
Efficient Integrity Checking

for Databases with Recursive Views

Davide Martinenghi and Henning Christiansen

Roskilde University, Computer Science Dept.
P.O.Box 260, DK-4000 Roskilde, Denmark

E-mail: {dm,henning}@ruc.dk

Abstract. Efficient and incremental maintenance of integrity constraints
involving recursive views is a difficult issue that has received some atten-
tion in the past years, but for which no widely accepted solution exists
yet. In this paper a technique is proposed for compiling such integrity
constraints into incremental and optimized tests specialized for given
update patterns. These tests may involve the introduction of new views,
but for relevant cases of recursion, simplified integrity constraints are
obtained that can be checked more efficiently than the original ones and
without auxiliary views. Notably, these simplified tests are derived at de-
sign time and can be executed before the particular database update is
made and without simulating the updated state. In this way all overhead
due to optimization or execution of compensative actions at run time is
avoided. It is argued that, in the recursive case, earlier approaches have
not achieved comparable optimization with the same level of generality.

1 Introduction

Recursive views are generally regarded as a welcome extension to relational
databases, as they allow a large class of query problems to be formulated within
a declarative query language. To this end, we can mention flexible query answer-
ing based on taxonomies stored in the database, and various kinds of path-finding
problems, such as network routing and travel planning. The introduction of re-
cursion (since 1999 in the SQL standard [13] as stratified linear recursion based
on fixpoint semantics) naturally raises a need for a satisfactory treatment of
recursion in integrity constraints (ICs) which, in real-world applications, usu-
ally include complex data dependencies and “business logic”. In this respect,
database management systems should provide means to automatically verify, in
an efficient way, that database updates do not introduce any violation of in-
tegrity. Maintaining compliance of data with respect to ICs is a crucial database
issue, as, if data consistency is not guaranteed, then query answers cannot be
trusted.

ICs are properties that must hold throughout the existence of a database
for it to represent a meaningful set of data. While a complete check of integrity
is prohibitive in any realistic case, it gives good sense to search for incremental

strategies checking only the consequences of a database update, based on the hy-
pothesis that the database was consistent before the update itself. This principle,
called simplification, has been studied at least since [24], both for relational and
deductive databases. The majority of existing methods either disregard recur-
sion completely or disallow recursively defined relations to occur in ICs. Earlier
approaches to simplification produce constraints that need to be checked in the
updated database. We emphasize, however, that it is possible to decide, in the
current state, whether a proposed update will introduce inconsistency (i.e., if it
were executed). The framework we propose can handle a very general class of
updates specified with a rule-based language that allows one to express para-
metric update patterns. Such patterns are used on the ICs at design time, when
only the schema exists and not yet any database state, in order to generate sim-
plified parametric constraints. Later, at runtime, the parametric constraints are
instantiated with the specific update values and tested in the actual state.

The main contributions of this paper are as follows. (i) We formalize the
general problem of finding simplified, incremental integrity checks for databases
with recursive views, based on our previous contribution for the non-recursive
case [6]. (ii) We develop a terminating procedure, based on the identification
of specific recursive patterns, that generates efficient simplified tests that are
necessary and sufficient conditions for integrity of the updated database. The
method allows more general updates and provides finer results than previous
approaches. The procedure takes in input a parametric update pattern and a set
of ICs and produces, as output, a set of optimized ICs.

The paper is organized as follows. The simplification framework is shown in
section 2 and refined for recursion in section 3; its ability to handle recursive cases
is demonstrated through a series of examples in section 4. A detailed comparison
of methods that handle recursion is given in section 5, followed by experimental
evaluation in section 6. Concluding remarks are provided in section 7.

2 A Framework for Simplification of Integrity Constraints

2.1 Basic Notions

For simplicity, we apply notation and concepts from deductive databases, more
specifically Datalog programs with stratified negation [10], but we stress that
our results are also applicable in a relational setting, since translation techniques
from Datalog to SQL are available [7]. In particular, we assume familiarity with
the notions of predicates (p, q, . . .), constants (a, b, . . .), variables (x, y, . . .),
function-free terms, atoms, literals, logical formulas, substitutions, renaming, in-
stances of formulas and subsumption. Sequences of terms are indicated by vector
notation, e.g., ~t. Substitutions are written as {~x/~t} in order to indicate which
variables are mapped to which terms. A clause is a formula A ← L1 ∧ · · · ∧ Ln

where A is an atom and L1, . . . , Ln are literals and with the usual understand-
ing of variables being implicitly universally quantified; A is called the head and
L1 ∧ · · · ∧Ln the body of the clause. If the head is missing (understood as false)
the clause is called a denial ; if the body is missing (understood as true) it is a

fact ; all other clauses are called rules. Clauses are assumed to be range restricted,
i.e., all clause variables must occur in a positive database literal in the body.

As stressed in the introduction, ICs need to be specialized for update patterns
rather than for specific updates. In order to integrate this in our framework, a
special category of symbols called parameters is introduced. Parameters are writ-
ten in boldface (a,b, . . .) and can appear anywhere in a formula where a constant
is expected. Parameters behave like variables that are universally quantified at
a metalevel; they are not expected to be part of any actual database nor of
any query or update actually given to a database, but we may have parametric
expressions of these categories.

