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Abstract. Most earlier approaches to probabilistic abductive logic pro-
gramming are based on the assumption that abducibles represent in-
dependent events. This enables efficient and incremental calculation of
probabilities, but may not be suitable for all real world problems. As an
attempt to introduce such dependencies in a logic programming setting,
we have applied CHRiSM, which is a recent probabilistic extension to
Constraint Handling Rules, for specification and evaluation of probability
distributions over dependent abducibles. It is shown that this principle
integrates well with earlier work on probabilistic abduction based on
CHR, generalizing it to handle such dependencies. We present our first
experiments with a working implementation that show the potential for
interesting applications. On the other hand, our experience underlines
problems concerning high complexity due to lacking incremental meth-
ods for probability calculation.

1 Introduction

Abduction refers here to the process of reasoning to find explanations (unknown
facts), that can explain given observations, and often this definition is refined so
we search for a best explanation; see, e.g., [8] for more background. Abduction
has been studied in the context of logic programming, and adding probabilities
provides a way of giving priorities to different explanations, thus providing a
meaningful characterization of a “best” solution. With few exceptions, earlier
work on probabilistic abduction in logic programming has been based on the
assumption that abducible facts are instances of mutually independent random
variables. This implies a restricted expressive power but also a straightforward
way of calculation probabilities in an incremental way. Earlier work [3] in this
direction has shown that the language of Constraint Handling Rules, CHR [9],
is well suited for describing implementations with a variety of characteristics,
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e.g., adapting for best-first search. Here we apply a recent probabilistic exten-
sion CHRiSM [21] to extend this work with dependent probabilities, using a



specific form of CHRiSM programs as plug-in modules to characterize such joint
probability distributions over abducibles and explanation.

The approach handles negation of abducibles and points forward to a treat-
ment of non-ground and existentially quantified abducibles, which often cause
problems in implementations of abductive logic programming. We can also point
to other open problems: the calculation of probabilities does not scale well to
large sets of abducibles, and useful operations such as subsumption and entail-
ment checking seem to require a detailed knowledge about the actual probability
distribution over possible worlds which may not be easily captured. Also, while
our semantics in a natural way captures programs with potentially infinitely
many abducibles, the way we use CHRiSM excludes this option.

In section 2, we introduce a probabilistic possible worlds semantics as a gen-
eral theoretical setting for probabilistic logic programming and use it to define
abstract syntax and semantics for such programming languages. In section 3, we
introduce CHRiSM [21] and describe our approach for using it to define the de-
sired probability distributions. Section 4 explains how probability distributions
defined using CHRiSM can be integrated with CHR programs that implement
search over the clauses of the given probabilistic logic program, including best-
first. Section 5 discusses a few possible enhancements of these strategies. Sec-
tion 6 discusses selected related work and section 7 gives a conclusion, including
suggestions for future work.

2 Basic Concepts

We have chosen a probabilistic possible worlds semantics as a firm theoretical
basis, which makes it possible for us to derive – rather than postulate – properties
that are reasonable for probability distributions used for the abducibles in a
probabilistic abductive logic program. This semantics introduced below is similar
to the one used by [16] and adapted to here to our specific case.

2.1 Probabilistic Possible Worlds

We consider here a world (or state of affairs) as given by the truth values of a
set of world properties. Intuitively, this set may be so huge that it is impossible
for an observer to perceive or name them all in any feasible way. For technical
simplicity, we assume the set of world properties to be countable, but larger
cardinalities could have been allowed at the price of replacing the summations
in the following definition by integrals or other limit constructions. There are no
assumptions about probabilistic independency of such properties.

Definition 1. Assume a set of world properties X . A world is a mapping from
each x ∈ X to {true, false}; a world w may also be viewed as a set of literals,
called world literals, containing x when x is true in w and ¬x otherwise.

A probability distribution over worlds is a mapping P into [0; 1] with∑
w∈W

P (w) = 1.



