
Abductive language interpretation
as bottom-up deduction

Henning Christiansen

Roskilde University, Computer Science Dept.
P.O.Box 260, DK-4000 Roskilde, Denmark

E-mail: henning@ruc.dk

Abstract. A translation of abductive language interpretation problems
into a deductive form is proposed and shown to be correct. No meta-level
overhead is involved in the resulting formulas that can be evaluated by
bottom-up deduction, e.g., by considering them as Constraint Handling
Rules. The problem statement may involve background theories with
integrity constraints, and minimal contexts are produced that can explain
a discourse given.

Keywords: Abduction-as-deduction, language interpretation, context
comprehension.

1 Introduction

We consider logical grammars that relate the production of phrases to a context.
Grammar rules include conditions so that only phrases that are faithful to the
context can be composed, where the context is represented by some theory.
Consider as an example the following formula that is the logical form of the
Definite Clause Grammar [22] rule ab --> a, b, {F}.

a(x, y) ∧ b(y, z) ∧ F → ab(x, z) (1)

If two subphrases referred to by a and b have been recognized and the context
condition F holds, it is concluded that an ab phrase is feasible, grammatically
as well as with respect to the context. Language analysis with such rules works
quite well when context is given in advance and a given discourse is checked to be
syntactically and semantically sound. This paper concerns the extended problem
referred to as language interpretation of finding proper context theory so that
an analysis of an observed discourse is possible. In other words, the F in (1)
refers to an unknown and initially empty component, and deductive reasoning
with (1) as it is, is not of much use. Our approach involves a transformation
of the rules by moving context references into the other side of the implication;
for (1) as follows.

a(x, y) ∧ b(y, z) → F ∧ ab(x, z) (2)

Obviously, (1) and (2) are not logically equivalent, but an intuitive reading of (2)
as a productive rule gives a clue: If suitable a and b are found, it is feasible to
assert F and (thus, under this assumption) to conclude ab.



A grammar as depicted by (1) can be though of as part of a speaker’s capa-
bilities, embedding his knowledge about the context into language, whereas (2)
is relevant for a listener who wants to gain new context knowledge by an inter-
pretation of the spoken.

Section 2 is the theoretical core of the paper formalizing this transformation
and proving it correct with respect to a definition of language interpretation
problems. In section 3 the model is extended with background theories that may
include integrity constraints. No assumption is made about a particular grammar
formalism.

Context theories can be found by a forward, bottom-up evaluation of the
transformed grammar and background theory with the discourse introduced as
as an axiom. The transformed formulas can be executed directly in the language
of Constraint Handling Rules [17] (CHR) as explained in section 4, with CHR
applied as grammar formalism using a notation introduced in [8]. An example of
this is given in section 5. The paper ends with an account on related work and a
few concluding remarks and suggestions for future work; section 6.3 makes the
interesting conclusion that the core of our abduction method in CHR also can
be applied together with top-down execution of DCGs.

An implementation of what we have described is available on the web [7].

2 An abductive model of language interpretation and its
reformulation as deduction

First-order logic is assumed and for given set of formulas Γ , closure(Γ ) refers to
a maximal set of ground atoms that follow deductively from Γ .

The vocabulary for a language interpretation problem consists of disjoint sets
of predicates referred to as grammar symbols and context predicates. Grammar
symbols are separated into token level symbols and phrase level symbols.

No detailed assumptions are made for the grammars applied, they can in
principle apply any kind of transformations, multiple passes and be based on
trees, graphs or something completely different. The basic components in a lan-
guage interpretation scenario are the following.

Discourse: A set of atomic and ground token level atoms giving the set of input
tokens and the order in which they occur (and, if available, prosody etc.).

Context: A set of atomic and ground context atoms describing a part of the
world.

Phrases: A set of atomic and ground formulas giving the phrases contained in
the Discourse that are grammatically correct and consistent with Context.

Grammar: A set of formulas for the form
Constituents ∧ Facts → Phrase,

where Constituents and Phrase are sets of grammar atoms, Facts a set of
context atoms.



We require the following fundamental relation referred to as faithfulness between
the components:

Grammar ∧ Context ∧Discourse → Phrases (3)

This means that the Discourse and the Phrases in it are true to the Context and
correctly formulated with respect to the Grammar.

In case of an ambiguous grammar, we can expect different interpretations for
different parses of the string and there may also be different interpretations due
to alternative choices of facts from the context.