Unique name axioms are assumed for (non-parametric) constants, i.e., dis-
tinct constants denote distinct values. A parameter substitution is a mapping
from parameters to constants. Whenever E is an expression containing param-
eters ~a, and π is a parameter substitution of the form {~a/~c}, Eπ denotes the
expression that arises from E when each occurrence of a parameter is replaced
by its value specified by π; Eπ is called a parametric instance of E.

Definition 1 (Database). A (database) schema consists of disjoint sets of
extensional and intensional predicates (collectively called database predicates)
and a pair 〈IDB, IC〉, where IDB is a finite set of range restricted rules defining
intensional predicates and IC a finite set of denials called a constraint theory.
A database with schema 〈IDB, IC〉 is a triple 〈IDB, IC,EDB〉, where EDB is a
finite set of facts of extensional predicates.

When the schema is understood, the database may be identified with EDB . By
virtue of the one-to-one correspondence between these logical notions and rela-
tional databases, we will use interchangeably the notions of intensional predicate
and view, extensional predicate and relation, fact and tuple.

Definition 2 (Recursion). For two predicates p and q, p derives q (written
p ↪→ q) if p occurs in the body of a rule whose head predicate is q. Let ↪→+ be
the transitive closure of ↪→. A predicate p is recursive iff p ↪→+ p.

As in [4], we can limit our attention to bilinear systems (those whose rules
have at most two predicates mutually recursive with the head predicate), as any
stratified program can be rewritten as an equivalent bilinear program. We only
focus on stratified databases [1], that do not allow mixing negation and recursion.
We refer to the semantics of the standard model, and write D |= φ, where D is
a (stratified) database and φ is a closed formula, to indicate that φ holds in
D’s standard model. The notation A |= B is extended to parametric expressions
with the meaning that it holds for all its parametric instances; similarly for ≡
and “iff”. We view satisfaction of ICs by entailment [10].

Definition 3. A database D = 〈IDB, IC,EDB〉 is consistent whenever D |= IC.

Definition 4 (Defining formula). Given an IDB and an intensional predicate
p defined in it by the rules {p(~t1) ← F1, . . . , p(~tn) ← Fn}, where the ~ti’s are
sequences of terms and the Fi’s are conjunctions of literals, the defining formula

of p is (F1∧~x = ~t1)ρ1∨. . .∨(Fn∧~x = ~tn)ρn, where ~x is a sequence of new distinct
variables and each ρi is a renaming giving fresh new names to the variables of
Fi not in ~x. The variables in ~x are the distinguished variables of the defining
formula; all other variables in it are the non-distinguished variables.

Example 1. Let D be a database representing an acyclic directed graph and let
S be its schema 〈IDB , Γ 〉, where

IDB = { p(x, y) ← e(x, y),
p(x, y) ← e(x, z) ∧ p(z, y)}.

and Γ = {← p(x, x)}. Direct connection of nodes is stored in relation e/2.
Directed paths are expressed by p/2. Acyclicity of the graph is imposed by Γ .
The defining formula of p is e(x, y)∨(e(x, z)∧p(z, y)), where x, y are distinguished
variables and z is a non-distinguished variable.

For convenience, we include queries in intensional predicates; when no ambiguity
arises, a given query may be indicated by means of its defining formula.

Definition 5 (Update). A predicate update for an extensional predicate p is
an expression of the form p(~x) ⇐ p′(~x) where ⇐ p′(~x) is a query; p is said
to be affected by the update. A (database) update is a set of predicate updates
for distinct predicates. For a given database D and an update U , the updated
database DU is as D, but for every extensional predicate p affected by a predicate
update p(~x) ⇐ p′(~x) in U , the subset {p(~t) | D |= p(~t)} of EDB is replaced by
the set {p(~t) | D |= p′(~t)}.

This definition subsumes others that separately specify the added and deleted
parts of a predicate. As mentioned, updates can be parametric as input to the
transformations to follow.

Example 2. Update U1 = {p(x) ⇐ p(x) ∨ x = a} describes the addition of fact
p(a), whereas U2 = {r(x, y) ⇐ (r(x, y)∧x 6= a)∨(r(a, y)∧x = b)} is parametric
and means “change any r(a, x) into r(b, x)”. If a and b are instantiated to the
same constant, U2 is immaterial.

In order to simplify the notation for tuple additions and deletions, we write
in the following p(~a) as a shorthand for p(~x) ⇐ p(~x) ∨ ~x = ~a and ¬p(~a) for
p(~x) ⇐ p(~x) ∧ ~x 6= ~a.

2.2 Weakest Preconditions

In order to capture the effect of an update U on a constraint theory Γ we
introduce the After operator below, which returns a formula that evaluates, in the
present state, in the same way as Γ would evaluate in the updated state. In order
to make the definition precise, we need to make use of unfolding to repeatedly
replace every non-recursive intensional predicate by its defining formula until
only extensional or recursive predicates appear in the constraint theory.

Definition 6 (Unfolding). Let Γ be a formula and IDB a set of rules defining
predicates p1, . . . , pn. Let Fi(~xi, ~yi) be the defining formula of pi in IDB, where
~xi are the distinguished and ~yi the non-distinguished variables. UnfoldIDB(Γ) is
the formula obtained by replacing as long as possible, in Γ , each occurrence of
an atom of the form pi(~t) by (∃~yiFi(~t, ~yi)), for each non-recursive predicate pi

defined in IDB.

Definition 7. Let U be an update, IDB a set of rules of a schema S and Γ a
constraint theory.

