
A constraint-based bottom-up counterpart to DCG

Henning Christiansen
Roskilde University, Computer Science Dept.
P.O.Box 260, DK-4000 Roskilde, Denmark

henning@ruc.dk

Abstract

A new grammar formalism, CHR Grammars
(CHRG), is proposed that provides a constraint-
solving approach to language analysis, built on
top of the programming language of Constraint
Handling Rules in the same way as Definite
Clause Grammars (DCG) on Prolog. CHRG
works bottom-up and adds the following fea-
tures when compared with DCG: – An inher-
ent treatment of ambiguity without backtrack-
ing. – Robust parsing; do not give up in case
of errors but return the recognized phrases. –
A flexibility to produce and consume arbitrary
hypotheses making it straightforward to deal
with abduction, integrity constraints, operators
à la assumption grammars, and to incorporate
other constraint solvers. – Context-sensitive
rules that apply for disambiguation, coordina-
tion in natural language, and tagger-like rules.

1 Introduction

Definite Clause Grammars (Colmerauer 75;
Pereira & Warren 80) (DCG) have been appre-
ciated for their declarative nature and execu-
tion environment inherited from the logic pro-
gramming language Prolog. Where Prolog and
DCG work top-down, the language of Constraint
Handling Rules (Frühwirth 98) (CHR) provides
a logic programming framework for bottom-up
computations that implies several advantages for
language processing (Abdennadher & Schütz 98;
Abdennadher & Christiansen 00). In fact, any
context-free grammar or DCG can be rewritten
in a straightforward way as a set of propagation
rules of CHR that serves as an error robust parser
with an inherent treatment of ambiguity without
backtracking, and no artificial nonterminals are
necessary as often in a DCG. Restrictions are that
empty productions and loops among nonterminals
cannot be handled.

A new and powerful grammar formalism, called
CHRG for CHR Grammars, is proposed with a
form of context-sensitive rules that can take into
account arbitrary grammar symbols to the left
and right of a sequence supposed to match a given
nonterminal. This allows tagger-like grammar

rules, it can be used for disambiguating simple
and ambiguous context-free grammar rules, and
provides also a way to handle coordination in nat-
ural language as shown by an example: The fol-
lowing rules are excerpt of a CHR grammar for
sentences such as “Peter likes and Mary detests
spinach”.
sub(A), verb(V), obj(B) ::> sent(s(A,V,B)).
subj(A), verb(V) /- [and], sent(s(_,_,B))

::> sent(s(A,V,B)).

The first rule is to be understood in the usual
way that a complete sub-verb-obj sequence can
be reduced to a sent node. The second rule is an
example of a context-sensitive rule: It applies to
a subj-verb sequence only when followed by ter-
minal symbol “and” and another sent node, and
in this case the incomplete sentence takes its sub-
ject, matched by variable B, from this following
sent node. The marker “/-” separates the subj-
verb sequence from the required right context; a
similar marker may indicate left context. In con-
trast to most other notations, CHRG mentions
the constituents before the whole to emphasize
the bottom-up nature.

The CHRG notation includes the full expressive
power of CHR, including the ability to integrate
with arbitrary constraint solvers and a highly flex-
ible way to handle sets of extra-grammatical hy-
potheses. For example, abduction for context
comprehension can be characterized in CHRG in
a surprisingly simple way that requires no meta-
level overhead as do other approaches to abduc-
tion in language processing. Elements of linear
logic as in Assumption Grammars (Dahl et al. 97)
are included in a similar way.

2 Background and related work

The notion of constraints, with slightly differ-
ent meanings, is often associated with language
processing. “Constraint grammars” and “uni-
fication grammars” are often used for feature-
structure grammars, and constraint programming



techniques have been applied for the complex con-
straints that arise in natural language processing;
see, e.g., (Allen 95; Duchier 00) for introduction
and overview. One approach using CHR for this
purpose in HPSG is (Penn 00). See also (Blache
00; Duchier & Thater 99; Maruyama 94; Schröder
et al. 00) for similar approaches.