A world w with P (w) > 0 is called a possible world. The set of possible worlds is
denotedW. A sub-world s is a finite set of world literals with, for no x ∈ X , both
x ∈ s and ¬x ∈ s; any property x with neither x ∈ s or ¬x ∈ s is undefined in s.
For sub-world s and possible world w, we write w |= s iff x ∈ w for any x ∈ s and
x 6∈ w for any ¬x ∈ s; the world set for s is defined asW(s) = {w ∈ W | w |= s}.

The probability of a sub-world s is defined as follows.

P (s) =
∑

w∈W(s)

P (w)

A sub-world s with P (s) > 0 is called a possible sub-world.

The notion of a sub-world may model what is relevant or perceivable for an
observer under the given circumstances, which means that is not interesting or
perhaps not possible for the observer to distinguish between different elements
of W(s) for a given sub-world s. Notice that the probability of a sub-world is
given by a typically infinite but countable sum which is well-defined due to the
initial assumptions.

Whenever a world literal y is the negation ¬x of world property x, we let ¬y
refer to x, and the usage of y being undefined in some s means the same as x
being undefined in s. It the rest of this section, we assume that a set of world
properties X with a probability distribution P is given. We observe the following
properties that follow immediately from the definition.

Proposition 1. Let s1, s2 and s be sub-worlds, x a world literal undefined in
s, and let ∅ refer to the empty sub-world.

– Whenever s1 ⊆ s2, we have that W(s2) ⊆ W(s1).
– Whenever s1 ⊆ s2, we have that P (s1) ≥ P (s2).
– Whenever s1 ⊆ s2 and s1 is not possible, neither is s2.
– P (s) = P (s ∪ {x}) + P (s ∪ {¬x})
– P (∅) = 1.
– There exists at least one possible world.

The following property states that a suitable, joint probability distribution over a
set of logical literals is compatible with a probabilistic possible world semantics.

Proposition 2. Let M be a set of ground atoms induced by given sets of pred-
icates and function symbols, and let S be the collection of all sets of non-
contradictory literals made from a subset of M . Let, furthermore, P be a function
S → [0; 1] that satisfies the following conditions.

– Whenever, for s1, s2 ∈ S with s1 ⊆ s2, it holds that P (s1) ≥ P (s2).
– Whenever, for s ∈ S and x being a literal of M with x,¬x 6∈ S, it holds that

P (s) = P (s ∪ {x}) + P (s ∪ {¬x}).
– P (∅) = 1.

Then M and P ′ induces a probabilistic possible world semantics, cf. def. 1, where
P ′ is the restriction of P to 2M . Furthermore, the generalization of P ′ to sub-
worlds coincides with P .



2.2 Probabilistic Abductive Logic Programs

Here we define the abstract syntax and semantics of probabilistic abductive
logic programs, ProbALPs, and characterize some of their important properties.
No explicit integrity constraints are included as they can be embedded in the
probability distribution by setting zero probability for undesired combinations
of abducibles.

Disjoint and countably infinite sets of constants, function symbols, variables
and predicates are assumed as usual, together with two disjoint sets of predicates,
abducibles and defined (the latter a.k.a. program or user defined). Terms and
atoms are built in the usual way; a program literal is either a defined atom or a
perhaps negated abducible atom. Instances and ground instances are defined in
the usual way. We assume a naming function that maps any ground abducible
atom into a unique world property.

Definition 2. Given a probabilistic possible world semantics, cf. def. 1, and
the nomenclature introduced above, a probabilistic abductive logic program,
ProbALP, is a finite set of program clauses, each of the form

h:- b1, . . . , bn

where h is a defined atom called the head, n ≥ 0 and b1, . . . , bn, called the
body, consisting of program literals. A query is a conjunction of ground atoms.
An explanation is a finite existentially quantified set of abducible literals; the
quantifier is as usual left implicit in our notation.

A standard completion semantics [4] is assumed for program clauses. Thus, for
a ProbALP Prog and explanation E, it is well-defined, whether a given query is
true in Prog extended with E, denoted Prog,∃E |= A.

A ground explanation is, via the naming function, considered equivalent to
a sub-world, and the notion of world sets is generalized accordingly. The world
set W(E) for an explanation E is defined as the union of the world sets for each
ground instance of E, and the probability P (E) is defined as

∑
w∈W(E) P (w).