– Let us indicate with ΓU a copy of Γ in which any atom p(~t) whose predicate is
affected by a predicate update p(~x) ⇐ pU (~x) in U is simultaneously replaced
by the expression pU (~t) and every intensional predicate q is replaced by a
new predicate qU .

– Similarly, let us indicate with IDBU a copy of IDB in which the same re-
placements are simultaneously made.

We define AfterUS (Γ) = UnfoldIDB∪IDBU (ΓU).

Without including details, it may be assumed that After performs standard
rewriting in order to have the resulting formula in denial form. The subscript S
is always omitted when clear from the context1.

Example 3. Consider the updates of example 2. Let Γ1 be {← p(x) ∧ q(x)} (p
and q are mutually exclusive). We have, then:

AfterU1(Γ1) = { ← p(x) ∧ q(x),
← q(a) }.

For Γ2 = {← r(c, x) ∧ q(x)}, we have:

AfterU2(Γ2) = { ← r(c, x) ∧ c 6= a ∧ q(x),
← r(a, x) ∧ c = b ∧ q(x) }.

Note that these (non)equalities cannot be evaluated; if both parameters are in-
stantiated to the same constant, the result collapses to Γ2 (the update is neutral).

The characteristic property of the After transformation is captured by the
notion of weakest precondition, i.e., a test that can be checked in the present
state but indicating properties of the new state.

Definition 8 (Weakest precondition). Let Γ and Γ ′ be constraint theories
referring to the same schema S, and U an update. Then Γ ′ is a weakest precon-
dition (WP) of Γ wrt U whenever D |= Γ ′ iff DU |= Γ for any database state
D with schema S.

1 Note, however, that, in the body of the resulting formula, some of the conjuncts might
be expressions of the form ¬∃~x[. . .], with nested levels of existentially quantified
variables. Although the framework can be adapted to these cases, for reasons of
space we will focus on standard denials.

Proposition 1. For any constraint theory Γ and update U , AfterU (Γ) is a WP
of Γ wrt U ; for any other Ψ which is a WP of Γ wrt U , we have Ψ ≡ AfterU (Γ).

To simplify means then to optimize a WP based on the invariant that the con-
straint theory holds in the present state.

Definition 9 (Conditional WP). Let Γ and Γ ′ be constraint theories refer-
ring to the same schema S, and U an update. Then Γ ′ is a conditional weakest
precondition (CWP) of Γ wrt U whenever D |= Γ ′ iff DU |= Γ for any database
state D consistent with Γ .

A WP is also a CWP but not necessarily the other way round. For instance,
{← q(a)} is a CWP (but not a WP) of Γ1 wrt U1 of example 3.

2.3 Optimizing Transformations on Integrity Constraints

An essential step in the simplification process is the achievement of constraints
that are easier to evaluate than the original ICs. Several measures of the eval-
uation cost exist: the checking space [26] (the tuples to be accessed in order to
evaluate the constraint), the “weakness” of the constraint theory [26], the num-
ber of literals in it [5], its level of instantiation [7]. However, all these criteria are
only estimates of the effort that is needed to evaluate an IC, as the actual execu-
tion time will also depend on the database state as well as on the physical data
structure. Furthermore, due to theoretical limitations, no procedure can produce
an optimal constraint theory in all cases (for any of the above measures).

In order to remove as many unnecessary checks as possible from After’s out-
put, such as redundant denials and sub-formulas, we define a transformation
Optimize that simplifies a given constraint theory using a set of trusted hypothe-
ses. Typically, the input to Optimize is After’s output theory and the hypotheses
are After’s input theory. Optimize applies sound and terminating rewrite rules to
remove from the input theory all denials and literals that can be proved redun-
dant. Reduction [11] is used to eliminate redundancies within a single denial.

Definition 10 (Reduction). For a denial φ, the reduction φ− of φ is the result
of applying on φ the following rules as long as possible, where c1, c2 are distinct
constants, a is a parameter, t a term, A an atom, C, D (possibly empty) con-
junctions of literals, vars indicates the set of variables occurring in its argument
and dom the set of variables in a substitution domain.

← c1 = c2 ∧ C ⇒ true
← c1 6= c2 ∧ C ⇒ ← C
← t 6= t ∧ C ⇒ true
← t = t ∧ C ⇒ ← C
← x = t ∧ C ⇒ ← C{x/t}
← x 6= t ∧ C ⇒ ← C if {x, t} ∩ vars(C) = ∅ and t is not x
← a = c2 ∧ C ⇒ ← a = c2 ∧ C{a/c2}

2

← A ∧ ¬A ∧ C ⇒ true
← C ∧ D ⇒ ← D if ∃σ s.t. Cσ subclause of D and dom(σ) ∩ vars(D) = ∅

2 We assume that each equality is only processed once.

Obviously, for any denial φ we have φ− ≡ φ. The last rule (subsumption fac-
toring [9]) includes the elimination of duplicate literals. The expansion [10] of a
clause, indicated with a “+” superscript, replaces every constant in a database
predicate (or variable already occurring elsewhere in database predicates) by a
new variable, and equals it to the replacing item.

Example 4. Let φ = ← p(x, a, x). Then φ+ = ← p(x, y, z) ∧ y = a ∧ z = x.

For some classes of constraints, such as sets of Horn clauses3, a resolution-based
procedure limiting the size of resolvents to the size of the biggest denial is known
to be refutation-complete4, i.e., it derives false iff the set is unsatisfiable. We refer
to [27] for the resolution principle and other related notions.