CHR has been applied for diagram parsing by
Meyer (Meyer 00) but not elaborated into a gram-
mar formalism; Morawietz (Morawietz 00) has
implemented deductive parsing (Shieber et al. 95)
in CHR and shown that a specialization of a gen-
eral bottom-up parser leads to rules similar to
those produced by our translator; none of these
consider context in the sense we do. Abduction in
CHR has been applied by (Christiansen & Dahl
02) for diagnosis and correction of grammatical
errors. An attempt to characterize the gram-
mar of ancient Egyptian hieroglyph inscriptions
by means of context-sensitive rules in CHRG is
given by (Hecksher et al. 02). CHR is avail-
able as extension of, among others, SICStus Pro-
log (Swedish Institute of Computer Science 03)
which is the version applied in the present work.
For more details, refer to a forthcoming journal
paper (Christiansen 04) and the website (Chris-
tiansen 02b) for CHRG with source code, user’s
guide and example grammars.

Finally, we mention important advances based
on soft or graduated constraints and statisti-
cally based parsing, representing important ad-
vances for robustness and disambiguation, see,
e.g., (Collins 96; Charniak 97; Heinecke et al. 98;
Abney et al. 99). We have not tried to integrated
such ideas in CHRG but (Bistarelli et al. 02)
have shown how soft constraints can be handled
in CHR so a combination seems possible.

3 Syntax, semantics, and
implementation of CHRG

A CHR Grammar, or CHRG for short consists
of finite sets of grammar and constraints symbols
and a finite set of grammar rules.

An attributed grammar symbol, for short called
a grammar symbol, is formed as a logical atom
whose predicate symbol is a grammar symbol; a
grammar symbol formed by token/1 is called a
terminal, any other grammar symbol a nontermi-
nal. Sequences of terminal symbols token(a1),
. . ., token(an) may also be written [a1, . . ., an];
if ground, such a sequence is called a string.

A propagation (grammar) rule is of the form

α -\ β /- γ ::> G | δ.

The part of the rule preceding the arrow ::> is
called the head, G the guard, and δ the body;
α, β, γ, δ are sequences of grammar symbols and
constraints so that β contains at least one gram-
mar symbol, and δ contains exactly one grammar
symbol which is a nonterminal (and perhaps con-
straints); α (γ) is called left (right) context and β
the core of the head; G is a guard as in CHR that
may test properties for the variables in the head
of the rule. If left or right context is empty, the
corresponding marker is left out and if G is empty
(interpreted as true), the vertical bar is left out.
The convention from DCG is adopted that non-
grammatical constraints in head and body of a
rule are enclosed in curly brackets.

The implemented system combines CHRG with
rules of CHR and Prolog which is convenient
for defining behaviour of non-grammatical con-
straints. CHRG includes also notation for gaps
and parallel match not described here.

In Chomskian grammars, derivations are de-
fined over strings of symbols and this suffices
also for a large class of CHRGs. Several aspects
of CHRG make this too restrictive: Context-
sensitive rules of CHRG extend those of Chomsky
by the possibility to refer to any grammar sym-
bol which has been created at some stage during
derivation (not only the “current” stage); extra-
grammatical hypotheses created during a deriva-
tion serve as a common resource for all subsequent
derivation steps; CHRG includes other sorts of
rules (below) inherited from CHR which need to
be specified in a bottom-up fashion.

The most obvious way to define derivations in
CHRG seems to be to represent sequencing by
means of word boundaries (e.g., integer numbers)
and each stage in the derivation as a constraint
store. For each grammar symbol N of arity n, we
assume a corresponding constraint also denoted
by N of arity n + 2 called an indexed grammar
symbol with the two extra arguments referred to
as phrase (or word) boundaries.

For a grammar symbol S = N(ā), the nota-
tion Sn0,n1 refers to the indexed grammar symbol
N(n0,n1,ā) with integers n0 < n1; in case of a
terminal, n0 + 1 = n1 is assumed. For any se-
quence σ of grammar symbols S1, . . . , Sk and in-
creasing integers n0, n1, . . . , nk, we let σn0,nk re-



fer to the set {Sn0,n1
1 , . . . , S

nk−1,nk

k } with the ex-
istence of n1, . . . , nk−1 understood. This extends
so that for a sequence of grammar symbols and
extra-grammatical constraints, we remove all con-
straints from the sequence, put indexes on the
remaining grammar symbols, and add again the
constraints in their original position.

