and extends those step by step into

longer paths, eventually covering the entire emission sequence. Here, we adapt this

algorithm for CHMMs.

Consider a given observation e(1) . . . e(n), a CHMM 〈S, A, T , E, C〉, and its con-

straint program

run([s(0), S1, . . . , Sn], [e
(1), . . . , e(n)]).

The most probable path is computed by finding the valuation s(1), . . . , s(n) that

maximizes the objective function: the probability of a run.

Computation of the most probable path for CHMM is expressed as a rewriting

system on a set of 5-tuples Σ. Each such 5-tuple is of form 〈s, i, p, π, σ〉 where π is a

partial path ending in state s and representing a path for the emission sequence prefix

e(1) · · · e(i); p is the computed probability for the emissions and transitions applied in

the construction of π, and σ is the current constraint store seen as a conjunction of

constraints. Any ground and satisfied constraint will be removed from the constraint

store, and true refers to the empty conjunction. The set of solutions of a constraint

store σ is denoted by sol(σ). The two rewriting rules in Fig. 2 describe an iteration

step of the computation of the most probable path.2 The computation starts from

an initial set of 5-tuples

{〈s(0), 0, 1, ε, C ∧ trans(s(0), S1)∧
∧

1�i�n−1

trans(Si, Si+1) ∧
∧

1�i�n

emit(Si, ei)〉}. (2)

1 This set of letters refers to the 21 different amino acids from which proteins are composed.
2 When any reference to constraints and the constraint store are removed from Fig. 2, we have a compact

representation of one iteration step of the Viterbi algorithm for HMMs.
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The trans ctr rule expands an existing partial path one step in directions that

preserve the satisfaction of the constraint store; this satisfiability check is denoted

check constraints (and depends thus on the particular C). The prune ctr rule removes

partial solutions that are not optimal for the current observation prefix and shares

the same set of complete solutions with the better partial solution. The second

condition is necessary in case no partial path contained in sol(σ) can be extended

into a full path without violating the constraints. We take the following correctness

property for granted.

Proposition 3.1

Assume a CHMM H with the notation as above and an observation Obs = e(1) · · · e(n).

When the Viterbi algorithm in Fig. 2 is executed from an initial set of 5-tuples given

the formula (2), it terminates with a set of 5-tuples Σfinal . It holds that

• For any 〈s, n, p, π, true〉 ∈ Σfinal , π is a most probable path for Obs ending in s

and with probability p.

• Whenever there exists a path for Obs ending in s, Σfinal includes a 5-tuple of

the form 〈s, n, p, π, true〉.

Notice that all the variables of the constraint program are valuated when a final

state is reached, and thus any final constraint store is equivalent to true (as trans ctr

prevents any inconsistent store to arise).

The classical Viterbi algorithm is guaranteed to run in time linear to the length of

the given sequence, whereas our algorithm may in the worst case run in exponential

time; this may occur if prune ctr cannot be applied at all. In other words, a

representation of the constraint store that allows an efficient comparison as in

“sol(σ′) ⊆ sol(σ)” is essential for the practicability of our algorithm. On the other

hand, for those problems that can be formulated as a CHMM with effective and

efficient definitions of check constraints and the comparison test, the Σ states may

stay of a reasonable size. Notice that our algorithm is still correct if we use

approximations of these tests, more specifically, check constraints may occasionally

return true when the correct answer is false and the opposite for the comparison.

4 Implementation of CHMMs in PRISM

After briefly introducing PRISM, we propose a methodology to define CHMMs in

this framework.

4.1 A brief introduction to the PRISM system

PRISM (Sato and Kameya 2008) is a powerful system for working with probabilistic-

logic models, based on an extension to Prolog with discrete random variables, called

multi-valued switches. We illustrate this with a simple example HMM with two

states s0 and s1. A switch declaration,

values(x,O).
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associates the named random variable x with a set of outcomes O. Whenever the

goal msw(x,X) is called from the program, then a probabilistic choice will be made

unifying X with an element of O. Switches can also be defined in a parametric form,

values(emit(_),[a,b]). % symbol emission

values(trans(_),[s0,s1]). % state transition

where each declaration defines a family of switches, one for each possible instance of

emit( ) and trans( ) and each instance is given a distinct probability distribution.