Definition 11. For a constraint theory Γ , the notation Γ `R φ indicates that
there is a resolution derivation of a denial ψ from Γ+ such that in each resolution
step the resolvent has at most n literals and ψ− subsumes φ, where n is the
number of literals of the largest denial in Γ+.

The boundedness we have imposed guarantees termination, as Γ is function-free.

Proposition 2. `R is sound and terminates on any input.

Definition 12. Given two constraint theories ∆ and Γ , Optimize∆(Γ) is the
result of applying the following rewrite rules on Γ as long as possible; φ, ψ are
denials, Γ ′ is a constraint theory, t is disjoint union.

{φ} t Γ ′ ⇒ Γ ′ if φ− = true
{φ} t Γ ′ ⇒ Γ ′ if (Γ ′ ∪ ∆) `R φ
{φ} t Γ ′ ⇒ {φ−} ∪ Γ ′ if φ 6= φ−

{φ} t Γ ′ ⇒ {ψ−} ∪ Γ ′ if ({φ} t Γ ′ ∪ ∆) `R ψ and ψ− strictly subsumes φ

The last rewrite rule allows the removal of literals from a denial; the other rules
are self-explanatory.

Proposition 3 (Correctness of Optimize). Optimize∆(Γ) terminates for any
Γ , ∆ and D |= Γ iff D |= Optimize∆(Γ) in any database D consistent with ∆.

Definition 13. For a schema S = 〈IDB, Γ 〉 and an update U , let ∆ = UnfoldIDB(Γ).

We define SimpU
S (Γ) = Optimize∆(AfterUS (Γ)).

From the previous results we get immediately the following.

Proposition 4. Let S = 〈IDB, Γ 〉 be a schema and U an update. Then SimpU
S (Γ)

is a CWP of Γ wrt U .

Example 5. With Γ1 and U1 from example 2, we have SimpU1(Γ1) = {← q(a)}.

3 Here denials with at most one negative literal.
4 With factoring, paramodulation for inequalities and the reflexivity axiom [16].

Each step in Optimize reduces the number of literals or instantiates them. Simp

is indeed guaranteed to reach a minimal result (by the subsumption theorem
[25]) for all constraint classes for which `R is refutation complete5. The high
complexity of Simp (subsumption alone is in general NP-complete [15]) does not
affect the quality of the approach, as simplification takes place at design time
(runtime simplification could indeed outweigh the optimization gained), which
is justified by the following property.

Proposition 5. Let Γ be a constraint theory, U an update, and π a parametric
substitution. Then (SimpU (Γ))π ≡ SimpUπ(Γπ).

The present technique is based on an a priori knowledge of the update patterns
allowed by a database designer. However, if such patterns are not given in ad-
vance, the method is still applicable. We may, e.g., generate all simplifications
corresponding to single additions or deletions of any database relation and, thus,
obtain optimized behavior for these cases.

3 Refinements for Ordered Linear Recursion

In Simp, recursive predicates in ICs are replaced by new recursive predicates. For
an important class of linear recursion that embraces some of the most commonly
used recursive patterns (such as left- and right-linear recursion [23]), known as
ordered linear recursion (OLR) [29], the simplification process can be refined,
by possibly eliminating the introduction of new recursive views.

Definition 14. A predicate r is an OLR predicate if it is defined as follows

{ r(~x, ~y) ← q(~x, ~y)
r(~x, ~y) ← p(~x, ~z) ∧ r(~z, ~y) },

(1)

where p and q are predicates on which r does not depend and ~x, ~y, ~z are disjoint
sequences of distinct variables. The first rule is the exit rule, while the other is
the recursive rule.

There may in principle be several exit rules and recursive rules for the same
OLR predicate r; however, these can always be reduced to one single exit rule
and recursive rule by introducing suitable new views. Note thus that p and q
need not be base predicates.

We first transform the definition of r as to decompose it in two parts: a
nonrecursive definition and a transitive closure definition (rp below). If p and q
are the same predicate, then no transformation is needed, as the definition of
r is already the transitive closure of p. Otherwise we replace r’s definition with
the following, equivalent set of rules:

{ r(~x, ~y) ← q(~x, ~y)
r(~x, ~y) ← rp(~x, ~z) ∧ q(~z, ~y)
rp(~x, ~y) ← p(~x, ~y)
rp(~x, ~y) ← p(~x, ~z) ∧ rp(~z, ~y) }.

(2)

5 Outside these classes, there are (practically unlikely) cases where the simplification
may contain some redundancies.

Note that the argument is perfectly symmetric when r’s recursive rule is of the
form r(~x, ~y) ← r(~x, ~z) ∧ p(~z, ~y). In this case the second rule in (2) becomes
r(~x, ~y) ← q(~x, ~z) ∧ rp(~z, ~y) and rp is defined as before.

All occurrences of r in a constraint theory can now be unfolded wrt the first
two rules in (2), which introduce q and rp, the latter being the transitive closure
of p. Intuitively, it is easy to characterize the set of tuples that are added to rp

upon addition of a p-tuple, as rp can be thought of as a representation of paths
of a directed graph of p-edges. Suppose that update U is the addition of tuple
〈~a, ~b〉 to p, then all added rp paths are those that pass by the new p-arc and
that were not there before the update. If δ+

U rp(~x, ~y) indicates that there is a new
path from ~x to ~y after update U , this can be expressed as:

δ+
U rp(~x, ~y) ← (rp(~x,~a) ∨ ~x = ~a)) ∧ (rp(~b, ~y) ∨ ~y = ~b)) ∧ ¬rp(~x, ~y),

However, U is not necessarily a single tuple update, so δ+
U rp needs, in general,

to be characterized in terms of rp in the updated state.