A constraint store is a set of constraints and in-
dexed grammar symbols and the initial store for
a terminal string σ is the store σ0,k where k is the
length of σ. An instance (and ground instance)
of a grammar rule is defined in the usual way. A
derivation step from one constraint store S1 to an-
other S2 by an instance of a propagation grammar
rule α -\β /- γ ::>G|δ is defined whenever

• ` ∃x̄G where x̄ are the variables in G not in
α, β, γ,

• αi,j ∪ βj,k ∪ γk,` ⊆ S1, and S2 = S1 ∪ δj,k.

Useful for optimization purposes, CHRG includes
two other sorts of rules that reflect the under-
lying CHR system. A simplification (grammar)
rule is similar to a propagation rule except that
the arrow is replaced by <:>; a simpagation (gram-
mar) rule is similar to a simplification except that
one or more grammar symbols or constraints in
the core of the head are prefixed by an exclama-
tion mark “!”. Derivation with these rules is de-
fined as above, except that the new state is given
S2 = S1 ∪ δj,k \ βj,k ∪ β′j,k where β′j,k are those
elements of βj,k prefixed by exclamation marks.

A parsing derivation for terminal string σ (and
given grammar) is defined as a sequence of steps
starting with state σ0,n. A final constraint store
is one in which no further step can apply; for any
grammar symbol N with N0,n in the final store,
we say that N is accepted from σ.

CHRG is implemented by a compiler that
translates a grammar into a CHR program which,
when executed, realizes the semantics defined
above. Basically, it extends grammar symbols
with arguments for word boundaries.

For propagation rules, the final state is inde-
pendent of the order in which rules apply but in
general, this order does matter. The implemented
system inherits a specific order from CHR defined
roughly as follows: Enter the tokens into the store
in sequence and apply as many rules as possible
before entering the next one; details are spelled
out in (Christiansen 04).

With respect to efficiency, we can rely on the
indexing techniques applied in CHR and expected
future optimizations of the CHR system involving
control and data flow analyses. Referring to re-
sults of (McAllester 00; Ganzinger & McAllester
01; Ganzinger & McAllester 02), complexity re-
sults have been shown that also are verified em-
pirically: A locally unambiguous grammar exe-
cutes linearly in terms of the length of the input
string. For arbitrary grammar without attributes
(including any context-free grammar without sin-
gle productions and loops), complexity is cubic
similarly to classical algorithms such as Early and
Cocke-Younger-Kasami.

4 Examples

The following shows the syntax used in the im-
plemented system. The “handler” command is
a reminiscent of the CHR system; grammar sym-
bols are declared by the grammar symbols con-
struct as shown. The final command has no ef-
fect in the present example, but it adds extra rules
needed for the extensions described below.

handler my_grammar.
grammar_symbols np/0, verb/0, sentence/0.
np, verb, np ::> sentence.
[peter] ::> np.
[mary] ::> np.
[likes] ::> verb.
end_of_CHRG_source.

For the string “Peter likes Mary”, the np, verb,
and np are recognized, and then the sentence
rule applies. This grammar consists of propa-
gation rules, so the tokens, nps, and verb are
not consumed. If a rule were added, say np,
[likes] ::> sentence1, a sentence as well as a
sentence1 would be recognized. If all rules were
changed into simplification rules (changing ::> to
<:>), only one would be recognized. For an am-
biguous grammar of propagation rules, a sentence
node is generated for each different reading.

Context-sensitive rules were shown in the intro-
duction for coordination handling. In the follow-
ing, left and right contexts are applied in a tagger-
like fashion to classify nouns as subj or obj ac-
cording to their position relative to the verb.

noun(A) /- verb(_) ::> subj(A).
verb(_) -\ noun(A) ::> obj(A).
noun(A), [and], subj(B) ::> subj(A+B).
obj(A), [and], noun(B) ::> obj(A+B).