For any two explanations E1 and E2 with W(E2) ⊆ W(E1), we say that
E1 subsumes E2 and that E1 is more general than E2. An explanation E is
consistent whenever P (E) > 0 (or, equivalently, that W(E) 6= ∅). Whenever
W(E1) =W(E2), we say that E1 and E2 are equivalent. Whenever E1 subsumes
E2 and they are not equivalent, we say that the subsumption is strict.

The following example indicates that subsumption in the context of depen-
dent abducibles is more complicated than in the independent case.

Example 1. Independently of the underlying set of possible worlds, we have that
{a} subsumes {a, b}, and {a(X)} subsumes {a(17)}, both judgments made by
purely syntactic arguments. Whether {a(X), b(17)} subsumes {c(12)} (or the
reverse for that matter) depends on the specific semantics, and in general we
cannot expect a decision procedure for such judgments.

We observe the following properties about subsumption that follow immediately
from the definition.



Proposition 3. Whenever E1 subsumes (resp. strictly subsumes, and is equiv-
alent with) E2, it holds that P (E1) ≥ P (E2) (resp. P (E1) > P (E2), and
P (E1) = P (E2)).

Whenever E is an explanation and A is an abducible literal, it holds that E
is equivalent with E ∪ {A} iff P (E) = P (E ∪ {A}).

We do not employ these properties in our implementation, but they demonstrate
that an effective procedure for evaluation probabilities may give rise to a way of
simplifying the presentation of explanations into some minimal form.

Definition 3. Consider a given ProbALP Prog and a query Q. An abductive
answer for (or explanation of) Q is a consistent explanation E such that for any
possible world w ∈ W(E) it holds that

Prog, w |= Q.

An explanation E of Q is minimal if not subsumed by another explanation of Q.

Notice that we used a semantic characterization for minimality rather than a
syntactic one based on, e.g., the number of literals or a subset relationship.

Abductive procedures, such as those we describe in this paper, tend to pro-
duce minimal proof explanations. In order to avoid a lengthy, technical definition,
we introduce this notion informally: a proof explanation for a given query Q is
an explanation E which is generated through a specific proof of Q (using an SLD
proof rule) by incorporating into E those abducible literals that are encountered
in the clause instances that are applied.

Example 2. Consider a program with abducible predicates a and b consisting of
the two clauses {p:- a, b; p:- a,¬b}. Then {a} is a minimal explanation of p,
and {a, b} as well as {a,¬b} are minimal proof explanations.

In the case of independent abducibles, proof minimal explanations may be com-
pacted into minimal ones by syntactic rules based on opposite literals as inherent
in this example, cf. [3]. However, for dependent abducibles, it requires obviously
additional rules that depend on the underlying possible world semantics.

3 Using CHRiSM to Define Possible Worlds Semantics

3.1 An Overview of CHRiSM

CHRiSM [21] is an extension to CHR with probabilistic rules and a probabilistic
semantics based on the probabilistic-logic language PRISM [19].

Derivation is seen as a probabilistic process, in the sense that different rules
have a certain probability of firing. In this way each derivation is assigned a
probability, and the probability of a particular final state is calculated from
all possible derivation leading to it. In these calculations, all choices made by
CHRiSM are considered independent, but as we see below, a CHRiSM program
can define a variety of dependent distributions over sets of constraints.



CHRiSM adds two types of probability statements; it gives the possibility of
adding a probability of firing a rule as well as probabilities for selection among
the alternatives of a disjunction in the body of the rule. For example:

0.7 ?? a ==> c.

a ==> 0.8 ?? b ; c.

The first rule indicates a probability of 0.7 to fire in a state that contains the
constraint a. The second one indicates a probability of 0.8 to add constraint b

(and not c) and probability 0.2 to add constraint c (and not b) to a state that
contains the constraint a. CHRiSM provides two sorts of queries for probabilities.

1. prob( (Q <==> A) , P). Assigns to variable P the probability that a deriva-
tion starting from an initial state Q ends in a final state whose constraints
are exactly those given by A.