This parametrization can serve to model dependencies: in our HMM example we

define the parameters to be the states s0 and s1 (plus init for trans( )), thus

defining emissions and transitions for each state with the Markov property. Finally,

we define a logic program to implement the probabilistic model,

hmm(L):- run_length(T), hmm(T,init,L).

hmm(0,_,[]).

hmm(T,State,[Emit|EmitRest]) :-

T > 0,

msw(trans(State),NextState),

msw(emit(NextState),Emit),

T1 is T-1,

hmm(T1,NextState,EmitRest).

run_length(10).

Here, a derivation of the goal hmm corresponds to what we define as a run in

section 2.1. As shown by (Sato 1995), Prolog’s traditional Herbrand model semantics

generalizes immediately to a probabilistic semantics when probabilities are given for

each random variable (provided that a few restrictions are respected on how msw

is used in the program). Thus a PRISM program defines a probabilistic model

that provides a probability distribution for all goals that can be formulated in

the program’s logical language. PRISM assigns each possible derivation of a goal

a probability defined as the product of the probabilities of the selected switch

outcomes of the derivation. Under normal conditions, it will be the case that the

sum of probabilities of all possible derivations of such a goal is unity, but these

conditions can be violated in a constrained model. If a program attempts to unify

the stochastically selected outcome of a switch with some other value distinct from

that outcome, this unification will fail resulting in a failed derivation.

PRISM includes built-in mechanisms for efficient probabilistic inference based on

tabling. During inference, once a probabilistic goal has been solved, its answers are

put in a global table. Later calls to the same goal will simply lookup the answer in

the table in constant time. PRISM utilizes this to provide an efficient generalized

Viterbi algorithm that may be used for the computation of the most likely successful

derivation for a large number of probabilistic models including HMMs. PRISM

also includes similar utilities for calculating the probability of a derivation or set of

such and machine learning algorithms which produce the most likely probabilities

for switch outcomes in order to explain a set of observed goals.
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4.2 A framework for CHMMs in PRISM

We have implemented a framework for integration of side-constraints in a PRISM

program.3 The framework has been used for adding constraints to HMM based

models, but it should be possible to extend to other kinds of models. The underlying

idea is that the program is augmented with a constraint store and a constraint

checker goal is inserted in a few strategic places of the PRISM program. This

constraint checking is the direct implementation of check constraints of trans ctr.

The prune ctr implementation is not discussed as we use the tabling mechanism of

PRISM to prune the search space.

4.2.1 Integration of side-constraints in a PRISM program

This section describes how our framework can be integrated in a PRISM program. As

an example, we consider an implementation of the HMM from the previous section.

Below the central recursive predicate of the implementation is shown extended with

constraint checking,

1 hmm(T,State,[Emit|EmitRest],StoreIn) :-

2 T > 0,

3 msw(trans(State),NextState),

4 msw(emit(NextState),Emit),

5 check_constraints([NextState,Emit],StoreIn,StoreOut),

6 T1 is T-1,

7 hmm(T1,NextState,EmitRest,StoreOut).

Integration of side-constraint checking is done by extending relevant predicates

with an extra parameter (StoreIn,StoreOut in the code above) to accommodate

a constraint store and a call to the check constraints goal (line 5), after each

distinct sequence of msw applications.

If check constraints fails during PRISM inference, then the corresponding

PRISM derivation fails, and further extensions of this derivation will not be

attempted since it does not constitute a valid run. In effect, inference by PRISM

will only consider runs which are guaranteed not to violate any of the constraints

declared for the model.

Declaration of constraints and implementation of constraint solvers are concep-

tually decoupled from the PRISM model. The declaration of side-constraints on the

model is done by declaring facts of the form, constraint(ConstraintSpec). The

ConstraintSpec associates the constraint with a constraint checker implementation

and may contain some parameters for this particular instance of the type of

constraint.