Context parts perhaps combined with simplifi-
cation rules can be used for disambiguation of
straightforward and otherwise ambiguous gram-
mars. The following shows a grammar for arith-
metic expressions with traditional operator prece-
dence; the semicolon denotes alternatives in syn-
tactic context and the where notation stands
for syntactic replacement (enhances readability
only); notice how standard Prolog tests are ap-
plied in guards of the two last rules.

e(E1),[+],e(E2) /- Rc <:> e(plus(E1,E2))
where Rc = ([’+’];[’)’];[eof]).

e(E1),[*],e(E2) /- Rc <:> e(times(E1,E2))
where Rc = ([*];[+];[’)’];[eof]).

e(E1),[^],e(E2) /- [X]
<:> X \= ^ | e(exp(E1,E2)).

[’(’], e(E), [’)’] <:> e(E).
[N] <:> integer(N) | e(N).

This grammar uses standard follow items but
hopefully, it illustrates the flexibility that CHRG
provides for a competent grammar writer to engi-
neer compact, yet precise and widely covering lan-
guages specifications without too many artificial
grammar symbols. We do not give examples using
the full flexibility of extra constraints in head and
body of rules, but the principle is indicated in the
following sections that provide more “structured”
ways of using such constraints.

5 Abduction in CHRG

Abduction for language interpretation, as concep-
tual model and implementation, has been recog-
nized by several authors, e.g., (Charniak & Mc-
Dermott 85; Hobbs et al. 93; Christiansen 93;
Gabbay et al. 97) just to mention a small frac-
tion. Usually abduction requires a heavy meta-
level overhead which may be one of the reasons
why abduction seldom is used in practice.

A simple technical trick, initially described
by (Christiansen 02a), can be applied to a gram-
mar so it can run as a CHRG without any ex-
tra abduction machinery. A brief introduction is
given here; full details in (Christiansen 04).

Consider the following grammar rule in which
F refers to a fact about the semantical context
for a given discourse; it can be read as a CHRG
rule or an equivalent DCG rule.

a, b, {F} ::> ab (1)

If two subphrases referred to by a and b have been
recognized and the context condition F holds, it

is concluded that an ab phrase is feasible, gram-
matically as well as with respect to the context.
Analysis with such rules works well when con-
text is known in advance for checking that a given
discourse is syntactically and semantically sound
with respect to that context.

In case the context is unknown, we have a more
difficult abductive problem of finding proper con-
text theory so that an analysis of an observed dis-
course is possible. Rules of the form (1) are not
of much use unless an interpreter that includes
abduction is involved.

Our solution is to move the reference to the
contextual predicates into the other side of the
implication, thus replacing the rule above with
the following:

a, b ::> {F}, ab (2)

Intuitively it reads: If suitable a and b phrases are
found, it is feasible to assert F and, thus, under
this assumption conclude ab.

Obviously, the two formulations (1) and (2)
are not logically equivalent but it is straightfor-
ward to formulate and prove correctness. Formu-
lation (2) can be executed as a CHRG with the
abductive explanation of a discourse being read
out of the final constraint store.

For simplicity of explanation in the following,
assume the underlying grammar to be unambigu-
ous; the full CHRG system includes techniques
not described here to avoid different hypothesis
sets for different parses to be mixed up.

A specification based on abduction needs in-
tegrity constraints (ICs) to suppress senseless ex-
planations and CHR rules are effective for this
purpose as indicated by the following example.

Consider the discourse “Garfield eats Mickey,
Tom eats Jerry, Jerry is mouse, Tom is cat,
Mickey is mouse.” We intend to learn from it a
categorization of the individuals and which cate-
gories that are food items for others. An interest-
ing question is to which category Garfield belongs
as this is not mentioned explicitly. The following
vocabulary is defined; the abducibles declara-
tion is synonymous with CHR’s constraints dec-
laration except that it also introduces predicates
for negated abducibles with ICs that implement
explicit negation.

abducibles food_for/2, categ_of/2.
grammar_symbols name/1, verb/1,
sentence/1, category/1.



The following two CHR rules serve as ICs.
categ_of(N,C1), categ_of(N,C2) ==> C1=C2.
food_for(C1,C), food_for(C2,C) ==> C1=C2.