2. prob( (Q ===> A) , P). Assigns to P the probability that a derivation
starting from an initial state Q ends in a final state that contains as a subset
those given by A.

In addition, A may contain negated constraints ∼C, with the meaning that the
constraint C should not appear in the final states considered; this principle is
called negation by absence. For more details about CHRiSM, see [21].

3.2 Probability Distributions for ProbALPs using CHRiSM

Our approach to use CHRiSM to define probabilities is to write a CHRiSM
program of a specific form that we call a Probability Defining CHRiSM program,
PDCP. Such a program includes the following constraints,

– a constraint for each abducible predicate with the same arity,
– a special constraint start/0,
– a special constraint failure/0 that must not appear in any rule.

To fit with current limitations in the CHRiSM system, a program should be
range-restricted3 so that no non-ground constraints are created during its ex-
ecution. Intuitively start serves as a “world creator” that defines all possible
final states of interest in a probabilistic way, whereas failure is never included
in such a final state, meaning that ∼failure via negation as absence charac-
terizes all non-failed, final states. An explanation should be represented as a
conjunction of literals without duplicates, and with the negative ones indicated
by CHRiSM’s negation as absence.

Provided that 1) abducibles always are ground, and 2) the CHRiSM program
never produces a failure or loops, we can take the following CHRiSM query as
a definition of P (E).

(i) prob((start ===> E), P)

3 A program is range-restricted whenever any variable in a rule body appears also in
the head of that rule.



I.e., the variable P is bound to P (E). We observe that the function P fulfills
the conditions of proposition 2, so the probability distribution thus defined is
compatible with a possible world semantics. To see this, notice that CHRiSM
sums probabilities over exactly those final states that play the role of W(E).

Example 3. Consider a the following CHRiSM program viewed as PDCP.

0.5 ?? start ==> a.

0.1 ?? a ==> b.

It indicates a dependency between a and b: logically it embeds b → a (i.e., if
you have b, you must also have a). It gives, for example, P ({a}) = 0.5 and
P ({b}) = 0.05, whereas P ({a, b}) = 0.05. From this, we can see the following.

– Abducibles a and b are indeed dependent as P ({a, b}) 6= P ({a})× P ({b}).
– Proposition 3 confirms that explanations {a, b} and {b} are equivalent.

This can be generalized to PDCPs that apply failure for integrity checking.
This involves the problem that some probability mass is lost, i.e., the sum of
probabilities for final and non-failed states is < 1. However, when we normalize
the probability found by prob using the probability of reaching a non-failed final
state, the conditions of definition 2 are established. More precisely, the following
query will bind variable P to the desired probability of explanation E.

(ii) prob((start ===> ∼failure), PN), prob((start ===> E), P1),

P is P1/PN.

The following example illustrates the use of failure for integrity checking as well
as more elaborate CHRiSM rules than those of the previous example.

Example 4. We consider a PDCP that may be used for reasoning about the
weather in a period of three days covering yesterday, today and tomorrow.
The weather can be either sunny or rainy a particular day, but not both (in
other word, the classification describes the prevailing weather that day). The
weather/2 constraint represents abducibles relating weather and days.

start ==> 0.6 ?? weather(sunny,yesterday) ; weather(rainy,yesterday).

start ==> 0.6 ?? weather(sunny,today) ; weather(rainy,today).

start ==> 0.6 ?? weather(sunny,tomorrow) ; weather(rainy,tomorrow).

0.7 ?? weather(X,yesterday), weather(X,today) ==> weather(X,tomorrow).

weather(X,D), weather(Y,D) ==> X=Y.

The first three CHRiSM rules state a particular “background probability” for
each weather type, 0.6 for sunny and 1 − 0.6 = 0.4 for rainy. The fourth rule
increases the probability for a given weather if it has lasted for two days already,
and the last rule is a CHR rule indicating that only one type of weather is
possible on a particular day.