We do not require the grammar to be unambiguous, but assume a criterion
of unambiguity of a pair 〈Phrases,Context〉 which is particular to the grammar
formalism applied and not specified further in the general formulation. An un-
ambiguous pair 〈Phrases,Context〉 is though of as one syntactic and semantic
analysis of a Discourse. Not every unambiguous such pair is interesting:

Definition 1. An unambiguous pair 〈Phrases,Context〉 is a competent interpre-
tation of given Discourse with respect to given Grammar whenever faithfulness
and the following conditions hold:

1. (Minimality of Context) If any element is removed from Context, faithfulness
fails to hold.

2. (Maximality of Phrases) If any new element is added to Phrases, unambiguity
or faithfulness fails to hold.

3. (Analysis is exhaustive) No new elements can be added to Context which
allow an extension of Phrases so that points 1 and 2, and faithfulness are
preserved.

A language interpretation problem is a problem, given Grammar and Discourse
of finding a competent interpretation.

The condition of exhaustive interpretation excludes Context = Phrases = ∅ un-
less the Discourse is completely senseless. No negation is possible at the present
stage, so any notion of consistency for Context needs to be described at the
meta-level as part of unambiguity. An example of an unambiguity condition and
the implied competence criterion is given section 4.2 for the CHRG grammar
formalism [8].

Language interpretation is partly deductive and partly abductive: The Con-
text is a premise in (3) and by standard usage, the finding of it is an abductive
problem. Identifying phrases is a mainly deductive parsing process, applying
grammar rules over and over, however, interacting with abduction in order to
have the necessary contextual facts ready.

The following fundamental theorem shows how a language interpretation
problem can be reformulated in purely deductive terms, i.e., by an expression
with no unknown premises.



Theorem 1. Let Discourse, Context, Phrases, and Grammar be as above. Then
faithfulness (3) with minimality of Context is equivalent to

Grammar ′ ∧Discourse → Context ∧ Phrases (4)

where Grammar ′ consists of, for each rule (Constituents ∧ Facts → Phrase) ∈
Grammar, the following:

Constituents → Facts ∧ Phrase (5)

Minimality of context is essential for this equivalence as the transformed gram-
mar rules have no way to deduce facts that are not embedded the given Discourse.

Proof. Define G to be the minimal set of ground instances of rules in Grammar so
that closure(G∧Context∧Discourse) = closure(Grammar∧Context∧Discourse),
and G′ the set of rules constructed from G by changing each C ∧ F → P into
C → F ∧ P . Finally, let G0 be the set of rules constructed from G by removing
the Facts part, i.e., changing C ∧ F → P into C → P .

We have that (3) is equivalent to

G ∧ Context ∧Discourse → Phrases (6)

which, by construction of G0, is equivalent to

G0 ∧Discourse → Phrases (7)

I.e., we have eliminated Context by using a specialized grammar. The rules of
G′ differs from those of G0 by introducing on the righthand side an element of
Context and referring to minimality of Context, we have that

closure(G′ ∧Discourse) = closure(G0 ∧Discourse) ∪ Context. (8)

Thus (7) is equivalent to

G′ ∧Discourse → Context ∧ Phrases (9)

which obviously is equivalent to (4). QED

3 Adding background knowledge

Background knowledge is a theory that is assumed always to be added to the
actual Context, and we should be precise to state that Context refers to the set of
facts that are specific to a given Discourse. Here we describe how a background
theory in an abductive language interpretation problem can be transformed into
a deductive version that fits into a generalization of theorem 1; the transforma-
tion is similar to an approach to abduction in CHR described by [1].

Let us mention as semantic the predicates that can appear in a Context and
a background theory Background. We distinguish semantic predicates in classes



of abducible and defined predicates and also the built-in predicates “=” and “6=”
with their usual meaning of syntactic equality and nonequality, false for falsity,
and perhaps others. A semantic literal is either an atom of a defined or built-in
predicate, or a perhaps negated atom of an abducible predicate.

A Context consists of ground abducible literals, and the Background theory
may contain the following kinds of formulas:

– Ground atoms of abducible literals.
– Integrity constraints of the form A → B where A is a conjunction of ab-

ducible literals, B a conjunction of abducible and built-in literals.
– Definitions of the form S → p(t̄) where p is a defined predicate and S a

conjunction of semantic literals.

The set of definitions in a background theory is taken as an abbreviation for
their Clark completion.