I.e., the category for a name is unique, and for the
sake of this example it is assumed that a given cat-
egory is the food item for at most one other cate-
gory. The following part of the grammar classifies
the different tokens.
[tom] ::> name(tom). ...
[is] ::> verb(is). ...
verb(is) -\ [X] <:> category(X).

The last rule applies a syntactic left context part
in order to classify any symbol to the right of an
occurrence of “is” as a category.

A sentence “Tom is cat” is only faithful to a
context if categ of(tom,cat) holds in it. Thus,
if sentence “Tom is cat” is taken as true, it is fea-
sible to assume categ of(tom,cat); in general:
name(N), verb(is), category(C) ::>

{categ_of(N,C)}, sentence(is(N,C)).

A sentence “Tom eats Jerry” is only faithful to a
context in which proper categ of and food for
facts hold:
name(N1), verb(eats), name(N2) ::>
{categ_of(N1,C1), categ_of(N2,C2),

food_for(C1,C2)},
sentence(eats(N1,N2)).

Let us trace the analysis of the sample discourse;
only the context facts are recorded. First sentence
“Garfield eats Mickey” gives rise to
categ_of(garfield,X1), categ_of(mickey,X2),
food_for(X1,X2).

The “X”s are uninstantiated variables. The next
“Tom eats Jerry” gives
categ_of(tom,X3), categ_of(jerry,X4),
food_for(X3,X4).

“Jerry is mouse” gives categ of(jerry,mouse),
and the first IC immediately unifies X4 with
mouse. In a similar way “Tom is cat” gives rise to
a unification of X3 with cat and food for(X3,X4)
has become
food_for(cat,mouse).

Finally “Mickey is mouse” produces
categ of(mickey,mouse) that triggers the
first IC unifying X2 with mouse and thus the
second IC sets X1=cat and there is no other
possibility. So as part of the solution to this
language interpretation problem, we have found
that Garfield is a cat.

6 Assumption grammars in CHRG

Assumption Grammars (Dahl et al. 97) (AGs)
include facilities to communicate hypotheses be-
tween different subtrees which differ from abduc-
tion in the sense that hypotheses are explicitly
produced and explicitly used, possible being con-
sumed. A collection of operators is provided to
control the scope of hypotheses which is not possi-
ble with an abductive approach. We explain here
how the AG operators are included in CHRG. For
simplicity, we describe the technique for unam-
biguous grammars; the full CHRG system is able
to handle ambiguity in assumption grammars.

In an AG, the expression +h(a) means to as-
sert a linear hypothesis which can be used once
in the subsequent text by means of the expres-
sion -h(a) (or -h(X), binding X to a) called an
expectation. Asserting the hypothesis by *h(a)
means that it can be used over and over again.
We deviate slightly from the syntax of (Dahl et
al. 97) as to achieve a more symmetric notation
and introduce three operators for so-called time-
less hypotheses, =+, =-, and =*, whose meanings
are similar except that assumptions can be used
and consumed in any order. The operators are
defined as constraints in CHR and can be called
from the body of grammar rules. The interaction
between the operators is implemented by CHR
rules, roughly of the following shape (shown for
the time-less versions only).
=+A, =-B <=> A=B.
=*A \ =-B <=> A=B.

By the first rule, a pair of assumption =+h(a)
and expectation =-h(X) are removed from the
constraint store producing the effect of binding
X to a. If assumption =*h(a) were used instead,
the second rule can apply to several instances of
=-h(· · ·). The actual rules in the system are a bit
more complicated so that an expectation =-h(X)
can try out different possible assumptions.

We sketch an example adapted from (Dahl et al.
97). We consider sentences with pronouns and co-
ordination such as “Martha likes and Mary likes
Paul; she hates her”. We add gender to names
and pronouns, and whenever a name appears as
subject or object (in this grammar grouped as
nps), an assumption is made that the given name
is acting. A pronoun as subject or object gives
rise to an expectation for someone acting of ap-
propriate gender. The principle is shown by the
following excerpt.



[mary] <:> name(mary, fem).
[she] <:> pronoun(fem).
name(X,Gender) <:>

*acting(X,Gender), np(X,Gender).
pronoun(Gender) <:>

-acting(X,Gender), np(X,Gender).