Definition 15. Let U be an update and rp the transitive closure of non-recursive

predicate p in schema S = 〈IDB, Γ 〉; let rU
p , pU , IDBU be defined as to obtain

AfterUS (Γ) in definition 7. Let OLR(rp, S) be the following set of rules:

{rU
p (~x, ~y) ← (rp(~x, ~y) ∧ ¬δ−U rU

p (~x, ~y)) ∨ δ+
U rU

p (~x, ~y),
δ+
U rp(~x, ~y) ← (rU

p (~x, ~w1) ∨ ~x = ~w1) ∧ (rU
p (~w2, ~y) ∨ ~y = ~w2)∧

δ+
U p(~w1, ~w2) ∧ ¬rp(~x, ~y),

δ−U rp(~x, ~y) ← (rp(~x, ~w1) ∨ ~x = ~w1) ∧ (rp(~w2, ~y) ∨ ~y = ~w2)∧
δ−U p(~w1, ~w2) ∧ ¬rU

p (~x, ~y),
δ+
U p(~x) ← pU (~x) ∧ ¬p(~x),

δ−U p(~x) ← ¬pU (~x) ∧ p(~x)}

If, in OLR(rp, S), δ+
U p(~w1, ~w2) ≡ ~w1 = ~c1∧ ~w2 = ~c2∧A, where A is a conjunction

of literals and c1, c2 are constants, then the second rule is replaced by

δ+
U rp(~x, ~y) ← (rp(~x,~c1) ∨ ~x = ~c1) ∧ (rp(~c2, ~y) ∨ ~y = ~c2)∧

~w1 = ~c1 ∧ ~w2 = ~c2 ∧ A ∧ ¬rp(~x, ~y).
(3)

The notation OLR(S) indicates the rules obtained from IDB∪IDBU by replacing
the clauses defining each transitive closure predicate rU

p with OLR(rU
p , S).

Definition 16. Let U be an update, S = 〈IDB, Γ 〉 a schema and ΓU be defined
as in definition 7. Let S∗ be the same as S but in which, for all OLR predi-
cate r, its definition (1) is replaced as in (2). Then AfterRecU

S (Γ) is defined as
UnfoldOLR(S∗)(Γ

U).

Proposition 6. For any constraint theory Γ and update U , AfterRecU
S (Γ) is a

WP of Γ wrt U .

OptimizeRec is as Optimize, but for any transitive closure predicate rp, it also
considers that rp(~t1,~t2) subsumes rp(~t1, ~x) ∧ rp(~x,~t2) if ~x does not occur else-

where6. SimpRecU
S (Γ) is defined as OptimizeRec∆(AfterRecU

S (Γ)), where ∆ con-
tains UnfoldS(Γ) plus the set of all transitive closure rules in S rewritten as de-
nials, e.g., for a predicate rp defined as in (2) the constraints are ← ¬rp(~x, ~y) ∧
p(~x, ~y) and ← ¬rp(~x, ~y) ∧ p(~x, ~z) ∧ rp(~z, ~y). Proposition 4 extends to SimpRec.

The characterization of δ−U rp given in proposition 6 requires the evaluation
of ¬rU

p . However, in many interesting cases δ−U rp is going to be simplified away.

The new views introduced by AfterRec can be completely disregarded if rU
p does

not occur in the simplified constraints. If both the new and the old state are
available, as in some trigger implementations, rU

p can be evaluated as “rp in the
new state”. However, these are precisely the cases where the simplification was,
to some extent, unsuccessful, as accessing or simulating the new state clearly
requires extra work.

4 Examples

We first observe that many important problems can be reduced to OLR.

Example 6. In [22] the following recursive predicate b is described:

{ b(x, y) ← k(x, z) ∧ b(z, y) ∧ c(y),
b(x, y) ← d(x, y) },

where b stands for “buys”, k for “knows”, c for “cheap” and d for “definitely
buys”. These definitions can be rewritten [14] as:

{ b′(x, y) ← k(x, z) ∧ b′(z, y),
b′(x, y) ← k(x, z) ∧ d(z, y) ∧ c(y),
b(x, y) ← b′(x, y),
b(x, y) ← d(x, y) }.

Replacing the body of b′’s exit rule with a new view e, makes b′ OLR:

{ b′(x, y) ← k(x, z) ∧ b′(z, y),
b′(x, y) ← e(x, y),
e(x, y) ← k(x, z) ∧ d(z, y) ∧ c(y),
b(x, y) ← b′(x, y),
b(x, y) ← d(x, y) }.

The next example will be used in section 5 to compare the present work with
previous methods.

Example 7. Consider the database from example 1. Let U = {e(a,b)} be an
update pattern that adds an arc. We have

AfterRecU
S (Γ) ≡ { ← (p(x, x) ∧ ¬δ−U p(x, x)) ∨ δ+

U p(x, x)}
≡ { ← p(x, x) ∧ ¬δ−U p(x, x),

← δ+
U p(x, x)}.