The faithfulness condition is now the following

Grammar ∧ Background ∧ Context ∧Discourse → Phrases (10)

with the extension that Grammar ∧ Background ∧ Context must be consistent.
For a theory Background, we construct another theory Background ′ in the

following way. Negation in Background ′ is treated as explicit negation so that
the negation symbol “¬” is considered a letter, i.e., “¬p” is a predicate symbol
written with two letters, and with “¬¬p” read as “p”.

For each defined predicate p with a set of definitions in Background,

S1 → p(t̄1), . . . , Sn → p(t̄n), (11)

Background ′ includes

p(x̄) ↔ (x̄ = t̄1 ∧ S1) ∨ · · · ∨ (x̄ = t̄n ∧ Sn)) (12)

where the variables x̄ do not occur in the original definitions for p.
Integrity constraints in Background are included as they are in Background ′,

and for each abducible predicate a, Background ′ includes

a(x̄) ∧ ¬a(x̄) → false. (13)

Abducible literals contained in Background are included directly in Background ′.
We have the following generalization of theorem 1 giving a deductive version

of abductive language interpretation with background knowledge.

Theorem 2. Let Discourse, Context, Phrases, Grammar, Grammar ′, Background,
and Background ′ be as above. Then faithfulness (10) with minimality of Context
is equivalent to

Grammar ′ ∧ Background ′ ∧Discourse → Context ∧ Phrases. (14)

Proof. Analogous to the proof of theorem 1.



4 Language interpretation with Constraint Handling
Rules

The transformation described above of a language interpretation problem into
a deduction form leads to implication formulas with conjunctions in the conclu-
sions and with no obvious way to use Prolog as the underlying engine. However,
such formulas fit into the language of Constraint Handling Rules [17] (CHR) and
can be executed directly as bottom-up rewriting rules. CHR works on constraint
stores that are sets of first order atoms. A simplification rule of CHR takes the
form Head <=> Guard | Body. Its logical meaning is (with quantifiers left out)
Guard → (Head ↔ Body) and operationally, if constraints matching its Head so
that Guard holds are found in the constraint store, these constraints are replaced
by the relevant instance of those given by Body. A propagation rule is similar
but with the arrow “==>”. Its logical meaning is given by an implication and
operationally it works as a simplification except that no constraints are removed
from the store. A third kind of rules called simpagation is a mixture between the
two. For a CHR program P of simplification rules only, the operational semantics
produces a representation of closure(P ) as final state, and in the general case
the relation is more complicated; we refer to [17] for a full presentation.

4.1 Logical grammars in CHR

Logical grammars can be expressed in a straightforward way in CHR. We use
here a notation called CHR Grammars [8] (CHRGs) that can be understood
as syntactic sugar over CHR rules in exactly the same way as Definite Clause
Grammars [22] (DCGs) relate to Prolog. CHRG has counterparts to CHR’s
simplification and propagation rules written with arrows “<:>” and “::>”. A
grammar can refer to grammar symbols as well as constraints in the usual CHR
sense. The notation includes a generalized form of look-ahead as left and right
grammatical contexts that provide a high degree of flexibility to characterize
linguistic phenomena; see the CHRG web site [7] for source code, examples, and
related papers.

We introduce the notation by a prototypical propagation rule preceded by
declarations of its constraints and grammar symbols. The notation is inspired by
DCG with square brackets for terminal symbols and curly brackets to indicate
nongrammatical material.

constraints h/1.
grammar_symbols a/0, b/1, d/1, e/2.
a -\ b(X), [c], {h(Y)} /- d(Y) ::> e(X,Y), {h(X)}.

It is understood as the following CHR declaration and rule:

constraints h/1, a/2, b/3, d/3, e/4, token/3.
a(N0,N1), b(N1,N2,X), token(N2,N3,c), h(Y), d(N3,N4,Y)
==> e(N1,N3,X,Y), h(X).



The extra arguments added to grammar symbols correspond to markers in
the input string, and an input sequence such as “the man walks” is entered
as token(0,1,the), token(1,2,man), token(2,3,walks). The grammar rule
above says intuitively that a sequence b(x), [c] is recognized as an e(x,y) giv-
ing new constraint h(x) provided that there is a constraint h(y) and that the
indicated left and right contexts are present. Notice that the order of left and
right hand sides is opposite that of DCG. When a terminal string is entered into
the constraint store, the rules work as a bottom-up parser giving all possible
parses of the string including alternative parses for the same string in case of
ambiguity.

For grammars of propagation rules only, syntactic derivation can be defined
in a top-down manner in the usual way and with respect to which the parsing
provided can be shown to be correct. When simplification rules and hypotheses
are included, the bottom-up derivations need to be taken as definition.