A satisfiability checker maintains its own constraint store. A satisfiability checker

for a particular type of constraint consists of an init constraint store/2 rule

and one or more check sat/4 rules. The init constraint store/2 rule is used to

3 The current implementation of the framework is available via http://akira.ruc.dk/∼cth/chmm
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create a starting point for the constraint store of each declared constraint and is of

the form,

init_constraint_store(ConstraintSpec, InitialStore).

It is given ConstraintSpec and must unify InitialStore with an initial constraint

store matching the ConstraintSpec. Additionally, one or more check sat rules of

the form,

check_sat(ConstraintSpec,StateUpdate,StoreBefore,StoreAfter):- ... .

must be implemented to check the satisfiability of the constraint.

As an example, consider an implementation of a cardinality atmost constraint,

called cardinality in our framework,

init_constraint_store(cardinality(_,_), 0).

check_sat(cardinality(U,Max), U, VisitsIn, VisitsOut) :-

VisitsOut is VisitsIn + 1,VisitsOut =< Max.

check_sat(cardinality(X,_),U,S,S) :- X \= U.

Each time check constraints is called from the PRISM model, the relevant

check sat goals are called for each declared constraint. If any of these fails, so will

check constraints. StateUpdate and StoreBefore are given and

check constraints is expected to unify StoreAfter to an updated constraint

store. In our example HMM, the StateUpdate will consist of the [State,Emit]

pattern given to check constraints.

The call to this rule must only succeed if the constraint given by ConstraintSpec

is not violated by the further information given by the StateUpdate. Constraints are

checked incrementally and should only fail if any further updates to the constraint

store can only lead to failure.

The constraint stores of individually declared constraints are automatically ag-

gregated in the constraint store exposed to the PRISM model. Individual constraint

checkers are unaware of each other and cannot access the individual constraint

stores of other constraint checkers. The constraints are checked in the order they

are declared, so this order should be optimized to do pruning as early as possible.

4.2.2 Efficient inference with a separate constraint store stack

The tabling mechanism in PRISM makes Viterbi computation and EM learning

efficient, but when extra parameters such as the constraint store are introduced in

the probabilistic goals, PRISM considers these as goals with distinct derivations

and stores a tabled entry for each version of the goal. This behavior is undesired

when the extra parameters are used only for internal bookkeeping. The effect of

this excessive tabling is that the dynamic programming advantages are lost with

exponential time inference as consequence.

In (Christiansen and Gallagher 2009) a related problem concerning tabling of

annotations produced by running Viterbi on PRISM programs is approached using

a program transformation that removes non-discriminating arguments, which do
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not affect the control flow. The annotation can then be recovered from the program

derivation of the transformed program.

This approach is not applicable for the constraint store argument because the

constraint store implicitly affects control flow by limiting possible future derivation

extensions. The constraint store has to be considered in the inference process;

otherwise it would be possible to produce invalid derivation paths.

B-Prolog, on which PRISM is based, supports table modes, but this is not directly

usable with probabilistic goals in PRISM. It is possible with these modes to declare

an argument of a tabled goal as an output argument, which means that it will not be

used as key in the table lookup, but will be unified with the value of the argument

stored in a tabled goal. For our purpose, declaring the constraint store arguments

as output arguments would not be feasible since different derivations of the same

goal may have differing constraint stores and these determine possible derivation

extensions.

To deal with the tabling problem we have introduced a separate constraint store

stack, which avoids storing data locally in parameters of probabilistic goals by

maintaining the constraint store with assert and retract. This stack is maintained in

parallel to the derivation stack of Prolog. PRISM utilizes Prolog’s backtracking to

explore possible solutions, so the constraint store stack implementation is required

to be able to restore a previous constraint store when PRISM encounters failures

during inference and performs backtracking to find alternative solutions.

To utilize this functionality, the user should use the goal check constraints/1,

which omits the store arguments, rather than check constraints/3 as stated above.

We then define check constraints/1 as

check_constraints(StateUpdate) :-

get_store(StoreBefore),

check_constraints(StateUpdate,StoreBefore,StoreAfter),

forward_store(StoreAfter).