6 It also subsumes p(~t1, ~x) ∧ rp(~x,~t2) and rp(~t1, ~x) ∧ p(~x,~t2).

When OptimizeRec is applied to AfterRecU
S (Γ), every unfolding of the first con-

straint is removed (it is subsumed by the original constraint in Γ). Furthermore,
δ+
U e(x, y) bounds both x and y, as δ+

U e(x, y) ≡ ¬e(a,b)∧x = a∧y = b. Therefore
we can replace δ+

U p as in (3)

δ+
U p(x, y) ≡ (p(x,a) ∨ x = a) ∧ (p(b, y) ∨ y = b) ∧ ¬e(a,b) ∧ ¬p(x, y),

which unfolds in the remaining ← δ+
U p(x, x) expression as follows:

{ ← p(x,a) ∧ p(b, x) ∧ ¬e(a,b) ∧ ¬p(x, x),
← p(b,a) ∧ ¬e(a,b) ∧ ¬p(b,b),
← p(b,a) ∧ ¬e(a,b) ∧ ¬p(b,b),
← a = b ∧ ¬e(a,b) ∧ ¬p(a,a) }.

The second and third constraints are identical, and therefore either can be re-
moved. The ¬p(−,−) literals are removed in OptimizeRec via resolution with
the constraint in Γ . Similarly, the ¬e(a,b) literals, in all constraints but the
first one, can be removed by reduction and resolution via the intermediate `R -
derivations of ← e(x, x) and ← e(x, z) ∧ p(z, x). Finally, the first IC is removed
as p(b,a) subsumes p(b, x) ∧ p(x,a).

SimpRecU
S (Γ) = { ← p(b,a),

← a = b }.

Note that SimpRecU
S (Γ) is a much simpler test than Γ as it basically requires to

check whether there exists a path between two given nodes, whereas Γ implies
testing the existence of a cyclic path for all the nodes in the graph.

A straightforward SQL translation of this simplified result (with p defined as
a WITH view with columns c1 and c2) is, e.g., the following query

SELECT "ko" FROM p WHERE (p.c1=$B AND p.c2=$A) OR $A=$B

in which $A and $B are replaced by the corresponding parameter values and an
empty answer indicates consistency, whereas ko indicates inconsistency.

Example 8. [6 continued] Consider a schema S defining the IDB of example 6
and a scenario in which a given person p does not want to buy cheap products,
expressed by Γ = {← b(p, x) ∧ c(x)}. Suppose that a person meets another
person who is definitely going to buy something. This event can be represented
by the update U = {k(a,b), d(b, c)}. We have 7:

SimpRecU
S (Γ) = { ← c(c) ∧ [p = a ∨ p = b ∨ k′(p,a) ∨ k′(p,b)],

← c(x) ∧ [p = a ∨ k′(p,a)] ∧ {d(b, x) ∨ [k′(b, z) ∧ d(z, x)]}},

where k′ is the transitive closure of k. The result indicates that U introduces an
inconsistency whenever:

– c is cheap, and p is or (in)directly knows a or b, or
– p is or (in)directly knows a, and b definitely buys (or (in)directly knows

someone who does) something cheap.

7 For readability, the resulting formula is presented with disjunctions and rearranged
via other trivial, cosmetic steps. Calculations are not shown due to space constraints.

5 Related Works

Several authors have provided results directly related to integrity checking. Most
methods have been explicitly designed for relational databases with no views or
disallow recursion in ICs; we refer to the survey [21] for references falling under
these categories. We also point out that integrity checking is often regarded as
an instance of materialized view maintenance: ICs are defined as views that must
always remain empty for the database to be consistent. The database literature
is rich in methods that deal with relational view/integrity maintenance; the book
[12] and the survey [8] provide insightful discussion on the subject.

We now compare our approach with the methods that apply to recursive
databases and show that our results have wider applicability and are at least as
good. We discuss example 7 and use constants a, b instead of parameters a, b
for compatibility with these methods.

The technique described in [19] requires the calculation of two sets, P and
N , that represent the positive and, respectively, negative potential updates gen-
erated by a given update. A set Θ is then computed, which contains all the mgus
of the atoms in P and N with the atoms of corresponding sign in the IC. For
example 7, we have P = {e(a, b), p(x, y)}, N = ∅ and Θ = {y/x}. The updated
database is consistent iff every condition Γθ holds in it, for all θ ∈ Θ, Γ be-
ing the original constraint theory. Unlike our method, in this case the obtained
condition is identical to Γ and therefore there is no simplification.

In [17], the authors determine low-cost pre-tests which are sufficient con-
ditions that guarantee the integrity of the database. If the pre-tests fail, then
integrity needs to be checked with an exact method, such as ours. A set of lit-
eral/condition pairs, called relevant set, is calculated. If the update in question
unifies with any of the literals in the relevant set and the attached condition suc-
ceeds, then the pre-test fails; otherwise we are sure that the update cannot falsify
the ICs. For example 7 the relevant set is {p(x, x)/true, e(x, x)/true, e(x, z)/true,
p(z, x)/eN (x, z)} (eN refers to e in the updated state). The update e(a, b) unifies
with e(x, z), whose associated condition trivially succeeds, therefore the pre-test
fails and an exact test needs to be executed.