The context parts allow tagger-like grammar rules [3], they can be used for
disambiguating simple and ambiguous context-free grammar rules, and provide
also a way to handle coordination problems in natural language; see [8, 7] for a
full introduction.

4.2 Representing language interpretation problems in CHR

Consider a language interpretation problem with background knowledge as de-
scribed in sections 2 and 3 and with CHRG as the underlying grammar for-
malism. Grammar symbols, abducible and defined predicates are declared as
constraints. Background theories can be represented in two ways, either as rules
of CHR since the translated formulas of the form (12) can be understood as
simplification rules, or, more efficiently, taking the original clauses as Prolog
rules employing the fact that CHR is an extension to Prolog. Disjunctions on
the righthand sides (or different Prolog rules for a given predicate) may lead to
backtracking during execution.

Built-in “=” atoms are executed correctly by Prolog, and “ 6=” can be re-
placed by SICStus Prolog’s dif/2 predicate, that delays until the arguments are
sufficiently instantiated to tell them either identical or nonunifiable. Integrity
constraints, including those extra added for explicit negation (13) go directly
into CHR as propagation rules.

Grammar rules that refer to the semantic Context is expected to be written
directly in their deductive form, i.e., writing (Constituents ∧ Facts → Phrase)
as Constituents ::>Facts ∧ Phrase, and analogously for rules with grammatical
context parts and for simplification rules.

To process a language interpretation problem, the input string Discourse
is entered as a set of token constraints and the indicated collection of rules
performs a bottom-up parsing, producing abducibles when grammar rules apply,
perhaps indirectly when defined predicates are involved; integrity constraints
may be triggered whenever an abducible is created or affected by a unification.
The resulting interpretation 〈Phrases,Context〉 can be read out of the final state,
however also counting those constraints that have been removed at some stage by



a simplification rule; different possible interpretations are given by backtracking.
The Context generated needs not be minimal in case there are different ways to
prove the same goal, but it is minimal with respect to the actual proof.

In order to compare language interpretation in CHR with our theory, we
must also give an criterion for unambiguity. We can do with a general ver-
sion as background theories are capable of expressing a variety of integrity con-
straints that characterize a given application area. We define an interpretation
〈Phrases,Context〉 to be unambiguous provided

– Context ∧ Background is consistent.
– For any two grammar symbols p(i,j,· · ·), q(k,`,· · ·) ∈ Phrases∪Discourse

it holds that
• if i ≤ k < j ≤ `, then i = k and j = `, and
• if i ≤ k ≤ ` ≤ j, then q(k,`,· · ·) corresponds to a subtree of p(i,j,· · ·)

or the other way round; trees and subtrees are defined in the usual way.

The consistency of Context ∧ Background is granted provided that Background
is consistent, otherwise the integrity constraints in Background would have pro-
duced a failure. Syntactic unambiguity is given not as a property of the grammar
but as a property of a particular parse. If the grammar in itself is locally unam-
biguous — perhaps obtained by proper use of syntactic contexts, extra hypothe-
ses, and procedural thinking — any interpretation will be unambiguous. Local
unambiguity is a stronger property than unambiguity, basically telling that the
condition above always holds. In case of an ambiguous grammar, extra machin-
ery needs to be added so that the mentioned, syntactic restrictions are main-
tained during the process and alternative parses generated under backtracking
or in parallel. For simplicity, we consider only syntactically unambiguous CHR
grammars and compare with the three conditions for competent interpretation
of definition 1.

Minimality of Context: As already mentioned, the Context found may be slightly
larger than minimal due the well-known problem with alternative proofs.

Maximality of Phrases: Obvious; given by the correctness of the applied parsing
strategy.

Analysis is exhaustive: Have any Context facts been ignored so that the parser
could have continued if it had been aware of them? This is not possible due
to theorem 2 and that CHR’s procedural semantics ensures that any rule
that can apply is applied.

4.3 Compacting the solutions

The final state may include abducible atoms with variables with the meaning
that any ground assignment to such variables (not conflicting with integrity con-
straints) represents a solution to the abductive problem. Consider as an example
the following set of abducible atoms returned as answer {h(a), h(X), h(Y)}. It
may subsume solutions with X=Y, X=Y=a, or maybe just one of the variables equal
to a, whatever may be consistent with the integrity constraints. So we may have



that X=b and Y=c give a solution {h(a), h(b), h(c)} and X=a and Y=a another
{h(a)}; both may be minimal but there may be reasons to prefer the one with
fewest elements.