The new check constraints/1 make use of the goal get store/1 to retrieve the

current version of the constraint store and forward store/1 is used to assert the

updated store,

get_store(S) :- !, store(S).

forward_store(S) :- (asserta(store(S)) ; retract(store(S)),fail).

If a derivation fails, PRISM backtracks to the choice point in the forward store

rule and retract the most recently asserted store. Then, when exploring alternative

derivation extensions, the previously asserted constraint store will be used as

expected.

4.2.3 Complexity analysis of our implementation

Due to tabling, PRISM guarantees familiar best known complexity bounds of

common inference tasks on a variety of the models that can be expressed in PRISM,

which includes HMMs (Sato 2000). This implicitly limits the number of calls of
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check constraints to the same bound. The added complexity of doing constraint

checking depends on incremental constraint checking cost of individual constraints

checkers and the number of constraints expressed on the model.

Space complexity is influenced by table space usage and maximal length of a

derivation at any given point. Since the asserted constraint store stack contains a

constraint store fixpoint for each step of the current derivation, it is bounded by

O(nmax(|c|)) where n is the length of the sequence and max(|c|) is the maximal size

of the constraint store in any derivation step. Note that the space complexity of the

separate constraint store stack is unaffected by time complexity and the number of

states in the model. With more complex models like the pair HMM, the table space

required for dynamic programming becomes the dominating concern.

5 Experimental validation

In this section, we validate our CHMM implementation with the pair HMM

presented in section 2.2. The experiments were run on a computer with 16 2.4 GHz,

64 bit Intel Xeon(R) E7340 CPUs and 64 GB of memory. All of the experiments

utilized only a single processor at a time.

Our experiments utilize implementations of some common constraints adapted for

the CHMM framework: cardinality(UpdatePatterns,Max) ensures that entries

from the list UpdatePatterns occurs at most Max times in the derivation sequence.

alldiff ensures that all updates in a derivation are different; lock to sequence(Seq)

ensures that the sequence of derivation updates is identical to the sequence represen-

ted by the list Seq; lock to set(Set) ensures that all updates belong to members

of the list Set. The operator forall subseq(L,C) applies the constraint C to every

subsequence of length L in the derivation sequence and for range(From,To,C)

applies C only the range, To-From, both inclusive; state specific(C) applies C

only to the State part of the update.

5.1 Running time of constrained alignment

The addition of side-constraints to an HMM involves some computational overhead

in order to check the satisfiability of the constraints, but may also reduce the number

of possible solutions and therefore the amount of work required to find the optimal

path. As a practical experiment to demonstrate this, we consider global alignment

with the pair HMM discussed in section 2.2.

The overhead of integrating the constraint checking machinery in the model is

demonstrated in the left part of Fig. 3, where sequences of increasing length are

aligned. It can be observed that the running time penalty is a constant factor and that

the polynomial time complexity of the pair HMM is preserved in our framework.

Obviously, polynomial time inference presupposes incremental constraint checking

to be a constant time operation, which may not be the case for certain types of

constraints.

In the right part of Fig. 3, two sequences of equal length (32) are aligned, but with

varying amounts of constraints being enforced. The global cardinality constraint
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Fig. 3. Left: Running time of alignment with a pure pair HMM compared to alignment with

a CHMM with no constraints enforced. Right: Running time of alignment of two sequences

of length 32 with varying amounts of allowed insertions and deletions.

Fig. 4. A comparison of the running time (left) and memory usage (right) of constrained

alignment of two sequences with tabled constraints versus a separate constraint store stack.

is used to enforce an upper limit, L, on the amount of inserts or deletes in the

alignment,

constraint(state_specific(cardinality([insert,delete],L))).

By constraining the alignment (allowing fewer gaps), the space of viable solutions

is reduced. The more constrained the alignment is, the more pruning opportunities

arise. With a large amount of pruning opportunities, the running time is reduced

quite significantly. Note that, since the imposed constraint is state specific, the

number of possible alignments, and hence running time, is unaffected by input

sequence structure.