In [18] partial evaluation of a meta-interpreter is used to produce logic pro-
grams that correspond to simplified constraints. The partial evaluator is given
a meta-interpreter that constitutes a general integrity checker and produces as
output a version of the meta-interpreter specialized to specific update patterns
to be checked in the updated state (and employing the hypothesis that integrity
holds before the update). The method could work for recursive databases, if
a perfect partial evaluator were at disposal, but a loop check needs to be in-
cluded in the program to ensure termination. This does not partially evaluate
satisfactorily, resulting in an explosion of (possibly unreachable) alternatives.

With the method described in [5], which is based on the notion of partial
subsumption, database rules are annotated with residues to capture the relevant
parts that are concerned by the ICs. When doing semantic query optimization,
such parts can often allow faster query evaluation times. However, when it comes
to integrity checking, the method typically leaves things unchanged in the pres-

ence of recursive rules. In example 7 we need to calculate the residue of the
constraint in Γ associated with the extensional relation e. The partial subsump-
tion algorithm stops immediately, as no resolution step is possible, thus resulting
in no simplification at all.

Seljée’s inconsistency indicators (IIs) [29] are based on incremental expres-
sions for OLR. We have improved on his method as follows. Firstly, our update
language is more general, allowing compound updates and any kind of bulk
operation expressible with rules (IIs cannot handle example 8). Secondly, the
simplified constraints produced by SimpRec only need to consult the present
database state, whereas IIs require, in general, the availability of both the old
and the new state, even in the non-recursive case. For the treatment of recursion
IIs impose a number of restrictions on the language (no negation, no existentially
quantified variables) that we do not need. For example 7 the II, to be checked
after the update, is ← (p(b, x) ∨ b = x) ∧ (p(x, a) ∨ a = x). We evaluate the
performance of this result in section 6.

In [3], integrity checking is regarded as an instance of update propagation,
i.e., the problem of determining the effect of an update on a set of rules. The
method extends the database with rules that express the incremental evaluation
of the new state and the ICs themselves are defined by rules. A soft consequence
operator [2] is then used to compute the model of this augmented database.
Instead of a symbolic simplification of the original constraints, this method rather
provides an efficient way for evaluating the new state. In this respect, it can
be seen as orthogonal to ours, at least when our method does not eliminate
references to the new state.

6 Experiments

In order to demonstrate the effectiveness of the simplification procedure, we
have tested it on random update sets for example 7. Our tests were run on a
machine with a 2 GHz processor, 1 GB of RAM and 80 GB of hard disk, using
DES 1.1 [28], which is a Datalog system featuring full recursive evaluation and
stratified negation. DES is implemented on top of Prolog; we could therefore
program our tests in Prolog and simulate insertions by means of assert and
deletions by retract. The DES query engine is optimized with memoization
techniques for answering queries based on previous answers. In this context we
always pose the same query ← p(x, x) to check whether the graph is acyclic,
and therefore answers can be reused for subsequent queries. Our method greatly
improves performance even in the presence of an already optimized system.

Average execution times are indicated in milliseconds (within a time frame
of 50 seconds) and the number of attempted insertions of edge facts is indicated
on the x-axis. Each figure reports the execution times needed to update the
database and check its consistency according to:

– The un-optimized IC (diamonds).
– The II produced by Seljée’s method [29] (squares).
– The formula ← p(b, a) (II∗), produced by improving the II manually (crosses).

– The simplification obtained with Simp (triangles). Note that in this case
consistency is checked before the update.

The third curve (a “perfect” post-test), although not generated by any known
method, was included for comparison with the test-before-update strategy. In
particular, in figure 1 we randomly generated 1500 arcs between 1000 different
nodes, whereas in figure 2 we only used 50 different nodes. In the former case
the formation of cycles is less likely and the times are generally better. In the
latter, however, updates are much more likely to be rejected (44% of the up-
dates were rejected in total, while only 12% in the former case); Simp in this
case performs significantly better, with improvements around 20% even wrt the
manually produced formula. The interpretation of these results is in accordance
with the following observations:

– The comparison between the performance of the optimized and un-optimized
checks shows that the optimized version is always more efficient than the
original one.

– In both the un-optimized and II methods many more paths need to be com-
puted, which is an expensive operation.

– The gain of early detection of inconsistency, which is a distinctive feature
of our approach, is unquestionable in the case of illegal updates. In such
a case, with our optimized strategy, the simplified constraint immediately
reports an integrity violation wrt the proposed update, which is therefore
not executed. On the other hand, the other methods require to execute the
update, perform a consistency test and then roll back the update.

Note that the extra burden due to the execution and subsequent rollback of
an illegal update is even more evident for compound updates, such as those
of example 8; in these cases the benefits of a pretest wrt a post-test are even
greater. We observe that the above comparisons did not take into account the
time spent to produce the optimized constraints8, as these can be generated at
schema design time and thus do not interfere with run time performance.

7 Conclusion and Future Work

We have described a simplification framework for integrity checking in databases
with recursive views. A general methodology based on the introduction of new
recursive views has been described. This allows checking in the state before the
update whether the database will be consistent in the updated state. While for
recursive problems we cannot guarantee, in general, that the resulting test will
be more efficient than the original one, this is indeed the case for the important
class of OLR problems, for which differential expressions can be easily derived
that indicate the incremental variations of the recursive predicate.

8 All symbolic simplifications in this paper were obtained with an experimental im-
plementation of the simplification procedure [20].