It is possible to extend our method so that it dynamically tries to compact
solutions by equating new abducibles to existing ones as a first choice, and then
generate the other possibilities under backtracking.

To provide this, we may add for each abducible predicate, two propagation
rules, here shown for a predicate h of arity one.

h(X), h(Y) ==> (X=Y ; dif(X,Y)) (15)

¬h(X), ¬h(Y) ==> (X=Y ; dif(X,Y)) (16)

Whenever a new abducible fact, say h(a) or h(X), is created by the application
of some rule, (15) is applied provided there is another fact p(t) in the constraint
store.

An optimization of (15) using facilities of the implemented version of CHR
(see [23] for details) is in place, and analogously for (16):

h(X), h(Y)#Id ==> (\+X==Y, unifiable(X,Y)) | (X=Y ; dif(X,Y))
pragma passive(Id)

(17)
The pragma prevents the rule from being activated twice due to the symmetry
in its head and the purpose of the guard is to suppress useless applications.

However, in many cases the problem does not exist since strong user-defined
integrity constraints may instantiate and equate abducibles sufficiently during
the computation; this is the case in the example below, section 5. The imple-
mented system [7] includes the compaction principle as an option.

5 An example

In the following we show an example of a grammar and background theory
formulated in CHR extended with the CHRG notation. We consider language
interpretation of discourses such as the following.

Garfield eats Mickey, Tom eats Jerry, Jerry is mouse,
Tom is cat, Mickey is mouse. (18)

What we intend to learn from (18) are the categories to which the mentioned
proper names belong and which categories that are food items for others. An in-
teresting question is to which category Garfield belongs as this is not mentioned
explicitly. We define the following vocabulary; the abducibles declaration is syn-
onymous with constraints except that it also introduces predicates for negated
abducibles and the integrity constraint (13) that implement negation.

abducibles food_for/2, categ_of/2.
grammar_symbols name/1, verb/1, sentence/1, category/1.



The background theory is the following consisting of integrity constraints only.

categ_of(N,C1), categ_of(N,C2) ==> C1=C2.
food_for(C1,C), food_for(C2,C) ==> C1=C2.

I.e., the category for a name is unique, and for the sake of this example it is
assumed that a given category is the food item for at most one other category.
The following part of the grammar classifies the different tokens.

[tom] ::> name(tom).
...
[is] ::> verb(is).
...
verb(is) -\ [X] <:> category(X).

The last rule applies a syntactic left context part in order to classify any symbol
to the right of an occurrence of “is” as a category.

A sentence such as “Tom is cat” is only faithful to a context if categ of(tom,
cat) holds in it. So the grammar in the original specification of the current
language interpretation problem may contain the following rule.

name(i1, i2, N) ∧ verb(i2, i3, is) ∧ category(i3, i4, C) ∧ categ-of(N,C)
→ sentence(is(N,C)) (19)

By moving the context condition from the premises to the conclusion we achieve
a rule that can contribute to solve the problem deductively. In CHRG it becomes
the following:

name(N), verb(is), category(C) ::>
{categ_of(N,C)},
sentence(is(N,C)).

A sentence such as “Tom eats Jerry” is only faithful to a context if the proper
categ of and food for facts hold in it. A CHRG rule with this in its conclusion
looks as follows.

name(N1), verb(eats), name(N2) ::>
{categ_of(N1,C1), categ_of(N2,C2), food_for(C1,C2)},
sentence(eats(N1,N2)).

Let us now trace the processing of the discourse (18) when entered into the
constraint store; we record only the context facts. “Garfield eats Mickey” gives
rise to

categ_of(garfield,X1), categ_of(mickey,X2), food_for(X1,X2).

The “X”s are uninstantiated variables. The next “Tom eats Jerry” gives

categ_of(tom,X3), categ_of(jerry,X4), food_for(X3,X4).



“Jerry is mouse” gives categ_of(jerry,mouse), and the background theory
immediately unifies X4 with mouse. In a similar way “Tom is cat” gives rise to a
unification of X3 with cat and food_for(X3,X4) has become

food_for(cat,mouse).

Finally “Mickey is mouse” produces categ_of(mickey,mouse) that triggers the
first integrity constraint unifying X2 with mouse and thus the second integrity
constraint sets X1=cat and there is no other possibility. So as part of the solution
to this language interpretation problem, we have found that Garfield is a cat.