5.2 Efficiency of the separate constraint store stack

To verify the efficiency of our constraint store implementation, alignment with a local

cardinality constraint was measured for different sizes of input sequences. From the

measurements, which are reported in Fig. 4, it is apparent that our implementation

does not incur the same exponential overhead as the naive implementation where

the constraint store is maintained in the goals and hence tabled.
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Table 1. Running time and memory consumption for alignment with different kinds of

constraints.

Sequence Running Memory

Constraint lengths time (in ms) consumption (in kb)

in goals separate in goals separate

cardinality([insert],20) 50 15460 3176 42296 5723

cardinality([insert],40) 50 29557 3968 93845 6703

for range(1,50, lock to set([match])) 100 24649 4544 105498 7137

for range(1,90, lock to set([match])) 100 20 48 1641 1198

for range(1,50, lock to sequence 100 24829 4544 1641 1198

([match,..,match]))

for range(1,90, lock to sequence 100 20 48 105498 7137

([match,..,match]))

alldiff 20 100442 28 85654 256

forall subseqs(5,alldiff) 10 1664 12 60098 137

Running times and memory usage for a range of different constraints are reported

in Table 1. For the sake for completeness, the table also includes running times for

the version where the constraint store is tabled.

In most cases the separate constraint store performs better in terms of both

running time and memory consumption. In the cases where performance is worse,

it can be attributed to a very small number of possible derivations or constraints

which rarely change the store.

6 Related work

The term “Constrained HMM” is used in (Roweis 1999; Landwehr et al. 2007) and

refers to restrictions on the finite automaton associated with an HMM but not as

constraints on HMM runs. In (Sato and Kameya 2008), CHMMs were introduced to

exemplify an EM algorithm, suited for PRISM programs which allow the possibility

of derivation failures. Our approach differs, as we augment PRISM programs with

side-constraints and use constraint solving techniques to achieve efficient inference.

In (Riezler 1998), Riezler proposes techniques for inference in probabilistic

constraint logic programming. In (Costa et al. 2008) relationships between elements

of a Bayesian Network are expressed as a constraint logic program, which is similar

to the way we define HMMs. However, our paper focus differs as we study the

interest of checking satisfiability of side-constraints during inference.

In the natural language processing community, recent work on Constrained

Conditional Models feature an approach similar to ours. Indeed, Constrained

Conditional Models is a general framework that augments inference and learning

of conditional models with declarative constraints (Chang et al. 2008). However,

inference is expressed as an Integer Linear Programming problem (Roth and

Yih 2005). In this context, more expressive constraints, such as cardinality or

all different, can not be added on an HMM run. Moreover, our PRISM-based
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implementation allows us to define the HMM structure separately from the side-

constraints and use advanced constraint solving techniques.

7 Conclusions

In this paper, we propose a framework to define HMMs with side-constraints as

a Constraint Logic program extended by probabilistic choices. Constraint Logic

Programming have advantages in terms of more compact expression of CHMMs.

Inference computations are adapted for CHMMs and conditions for an efficient

computation are described. An implementation based on PRISM is proposed and

well-known constraints and operators have been demonstrated for defining CHMMs.

Finally, we experimentally validate our approach with a constrained pair HMM used

for biological sequence alignment.

As current work, we study how sampling and EM-learning can be adapted for our

CHMM framework. Indeed, sampling turns out to be problematic in probabilistic

models with a large probability of derivation failure. In (Sato et al. 2005), Sato et al.

address the problem of EM-learning with PRISM programs that can fail and their

methods are also applicable for our framework.

As further work, we plan to incorporate more advanced constraint solving

techniques such as those used in Weighted CSP (Larrosa and Schiex 2004) in

the framework. This approach would allow us to combine soft constraints solving

and inference and express this as an optimization problem. We also plan to deal with

the restriction that individual constraint checkers do not share information in our

framework, so that we can benefit from some of the optimization techniques used

by other constraint solvers. We are working on extending the library of constraints

that can be defined as side-constraints.
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