It can bee seen that some derivations beginning from start lead to fail-
ure. If, for example, the first three rules produce weather(rain,yesterday),



weather(rain,today) and weather(sunny,tomorrow), and the fourth rule de-
cides to fire, the derivation fails and we loose the probability mass 0.4 × 0.4 ×
0.6 × 0.7. It can be verified that the following query, which is the part of (ii)
that calculates the normalization factor,

prob((start ===> ∼failure), PN)

produces the value 1− (0.4×0.4×0.6×0.7+0.6×0.6×0.4×0.7) = 0.832. Using
the probability distribution defined by (ii) and the PCDP above, we obtain,
for example, P (weather(sunny,yesterday)) = P (weather(sunny,today)) =
0.4 and P (weather(sunny,tomorrow)) ≈ 0.6404. The increase in the overall
probability for sun tomorrow is an effect of the the fourth rule that emphases
the general majority for sunny weather.

As the factor used for normalization is specific for a given PDCP, we need only
calculate it once for that program. The following example shows the code lines
needed for an implementation, which also fixes a problem with the currently
available implementation of CHRiSM.

Example 5. In the current implementation of CHRiSM, version 0.2 (downloaded
August 2011), the prob predicate fails when there are no final states for the given
query and where it, according to the specification of [21] referred above, should
succeed with probability 0.

The following predicate probNorma corrects for this problem and incorporates
the normalization needed for programs with failures, cf. query (ii) above. The
purpose of the init predicate is to have the normalization factor evaluated only
once, prior to the use of probNorma.

probNorma(Cs,PN):-

(prob((start ===> Cs),P) -> true ; P=0),

non failure prob(N),

PN is P/N.

:- dynamic non failure prob/1.

init:-

(prob((start ===> ∼failure),P) -> true ; P=0),

asserta(non failure prob(P)).

3.3 Experiments using CHRiSM for Non-ground Explanation

The currently available implementation of CHRiSM is only guaranteed to provide
correct results for ground queries, and the precise meanings of queries (i) and
(ii) above for non-ground E are not obvious from [21]. We made some promising
experiments with the available CHRiSM implementation, which involved small
change in one of CHRiSM’s internal utilities.

Queries with variables in positive literals do sum the probabilities of the
correct set of final states, including when sharing occurs. For example:



prob((start ===> a(X),b(X)), N)

Here exactly those final states are counted in which there is a pair of abducibles
a(x),b(x) for some term x.

Negative, non-ground literals are handled correctly when preceded by a pos-
itive literal containing the same variable. For example:

prob((start ===> a(X), ∼b(X)), N)

Here exactly those final states are counted in which there is an abducibles a(x)
and no b(x) for the same term x.

For the ground case that we have studied above, we emphasized that dupli-
cate constraints must be avoided in explanations when we give them to the prob
predicate. This is due to fact that tests for membership in final states made by
prob is designed according to the multiset semantics of CHRiSM. So for exam-
ple prob((start===>a,a),P) will only count states that include two or more
occurrences of a. This problem appears also when we have an explanation of the
form E1 = {a(X), a(1)}. According to our semantics, this explanation is equiv-
alent with E2 = {a(1)}, and to get the correct probability from prob, we must
use the form E2 for reasons we just pointed out. However, we should not remove
such internally subsumed literals in our interpreters for ProbALPs: it may be
the case that an explanation such as E1 is specialized by X being instantiated
to, say, 2 so the explanation becomes {a(2), a(1)} which is not subsumed by
E2 which is unaffected by the instantiation of X.

4 Integration of Probability Distributions in CHRiSM
into Interpreters for ProbALP in CHR

Implementations in CHR of probabilistic abduction with independent probabil-
ities for the abducibles have been described in [3]. Abductive logic programs are
compiled into query interpreters in CHR that produce proof minimal explana-
tions. One of the advantages of using CHR is a flexible control which makes it
easy to adopt these query interpreters to work best first, calculating the most
probable answers in order of decreasing probability, as long as the user asks for
more solutions.

We sketch here the methods of [3], adapting them to an example of a simplis-
tic ProbALP; only the calculation of probabilities differs. The referenced paper
gives correctness proofs for its special case, which seems straightforward to adapt
to the present setting. Here we proceed in an informal way.