6 Related work

6.1 Abduction for language interpretation

The advantages of abduction for language interpretation — as theoretical model
or as implementation — has been recognized be several authors, e.g., [5, 18, 19,
6] just to mention a small fraction, and this is taken in the present work as an
established fact.

Purely deductive interpretation as is the only possible way when using, say,
a conventional implementation of DCGs [22], is a process of synthesizing the
meaning of a phrase from the meanings of its subphrases. This works well when
context is known and every piece of information to be extracted is expressed
in an explicit way. Abduction is in favour for more subtle meanings given, e.g,
by linguistic implicature, and when the attention is on context comprehension.
In [10] we have related Stallnaker’s [24] view of context comprehension with
abductive language interpretation.

A standard objection against abduction for language interpretation is its
inherent high complexity, but we prefer to explain this as a property of the
very problem that is approached. For practical purposes, the hypotheses to be
abduced should be held as general as possible, perhaps including representation
by means of disjunction constraints. Carefully designed integrity constraints are
also useful. Priorities and pruning based on local priorities are also relevant, but
such practically relevant matters are not included in the logical formalization
shown in the present paper. Another important issue is possible restrictions in
the scope of different hypothesis that we discuss in section 7.

6.2 Approaches to abduction

It is interesting to compare the way we implement abduction with other logically
based methods. A remarkable property of our approach is that no meta-level
overhead exists. The abductive problem of language interpretation is translated
into a purely deductive problem concerning the same predicates and it can be
solved by existing technology for bottom-up deduction such as CHR. In this way,
our method will take advantage of any future improvements of such technology.
We put an emphasis on work that relates abduction with deduction; for a more
detailed overview of the field, we refer to [16, 21].



It has been shown by Console et al. [12] how a class of abductive problems
can be solved by deductive reasoning in the completion of the definitions; how-
ever, no integrity constraints were considered in this early work and no actual
implementation was demonstrated. The basic idea is to add the observation to
the completion and the explanation in terms of abducibles falls out deductively.
As a simple example, assume one definition h → p where h is abducible. For the
observation p we reason in the theory (h ↔ p)∧ p and the explanation h follows
immediately. We can adapt their ideas to the language interpretation problem
which we illustrate by an example. Consider a small grammar with terminal
symbols a, b, nonterminal c, and h an abducible describing a context in which
the sequence ab can be meaningfully put together to form a c, thus the rule
a ∧ b ∧ h → c. For a given, discourse “a, b”, we add a and b as axioms, and we
reason within (a∧b∧h ↔ c)∧a∧b. This gives h ↔ c, in other words, if we chose
to believe that c is an acceptable phrase read from “a, b”, we have to believe also
h.

The relation between abduction and negation by failure has been pointed
out by Eshghi and Kowalski [15]. The essence can be illustrated by an example.
Assume abducibles hi and definitions h1 → p, h2∧q → p, h3∧r → p, and h4 → q.
In order to find an explanation for observation p, we consider the consequences
of ¬p found by negation as failure. Comparing ¬p with the definitions for p we
get ¬h1∧(¬h2∨¬q)∧(¬h3∨¬r). For ¬q to hold we must have ¬h4, and since ¬r
is the case, we get next ¬h1 ∧ (¬h2 ∨ ¬h4). The possible explanations are given
by the negation of this, i.e., h1 ∨ (h2 ∧h4). A meta-level procedure based on this
principle could be used for top-down abductive analysis based on definite clause
grammars.

Most published algorithms for abduction work top-down more or less as a
Prolog interpreter with an extra facility to add those abducible whose absence
otherwise would make the computation fail, and typically interacting with a
side-algorithm to check integrity constraints. We refer to [21] for an overview of
this field and mention also our previous work using a reversible metainterpreter
for abduction [9, 11].

A paper of Bry [4] says in its title “abduction as deduction” referring to
an algorithm encoded as a meta-interpreter that is executed deductively as a
Prolog program. Interestingly, this approach is based on model generation that
resembles the bottom-up derivations used in the present paper. Other interesting
approaches to abduction involving model generation are given by Denecker and
De Schreye [14] and Inoue et al [20].

The CHR language [17] was introduced by Frühwirth as a tool for writing
constraint solvers in a declarative way for traditional constraint domains such as
real or integer numbers and finite domains. CHR has proved to be of more general
interest and is available as extension of, among others, SICStus Prolog [23]. Being
of special interest to language processing, Abdennadher and Schütz [2] has shown
that CHR adds bottom-up evaluation to Prolog and a flexibility to combine top-
down and bottom-up; Abdennadher and Christiansen [1] has taken this a step
further showing that top-down evaluation of abductive logic programs can be



expressed directly in CHR in a top-down manner. This principle is applied in
section 3 for the encoding of background knowledge.