To handle the coordination problem, an incom-
plete sentence raises a time-less expectation for a
subject which is met by the assumption produced
by the full sentence at the end.

np(A,_), verb(V) /- [and] <:>
=-ref_object(B), sentence(s(A,V,B)).

np(A,_), verb(V), np(B,_) <:>
=*ref_object(B), sentence(s(A,V,B)).

One of the possible final states produced for
the sample text above contains sentence
symbols with the following attributes:
s(martha,like,paul), s(mary,like,paul),
and s(mary,hate,martha). The CHRG version
of AG goes beyond the original proposal by
adding integrity constraints.

7 Conclusion

CHR Grammars founded of current constraint
logic technology have been introduced, and their
application to aspects of natural language syntax
illustrated by small examples. CHRG is a tech-
nologically updated ancestor of Definite Clause
Grammars: A relative transparent layer of syn-
tactic sugar over a declarative programming lan-
guage, providing both conceivable semantics and
fairly efficient implementation. In CHRG we
have just replaced Prolog by Constraint Handling
Rules. The result of this shift is a very powerful
formalism in which several linguistic aspects usu-
ally considered to be complicated or difficult are
included more or less for free:

• Ambiguity and grammatical errors are hand-
led in a straightforward way, all different
(partial) parses are evaluated in parallel.

• Context-sensitive rules, which are inherent
part of the paradigm, handle coordination in
an immediate way.

• Abduction, which is useful for identifying in-
directly implied information, is expressed di-
rectly with no additional computational de-
vices needed.

Context-sensitive rules combined with ability to
handle left-recursion (as opposed to DCG) are a
great help for producing grammars with relatively
few, concise rules without artificial nonterminals;
a drawback is the lack of empty production.

There is a large unexplored potentiality in
CHRG and language processing by means of
CHR. We can mention the possibility of inte-
grating arbitrary constraint solvers, and adding
weights to prioritize between different parses (and
abductive explanations!) seems quite straightfor-
ward. As already mentioned, (Bistarelli et al. 02)
have shown how to handle soft constraints in CHR
and this opens up for integrating recent results in
statistically based parsing.

In another paper (Christiansen & Dahl 02) we
have extended with facilities for error detection
and correction. Robustness combined with flex-
ibility (e.g., error correction) makes application
in speech systems interesting: If, e.g., the pho-
netic component cannot distinguish a token from
being hats or cats, we simply add both to the in-
put state with identical boundaries. Parsing from
a state {token(0,1,hats), token(0,1,cats),
token(1,2,eat), token(2,3,mice)} will explore
the different options in parallel, with only those
satisfying syntactic and semantic requirements of
the actual grammar leading to a full parse tree.

No real-world applications have been developed
in CHRG yet, but we have good expectation for
scalability as selected grammars can run in linear
time. Furthermore, the full flexibility of the un-
derlying CHR and Prolog machinery is available
for optimizations. Independently, CHRG is avail-
able as powerful modeling and prototyping tool.

In a way, the idea is näıve, almost too näıve,
just applying grammar rules bottom-up over and
over until the process stops. However, we can rely
now on the underlying, well-established computa-
tional paradigm of CHR for such rules-based com-
putations. Recent extensions to the CHRG sys-
tem concern notation for optional elements and
improvement of indexing techniques for evalua-
tion of different abducibles/assumptions sets in
parallel, and new grammars are under develop-
ment in the system.

It is our hope that the availability of the CHRG
system can stimulate research in constraint-based
language analysis, ideally leading to a full inte-
gration of lexical, grammatical, semantical, and
pragmatic processing.



Acknowledgements

Part of this work has been carried out while the
author visited Simon Fraser University, Canada,
partly supported by the Danish Natural Science
Council; thanks to Verónica Dahl for helpful dis-
cussion and providing a stimulating environment.
This research is supported in part by the On-
toQuery project funded by the Danish Research
Councils, and the IT-University of Copenhagen.

References
(Abdennadher & Christiansen 00) Slim Abdennadher and Henning

Christiansen. An experimental clp platform for integrity con-
straints and abduction. In Proceedings of FQAS2000, Flexible
Query Answering Systems: Advances in Soft Computing se-
ries, pages 141–152. Physica-Verlag (Springer), 2000.