We consider an example program with defined predicates p/1, q/1, . . . , and
abducibles a/1, . . . . It is assumed that the abducibles and their joint probability
distribution is defined in terms of PDCP as described in section 3. The logic
program includes among others the following clauses for p/1.

p(X):- q(X), a(X).

p(1).



We start explaining a query interpreter that works depth-first and which requires
the ProbALP to be range-restricted, i.e., abducibles and other predicate calls
are consistently ground.

The fundamental constraint in the interpreter is the following explain/3.
An instantiated constraint in the store represents a branch of a computation
that proceeds in an adapted SLD manner. The meaning of a call of the form

explain(Q, E, P)

is that subquery Q remains in order to have found a proof for the initial query;
E is the partial explanation of abducibles encountered so far, and P is the
probability of E. Both Q and E are given as lists of literals. When Q has become
empty, E is a proof minimal explanation for the initial query. Before giving the
details, we define a suitable top-level predicate and the CHR rule that applies
when an explanation has been found.

explain(Q):- explain(Q, [], 1).

explain([],E,P) <=>

print explanation E with its probability P.

The program clauses for predicate p/1 is compiled into the following CHR clause.

explain( [p(X)|G], E, P) <=>

rename([p(X)|G]+E,[p(Xr1)|Gr1]+E1),

explain([q(Xr1),a(Xr1)|Gr1], E1, P),

(X=1 -> explain(G, E, P) ; true).

This rule applies for a branch with a query having p(. . .) as its “current” subgoal
and a continuation referred to by the variable G. It rewrites the given branch
into new branches, potentially one for each clause in the definition of p/1. The
renaming predicate rename(A,A′) assigns to A′ a copy of A whose variables are
replaced in a consistent manner by new variables, and should be called for each
such new branch in order to avoid cluttering up alternative instantiations of the
variables. Notice, however, that for the last one, we can bypass renaming as the
involved variables anyhow are not used for other purposes.

As shown in the example rule above, a clause with a distinct variable in each
of its arguments (here: only one) is translated into a straightforward rewriting
of the query. The last clause, being that fact p(1) implies a unification which
may fail, and if that happens, the branch will silently disappear.

Executing an abducible predicate means to add it to the current explanation
(if it is not there already) and re-calculate the probability. An abducible predi-
cate is compiled into a CHR rule as follows plus a completely analogous one for
negated abducibles.

explain([a(X)|G],E,P) <=>

(member(a(X),E) -> E1 = E ; E1 = [a(X)|E]),

prob_ex(E1, P1),

explain(G,E1,P1).



The prob ex predicate is an auxiliary predicated that does a little formatting
and calls the CHRiSM program to obtain the probability of the new explana-
tion. Notice that it removes duplicate literals before continuing. The probNorma

predicate is the auxiliary shown in example 5 above which generates a suitable
call to CHRiSM’s prob.

prob ex(E, P):-

turn the list E into a conjunction EConj using commas,
probNorma(EConj, P).

What has been shown so far is sufficient to turn any range-restricted ProbALP
into a depth-first query interpreter. In order to produce a best-first interpreter,
we can keep the same basic structure but add a few additional auxiliary con-
straints to ensure that only the explain constraint with the highest probability
(in its third argument) can be involved in a rule application; this presents no
conceptual difficulties, and we refer to [3] for the details.

Example 6. We consider the PDCP introduced in example 4 and extend it with
two constraints weekday and tomorrow, and the following rule.

start ==> 0.7143 ?? workday(tomorrow) ; weekend(tomorrow).

It defines a probability of tomorrow being either a workday or a day in the
weekend which, however, cannot both be the case at the same time. Together
with the following clauses it forms a ProbALP.

plan_for_tomorrow(work):- weather(rainy,today), weather(rainy,tomorrow).

plan_for_tomorrow(beach):- weekend(tomorrow), weather(sunny,tomorrow).

plan_for_tomorrow(beach):- weather(sunny,yesterday),

weather(sunny,today), weather(sunny,tomorrow).

We have compiled this into a best-first query interpreter along the lines above,
and here we show some queries and answers. For the following query, one answer
is produced.