The bottom-up evaluation of modified grammar rules for abduction that we
use seems to be new, turning a ∧ b ∧ h → c into a ∧ b → h ∧ c which at first a
first glance seems to be a logical beginner’s mistake.

6.3 A final note on abduction and Definite Clause Grammars

As a side effect of the present work, we have identified how the method of
Abdennadher and Christiansen [1] for abduction in CHR, can be modified to a
method that runs in Prolog plus CHR, where CHR takes care of abducibles and
integrity constraints, and any clause in the background theory is executed by
Prolog. As soon as Prolog enters a call to an abducible predicate, CHR will take
action by adding the abducible to the constraints store, thus triggering possible
integrity constraints; following this, control goes back to Prolog that continues
its execution or backtracks depending on the result of the previous; technical
details are easily extracted from section 4.2.

This principle works also in case the Prolog program at hand is a Definite
Clause Grammar, which can be used with no extra level of translation or inter-
pretational overhead; only when an abducible shows up, execution steps away
from Prolog’s efficient top-down procedure. No comparisons have been made,
but this method seems to be highly competitive in speed compared with any
other abductive procedure for logic programs applied to language interpreta-
tion, including the one which is the primary focus of the present paper.

7 Conclusion and future work

A translation has been formalized and proved correct of abductive language
interpretation problems into a deductive form that can be solved by bottom-
up evaluation. We have shown how this can be expressed and evaluated in the
language of Constraint Handling Rules (CHR).

The general model covers ambiguous grammars, but the implementation in
CHR described here requires unambiguous parsing. It has not been worked out in
detail, but it seems possible to add extra constraints to prevent ambiguous gram-
mars from performing steps that involve a given subtree in two unrelated trees.
Different parses are then generated under backtracking. Backtracking may also
occur in case a background theory has more than one definition for a predicate
and when different hypotheses can apply in a grammar rule. An ideal solution
seems to be to avoid backtracking and instead evaluate all alternative parses and
hypotheses sets in parallel with sharing applied whenever possible. — This is on
the agenda for future work.

A critical remark to abductive language interpretation as we (and most other
authors in the field) have defined it, is that the Context component is one un-
structured set that is supposed to go for the whole discourse. When abduction



is used for anaphora we simply get too many solution. In most cases, a pro-
noun such as “he” refers to a character already introduced in the discourse and
not to someone appearing twenty pages later. Context may also change dur-
ing the discourse, e.g., due to a psychological development of the characters
as the story goes on. We see a need for structuring the Context and to have
ways of indication scope of hypotheses. Assumption Grammars [13] give one
suggestion for such scoping mechanisms: Hypotheses are explicitly created and
explicitly applied and it may be specified that creation comes before application
and whether a hypothesis is supposed to be used once or several times. This still
seems too primitive for a general approach to abductive language interpretation
with dynamic or scoped context but it can give inspiration. An implementation
of Assumption Grammars in CHR in a way quite similar to the present approach
to abduction can be found in [7].

Another relevant criticism of the present work raised by a reviewer (which
actually can apply to the different works on abductive language interpretation
that we are aware of) is the representation of context as a set of atomic state-
ments. To provide a model closer to the human way of comprehension, we should
allow also the possible learning of rules from a given text, e.g., due to recurring
patterns. In other words, text comprehension should also involve an element of
induction. The method we have applied and other approaches to abduction in
language interpretation have no immediate generalization to include induction,
but the biography [16] on the relation between abduction and induction may
give inspiration for extensions in this direction.

Acknowledgment: This research is supported in part by the OntoQuery funded
by the Danish Research Councils, and the IT-University of Copenhagen.

References

1. Abdennadher, S., Christiansen, H., An Experimental CLP Platform for Integrity
Constraints and Abduction. Proceedings of FQAS2000, Flexible Query Answering
Systems, pp. 141–152, Advances in Soft Computing series, Physica-Verlag (Springer),
2000.

2. Abdennadher, S., Schütz, H. CHR∨: A flexible query language. Proc. FQAS’98,
Lecture Notes in Artificial Intelligence 1495, pp. 1–14, Springer, 1998.