(Abdennadher & Schütz 98) Slim Abdennadher and Heribert
Schütz. CHR∨: A flexible query language. In Proc. Int. Con-
ference on Flexible Query Answering Systems FQAS, Roskilde,
Denmark, volume 1495 of LNCS, pages 1–15. Springer-Verlag,
1998.

(Abney et al. 99) Steven P. Abney, David A. McAllester, and Fer-
nando Pereira. Relating probabilistic grammars and automata.
In Proceedings of the 37th Annual Meeting of the ACL, pages
542–549, San Francisco, California, 1999.

(Allen 95) James Allen. Natural Language Understanding — 2nd
Edition. The Benjamin/Cummings Publishing Company, 1995.

(Bistarelli et al. 02) Stefano Bistarelli, Thom Frhwirth, and Michael
Marte. Soft constraint propagation and solving in chrs. In Pro-
ceedings of the 2002 ACM symposium on Applied computing,
pages 1–5. ACM Press, 2002.

(Blache 00) Philippe Blache. Constraints, linguistic theories and
natural language processing. In Lecture Notes in Computer Sci-
ence 1835, pages 221–232. Springer, 2000.

(Charniak & McDermott 85) E. Charniak and D. McDermott. In-
troduction to Artificial Intelligence. Addison-Wesley Publishing
Company, 1985.

(Charniak 97) Eugene Charniak. Statistical parsing with a context-
free grammar and word statistics. In AAAI/IAAI, pages 598–
603, 1997.

(Christiansen & Dahl 02) Henning Christiansen and Veronica Dahl.
Logic grammars for diagnosis and repair. In ICTAI’02, proc. of
14th IEEE International Conference on Tools with Artificial
Intelligence, November 4-6, 2002 Washington D.C, pages 307–
314. IEEE, 2002.

(Christiansen 93) Henning Christiansen. Why should gram-
mars not adapt themselves to context and discourse? In
4th International Pragmatics Conference, Kobe, Japan,
July 23–30 1993, (Abstract collection), page 23. Inter-
national Pragmatics Association, 1993. Extended version:
http://www.dat.ruc.dk/˜henning/IPRA93.ps.

(Christiansen 02a) Henning Christiansen. Abductive language in-
terpretation as bottom-up deduction. In Shuly Wintner, editor,
Natural Language Understanding and Logic Programming, vol-
ume 92 of Datalogiske Skrifter, pages 33–47, Roskilde, Denmark,
July 28 2002.

(Christiansen 02b) Henning Christiansen. CHR Grammar web site,
Released 2002. http://www.ruc.dk/˜henning/chrg, 2002.

(Christiansen 04) Henning Christiansen. CHR Grammars. To ap-
pear in Theory and Practice of Logic Programming, 2004.

(Collins 96) Michael John Collins. A new statistical parser based
on bigram lexical dependencies. In Arivind Joshi and Martha
Palmer, editors, Proceedings of the Thirty-Fourth Annual Meet-
ing of the Association for Computational Linguistics, pages
184–191, San Francisco, 1996. Morgan Kaufmann Publishers.

(Colmerauer 75) Alain Colmerauer. Les grammaires de metamor-
phose. Technical report, Groupe d’Intelligence Artificielle, Uni-
versité de Marseille-Luminy, November 1975. Translated into
English as (Colmerauer 78).

(Colmerauer 78) Alain Colmerauer. Metamorphosis grammars. In
Leonard Bolc, editor, Natural Language Communication with
Computers, volume 63 of Lecture Notes in Computer Science,
pages 133–189. Springer-Verlag, Berlin, 1978. English transla-
tion of (Colmerauer 75).

(Dahl et al. 97) Veronica Dahl, Paul Tarau, and Renwei Li. Assump-
tion grammars for processing natural language. In Lee Naish, ed-
itor, Proceedings of the 14th International Conference on Logic
Programming, pages 256–270, Cambridge, 1997. MIT Press.