?- explain([plan_for_tomorrow(work)])

Most probably solution:

[weather(rainy,tomorrow),weather(rainy,today)]

P=0.192307692307692

Another and less probable explanation? ;

No (more) solutions

The next query leads to two different solutions, one for each of the relevant
program clauses.

?- explain([plan_for_tomorrow(beach)]).

Most probably solution:

[weather(sunny,tomorrow),weather(sunny,today),weather(sunny,yesterday)]

P=0.259615384615385

Another and less probable explanation? ;



Most probably solution:

[weather(sunny,tomorrow),weekend(tomorrow)]

P=0.182957884615385

Another and less probable explanation? ;

No (more) solutions

It should be noticed that these two solutions overlap in the sense that they have
a possible world in common, as their union is consistent. Finally, if we extend
the query as follows with an “observed” abducible, we miss out the first of these
of these answers as there is no final state containing both workday(tomorrow)
and weekend(tomorrow).

?- explain([plan_for_tomorrow(beach),workday(tomorrow)]).

Most probably solution:

[workday(tomorrow),weather(sunny,tomorrow),weather(sunny,today),

weather(sunny,yesterday)]

P=0.185443269230769

Another and less probable explanation? ;

No (more) solutions

This probability is smaller than for the analogous solution for the previous
query as the contribution for the world containing weekend(tomorrow) plus
weather(sunny, · · ·) for all three days.

5 Enhancements for Defining Probabilities using
CHRiSM

In this section we show useful extensions to PDCPs that are easy to integrate
with the implementation principle shown above. It is shown how a notion of
domains may be associated with specific arguments of abducible predicates in
order to ensure range-restrictedness. We introduce also an observation module
that allows to introduce pre-observed abducibles in the initial constraint store
when probabilities are computed.

5.1 Domains that Ensure Ground Abducibles

Consider an example concerning a set of girls {Ann,Sue,Eva, . . .} of size n. A
PDCP should be used to describe the probability of each girl being blonde. In
principle this may be done using n rule, one for each girl. To avoid this, we might
naively suggest the following rule which is not range-restricted, and whose logical
meaning does not either express the intended meaning.

0.7 ?? start ==> blonde(X).

To cope with such unbound variables, we can introduce domain declarations and
associate a domain to specific arguments exemplified as follows.

domain(girls, [ann, sue, eva, tia]).

type(blonde, 1, girls).



The last declaration associates the domain girls to the first argument of the
abducible predicate blonde. With these declarations, we can automatically com-
pile the knowledge of the domains into to relevant PDCP rules, exemplified as
follows.

0.7 ?? start, constant(girls,X) ==> blonde(X).

To get everything to work, the domain declarations should be incorporated into
the probability queries performed by the query interpreters as follows.

prob((constant(girls,ann),constant(girls,eva),...,start ===> E),P).

This saves typing and results in a better program structure, but does not scale
well with respect to efficiency for large domains.

5.2 Pre-Observed Facts Module

By pre-observed facts we refer to abducibles that are known to hold before a
query is given to some ProbALP. These may be utilized in our implementation
by including them in the initial states for probability queries. Assuming, for
example, that abducibles a and b are pre-observed, the probability queries should
be done as follows.

prob((a, b, start ===> E), P).

This may in some cases reduce complexity by removing early in the computation
all states that are inconsistent with a and b. For some PDCPs, the probabili-
ties found in this way and normalized accordingly corresponds to conditional
probabilities, but in general we cannot count on this.

6 Comparison with Related Work

Abductive logic programming has been studied since the early 1990ies; see [6,
11] for an overview. Extending with probabilities as a means to prioritize among
alternative explanations has been treated by several authors in varying set-
tings, mostly under the assumption of independent probabilities for abducibles.
Among the most influential work, we find Poole’s which stems also from the
early 1990ies [15]. Our own recent work on expressing probabilistic abduction
in CHR (with independent probabilities) extends previous work with integrity
constraints and the option of integrating with external constraint solvers; see [3]
which also gives a detailed overview of related work concerned with abduction
using CHR. PRISM [19] is a highly generic probabilistic-logic language which
can work with an unlimited number of independent random variables and as a
special case it can also express abduction (with independent abducibles). There
are other recent works on abduction in different logic-based frameworks that are
not directly comparable to ours, and which allow probabilistic dependencies [17,
2].