3. Brill, E., Transformation-Based Error-Driven Learning and Natural Language Pro-
cessing: A Case Study in Part-of-Speech Tagging. Computational Linguistics 21(4),
p. 543–565, 1995.

4. Bry, F., Intensional Updates: Abduction via Deduction. Logic Programming, Pro-
ceedings of the Seventh International Conference, pp. 561–575, MIT Press, 1990.

5. Charniak, E., McDermott, D., Introduction to Artificial Intelligence. Addison-
Wesley, 1985.

6. Christiansen, H., Why should grammars not adapt themselves to context and dis-
course? 4th International Pragmatics Conference, Kobe, Japan, July 23–30 1993,
(Abstract collection), International Pragmatics Association p. 23, 1993. (Extended
abstract: http://www.dat.ruc.dk/˜henning/IPRA93.ps).

7. Christiansen, H., CHR Grammar web site, http://www.dat.ruc.dk/˜henning/chrg/



8. Christiansen, H., Logical grammars based on constraint handling rules, (Poster ab-
stract). Proc. Int’l Conference on Logic Programming, Lecture Notes in Computer
Science (to appear), Springer 2002.

9. Christiansen, H., Automated reasoning with a constraint-based metainterpreter.
Journal of Logic Programming, 37(1-3):213–254, 1998.

10. Christiansen, H., Open theories and abduction for context and accommodation.
2nd International and Interdisciplinary Conference on Modeling and Using Context
(CONTEXT’99) Bouquet, P., Brezillon, P., Serafini, L. (eds.) Lecture Notes in Arti-
ficial Intelligence 1688. Springer-Verlag, pp. 455–458, 1999.

11. Christiansen, H., Abduction and induction combined in a metalogic framework.
Abductive and Inductive Reasoning: Essays on their Relation and Integration, Flach.
P., Kakas, A., (eds.), Kluwer Academic Publishers. pp. 195–211, 2000.

12. Console, L., Theseider Dupré, D., Torasso, P., On the Relationship between Ab-
duction and Deduction. Journal of Logic and Computation 1(5), pp. 661–690, 1991.

13. Dahl, V., Tarau, P., Li, R., Assumption grammars for processing natural language.
Proc. Fourteenth International Conference on Logic Programming. pp. 256–270, MIT
Press, 1997.

14. Denecker, M., De Schreye, D., On the Duality of Abduction and Model Generation.
Proc. of the International Conference on Fifth Generation Computer Systems 1992,
pp. 650–657, 1992.

15. Eshghi, K., Kowalski, R.A., Abduction Compared with Negation by Failure. Logic
Programming, Proceedings of the Sixth International Conference, MIT Press pp. 234–
254, 1989.

16. Flach. P., Kakas, A., (eds.), Abductive and Inductive Reasoning: Essays on their
Relation and Integration, Kluwer Academic Publishers. pp. 195–211, 2000.

17. Frühwirth, T.W., Theory and Practice of Constraint Handling Rules, Journal of
Logic Programming, Vol. 37(1–3), pp. 95–138, 1998.

18. Gabbay, D., Kempson, R., Pitt, J., Labeled abduction and relevance reasoning.
Nonstandard Queries and Nonstandard Answers, Demolombe, R., Imielinski, T.,
(eds.), pp. 155–185, Oxford Science Publications, 1994.

19. Hobbs, J.R., Stickel, M.E., Appelt D.E., and Martin, P., Interpretation as abduc-
tion. Artificial Intelligence 63, pp. 69-142, 1993.

20. Inoue, K., Ohta, Y., Hasegawa, R., Nakashima, M., Bottom-up Abduction by
Model generation. Proc. of IJCAI-93, Proceedings of the Thirteenth International
Conference on Artificial Intelligence, pp. 102–108, 1993.

21. Kakas, A.A., Kowalski, R.A., Toni, F., The role of abduction in logic programming,
Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, Gabbay,
D.M, Hogger, C.J., Robinson, J.A., (eds.), Oxford University Press, pp. 235-324,
1998.

22. Pereira, F.C.N., Warren, D.H.D., Definite clause grammars for language analysis.
A survey of the formalism and a comparison with augmented transition grammars.
Artificial Intelligence 10, no. 3–4, pp. 165–176, 1980.

23. SICStus Prolog user’s manual. Version 3.8, SICS, Swedish Institute of Computer
Science, 2001. Most recent version available at http://www.sics.se/isl.

24. Stalnaker, R., On the representation of context. Journal of Logic, Language, and
Information, vol. 7, pp. 3–19, 1998.