(Duchier & Thater 99) Denys Duchier and Stefan Thater. Pars-
ing with tree descriptions: A constraint-based approach. In 6th
International Workshop on Natural Language Understanding
and Logic Programming (NLULP ’99), December 3-4, pages
17–32, Las Cruces, New Mexico, USA, 1999.

(Duchier 00) Denys Duchier. Constraint Programming For Natural
Language Processing. Lecture Notes, ESSLLI 2000, 2000.

(Frühwirth 98) Thom Frühwirth. Theory and practice of constraint
handling rules, special issue on constraint logic programming.
Journal of Logic Programming, 37(1–3):95–138, October 1998.

(Gabbay et al. 97) Dov Gabbay, Ruth Kempson, and J. Pitt. La-
beled abduction and relevance reasoning. In Robert Demolombe
and T. Imielinski, editors, Nonstandard Queries and Nonstan-
dard Answers, pages 155–185. Oxford Science Publications, ,
1997.

(Ganzinger & McAllester 01) Harald Ganzinger and David
McAllester. A new meta-complexity theorem for bottom-up logic
programs. Lecture Notes in Computer Science, 2083:514–528,
2001.

(Ganzinger & McAllester 02) Harald Ganzinger and David
McAllester. Logical algorithms. In Peter J. Stuckey, editor,
Logic Programming, volume 2401 of Lecture Notes in Computer
Science, pages 209–223. Springer-Verlag, July 29–August 1 2002.

(Hecksher et al. 02) Thomas Hecksher, Sune T. B. Nielsen, and
Alexis Pigeon. A CHRG model of the ancient Egyptian gram-
mar. Unpublished student project report, Roskilde University,
Denmark, 2002.

(Heinecke et al. 98) Johannes Heinecke, Jurgen Kunze, Wolfgang
Menzel, and Ingo Schroder. Eliminative parsing with graded
constraints. In COLING-ACL, pages 526–530, 1998.

(Hobbs et al. 93) Jerry R. Hobbs, Mark E. Stickel, Douglas E. Ap-
pelt, and P. Martin. Interpretation as abduction. Artificial In-
telligence, 63(1–2):69–142, October 1993.

(Maruyama 94) H. Maruyama. Structural disambiguation with con-
straint propagation. In Proceedings of the 28th Annual Meeting
of the ACL, pages 31–38, Pittsburgh, 1994.

(McAllester 00) David A. McAllester. Meta-complexity theorems:
Talk abstract. In Rina Dechter, editor, Principles and Prac-
tice of Constraint Programming - CP 2000, 6th International
Conference, Singapore, September 18-21, 2000, Proceedings,
volume 1894 of Lecture Notes in Computer Science, pages 13–
17. Springer, 2000.

(Meyer 00) Bernd Meyer. A constraint-based framework for dia-
grammatical reasoning. Journal of Applied Artificial Intelli-
gence, 14:327–244, 2000.

(Morawietz 00) Frank Morawietz. Chart parsing as contraint prop-
agation. Proceedings of COLING-2000, 2000.

(Penn 00) G. Penn. Applying Constraint Handling Rules to HPSG.
Workshop on Rule-Based Constraint Reasoning and Program-
ming. Available at http://www.cs.cmu.edu/˜gpenn/trale.ps.gz,
2000.

(Pereira & Warren 80) Fernando C. N. Pereira and David H. D. War-
ren. Definite clause grammars for language analysis—A survey
of the formalism and a comparison with augmented transition
networks. Artificial Intelligence, 13(3):231–278, 1980.

(Schröder et al. 00) I. Schröder, W. Menzel, K. Foth, and M. Schulz.
Dependency modelling with restricted constraints. International
Journal Traitement Automatique des Langues: Les grammaires
de dépendance, 41(1):113–144, 2000.

(Shieber et al. 95) Stuart M. Shieber, Yves Schabes, and Fernando
C. N. Pereira. Principles and implementation of deductive pars-
ing. Journal of Logic Programming, 24(1–2):3–36, 1995.

(Swedish Institute of Computer Science 03) Swedish Institute of
Computer Science. SICStus Prolog user’s manual, Version 3.10.
Most recent version available at http://www.sics.se/isl, 2003.