The notion of Possible Worlds has been used in philosophy and linguistics in
attempts to cover pragmatic aspects of meaning, i.e., the relationship between
representation and the real world or collections of hypothetical worlds (or states
of affairs); see, e.g., the work by Stalnaker as summarized in [22]. It is used by [13]
to explain the semantics of counterfactual statements and is standard for modal
logics [12]. Probabilistic possible worlds have been proposed by several authors.
It is difficult to trace a single origin, but we may mention some influential papers,
e.g., [14, 1, 7]. The formulation we have used is similar to [16] that provides a
concise introduction and overview; see also [10]. Although our terminology is
different, there is also a strong resemblance to Sato’s distribution semantics [18]
and an earlier work by Dantsin [5].

Several of the referenced and other similar works state to have a possible
worlds semantics but quite often this is not formalized or described in detail. In
the present paper, we used possible worlds as the defining framework to charac-
terize desired properties for the probability distributions, and our distributions
using CHRiSM was shown to conform with those.

Recent work by Simari and Subrahmanian [20] describes an approach to a
special form of abduction in a limited logic language with intervals of probabil-
ities associated to clauses. It is based on a sort of possible worlds, each being
a collection of derived properties (which is unconventional), and it stresses also
the absence of independency assumptions. However, the setting is quite different
from ours and most other definitions of Abductive Logic Programming, and a
direct comparison is difficult.

We are not aware of other work than our own that uses a probabilistic possi-
ble world semantics to define dependent distributions over abducible predicates,
which are applied for generation of probability weighted explanations for given
observations. In addition, we propose a specific method for defining such prob-
ability distributions.

7 Conclusion

In this work, we have defined a semantics of probabilistic abductive logic pro-
grams that supports dependent probabilities for abducibles. We introduced a
special kind of CHRiSM programs called probability defining CHRiSM programs,
which is consistent with this semantics. There is an appealing similarity between
the way a possible world semantics sums up probabilities over possible worlds
and the way CHRiSM sums probabilities over final states. However, this way of
using CHRiSM is not very efficient and blocks effectively for using an unlimited
number of abducibles.

Our theoretical model can handle both negated and non-ground abducibles,
but the current version of CHRiSM cannot handle our encoding of non-ground
abducibles, except in a few simple cases. We may anticipate that future releases
of CHRiSM provide a clarified semantics in these respects.

We have also shown how such probability defining CHRiSM programs can
be incorporated into query interpreters written in CHR. Moreover, we consid-



ered facilitating the definition of probability distributions using CHRiSM with
the introduction of domains for abducible predicates and suggested a way to
incorporate pre-observed abducible facts.

7.1 Time Complexity Problems

Our implementation of probability calculations uses CHRiSM in a way that
forces the enumeration of all possible final states each time a probability is
asked for. This introduces a factor into the overall time complexity which is
exponential in the number of abducibles.

There may be several ways to approach this problem. In principle we could
generate all possible worlds (i.e, final CHRiSM states) once and for all before
the program execution starts, and represent them as an array of bit vectors and
provide a fast matching to determine in which worlds a given (partial) explana-
tion is actually true; this may be a viable solution in specific cases which even
may be supported by specialized hardware. However, the development of incre-
mental methods may be more suited as explanations gradually get specialized
by adding more literals or unifying variables; this is how it is typically done for
independent probabilities, but for the dependent case, there is no obvious uni-
versal solution. The notion of unambiguous CHRiSM programs suggested by [21]
may be a useful restriction in the search for incremental methods.

7.2 Operations on Explanations

Subsumption and entailment of explanations as well as compaction of different
explanations into more general (and thus more probable) ones can be computed
efficiently for independent abducibles, as e.g., studied by [3]. However, our use
of CHRiSM as a sort of blackbox makes this difficult, since these operations
depend on properties embedded in the possible worlds semantics. Clearly more
research needs to be done here.
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