�

�����

�����

�����

�����

�����

�����

�� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

	�
�

�
�

��
��

��
��

��
��

��
��

��
��

�������

�
�

������

���

���

��

Fig. 1. Sparse data

�

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

	�
�

�
�

��
��

��
��

��
��

��
��

��
��

�������

�
�

������

���

���

��

Fig. 2. Dense data

The simplified ICs can be regarded as queries and can therefore make use of
all known traditional query optimization methods, including specific techniques
for recursive queries evaluation, such as, e.g., magic sets.

There are numerous ways to extend this work. First of all, more cases for
which useful differential expressions exist could be identified; regular-chain pro-
grams are a likely candidate. The literature is rich in decidable rewriting tech-
niques that reduce recursive problems to easier ones; these could be integrated
in the framework.

References

1. K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming., pages 89–148.
Morgan Kaufmann, 1988.

2. A. Behrend. Soft stratification for magic set based query evaluation in deductive
databases. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 102–110. ACM Press, 2003.

3. A. Behrend. Soft Stratification for Transformation-Based Approaches to Deductive
Databases. PhD thesis, University of Bonn, 2004.

4. T. Catarci and I. F. Cruz. On expressing stratified datalog. In 2nd ICLP Workshop
on Deductive Databases and Logic Programming, pages 85–100, 1994.

5. U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic
query optimization. ACM Transactions on Database Systems (TODS), 15(2):162–
207, 1990.

6. H. Christiansen and D. Martinenghi. Simplification of database integrity con-
straints revisited: A transformational approach. In LOPSTR’03, volume 3018 of
LNCS, pages 178–197. Springer, 2004.

7. H. Decker. Translating advanced integrity checking technology to sql. In Database
integrity: challenges and solutions, pages 203–249. Idea Group Publishing, 2002.

8. G. Dong and J. Su. Incremental Maintenance of Recursive Views Using Relational
Calculus/SQL. SIGMOD Record, 29(1):44–51, 2000.

9. N. Eisinger and H. J. Ohlbach. Deduction systems based on resolution. In Hand-
book of Logic in Artificial Intelligence and Logic Programming - Vol 1: Logical
Foundations., pages 183–271. Clarendon Press, Oxford, 1993.

10. P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity constraints: Semantics and
applications. In Logics for Databases and Information Systems, pages 265–306,
1998.

11. J. Grant and J. Minker. Integrity constraints in knowledge based systems. In
Knowledge Engineering Vol II, Applications, pages 1–25. McGraw-Hill, 1990.

12. A. Gupta and I. S. Mumick, editors. Materialized views: techniques, implementa-
tions, and applications. MIT Press, 1999.

13. INCITS. Information technology - Database languages - SQL - Part 2: Foundation
(SQL/Foundation) - INCITS/ISO/IEC 9075-2-1999. 1999.

14. Y. E. Ioannidis and E. Wong. Towards an algebraic theory of recursion. J. ACM,
38(2):329–381, 1991.

15. D. Kapur and P. Narendran. Np-completeness of the set unification and matching
problems. In CADE, pages 489–495, 1986.

16. D. Knuth and P. Bendix. Simple word problems in universal algebras. Computa-
tional Problems in Abstract Algebras, pages 263–297, 1970.

17. S. Y. Lee and T. W. Ling. Further improvements on integrity constraint checking
for stratifiable deductive databases. In VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, pages 495–505. Morgan Kaufmann, 1996.

18. M. Leuschel and D. de Schreye. Creating specialised integrity checks through
partial evaluation of meta-interpreters. JLP, 36(2):149–193, 1998.

19. J. W. Lloyd, L. Sonenberg, and R. W. Topor. Integrity constraint checking in
stratified databases. JLP, 4(4):331–343, 1987.

20. D. Martinenghi. A simplification procedure for integrity constraints. http://www.
dat.ruc.dk/~dm/spic/index.html, 2004.

21. E. Mayol and E. Teniente. A survey of current methods for integrity constraint
maintenance and view updating. In Advances in Conceptual Modeling: ER ’99
Workshops, volume 1727 of LNCS, pages 62–73. Springer, 1999.

22. J. F. Naughton. Minimizing function-free recursive inference rules. J. ACM,
36(1):69–91, 1989.

23. J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Efficient evaluation
of right-, left-, and mult-lineare rules. In J. Clifford, B. G. Lindsay, and D. Maier,
editors, Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, Portland, Oregon, May 31 - June 2, 1989, pages 235–242. ACM
Press, 1989.

24. J.-M. Nicolas. Logic for improving integrity checking in relational data bases. Acta
Informatica, 18:227–253, 1982.

25. S.-H. Nienhuys-Cheng and R. de Wolf. The equivalence of the subsumption the-
orem and the refutation-completeness for unconstrained resolution. In ASIAN,
pages 269–285, 1995.

26. X. Qian. An effective method for integrity constraint simplification. In Proceedings
of the Fourth International Conference on Data Engineering, pages 338–345. IEEE
Computer Society, 1988.

27. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12(1):23–41, 1965.

28. F. Sáenz-Pérez. Datalog educational system v1.1. user’s manual. Techni-
cal Report 139-04, Faculty of Computer Science, UCM, 2004. Available from
http://www.fdi.ucm.es/profesor/fernan/DES/.

29. R. Seljée. A Fact Integrity Constraint Checking System for the Validation of Se-
mantic Integrity Constraints after Updating Consistent Deductive Databases. PhD
thesis, Tilburg University, 1997.

