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In memory of Alistair Crombie
whose Augustine to Galileo first

introduced me to medieval science

In the following I intend to show, firstly, that Hero’s geometry depends
to a greater extent than usually assumed on Near Eastern practical
geometry or its descendant traditions in the classical world, and that the
conventional image (also suggested by Hero himself in the initial passage
of Dioptra[1]) as the transformer of theoretical into applied mathematics
is only a half-truth; secondly, that much of what is shared by Hero’s Metrica
and the pseudo-Heronian collections assembled by Heiberg as Geometrica
are shared borrowings from the same tradition, and that it is misguided
to speak of Geometrica as “essentially” another version of Metrica I.[2]

Concomitantly I shall argue that it is already misguided to speak of
Geometrica as one treatise unless this be understood explicitly as Heiberg’s
construction.

A Near Eastern practitioners’ tradition

It is of course essential for this argument that there was such a
practitioners’ tradition; that Hero and the compilers of the constituents
manuscripts of Geometrica had access to it; and that we can find its
representatives and show that their material is not borrowed from Hero.

This is a project of its own, which I have dealt with in other connec-
tions;[3] here I shall only point to a few sources that prove the existence

1 Herons von Alexandria Vermessungslehre und Dioptra, ed. trans. Hermann Schöne,
188. (Heronis Alexandrini Opera quae supersunt omnia, vol. III. Leipzig: Teubner,
1903).
2 Michael S. Mahoney, “Hero of Alexandria: Mathematics.” Dictionary of Scientific
Biography. vol. VI, 314f, here 315. (New York: Scribner, 1972).
3 For instance in “‘The Four Sides and the Area.’ Oblique Light on the Prehistory
of Algebra”, in Ronal Calinger (ed.), Vita mathematica: Historical Research and
Integration with Teaching, 45–65 (Washington, DC: The Mathematical Association
of America, 1996). (Marred by printing errors due to omitted proofreading.)
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of a long-lived tradition not dependent on the literate level of Greek
geometry, going back at least to c. 2000 BC and still influential in the Islamic
Middle Ages:

The first source to be quoted is an Old Babylonian[4] quasi-algebraic[5]

problem, deliberately held in archaizing non-school formulations:[6]

[If somebody asks you thus about] a surface: the four

Figure 1. The
procedure of BM

13901 No 23.

fronts and the surface I have accumulated, 41´40´́ .
4, the four fronts, you inscribe. The reciprocal of 4 is 15´.
15´ to 41´40´́ you raise: 10´25´́ you inscribe.
1, the projection, you append: 1°10´25´́ makes 1°5´ equi-

lateral.
1, the projection, which you have appended, you tear

out: 5´ to two
you repeat: 10´ n i n d a n confronts itself.

Numbers translate the Babylonian sexagesimal place
value system according to Thureau-Dangin’s system, where ´, ´́ etc. render

4 The Old Babylonian period goes from 2000 BC to 1600 BC; the extant mathematical
texts belong to its second half. The present text may be from the 18th century BC,
i.e., Hammurapi’s times.
5 “Algebraic” because the method is analytical: the unknown is treated as if it were
a normal identifiable quantity, and then extricated from the complex relationship
in which it is originally involved; “quasi” because the method is not arithmetical
as in Modern algebra but a “naive” cut-and-paste geometry, where the correctness
of the steps is immediately seen but not argued. The present problem, moreover,
operates directly on the unknown quantities themselves; the Old Babylonian school,
however, also used the technique to solve non-geometric problems, using its line
segments to represent areas, prices and numbers, as medieval and later applied
algebra makes numbers represent geometric or physical magnitudes, prices, etc.
6 BM 13901 No 23, first published in F. Thureau-Dangin, F., “L’Équation du deuxième
degré dans la mathématique babylonienne d’après une tablette inédite du British
Museum.” Revue d’Assyriologie 33 (1936), 27–48. The translation is mine, as are all
translations in the following when nothing else is stated. In the present case, the
translation differs radically from those of Thureau-Dangin and Neugebauer; the
need for this revised translation is explained, e.g., in Høyrup, “Algebra and Naive
Geometry. An Investigation of Some Basic Aspects of Old Babylonian Mathematical
Thought.” Altorientalische Forschungen 17 (1990), 27–69, 262–354 – as regards the
present text, see 271f.
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decreasing and `, `` etc. increasing sexagesimal order of magnitude, and
where ° is used when necessary to render “order zero” (15´ thus stands
for 15/60 and 1°5´ for 1+5/60 ). Figure 1 shows what goes on: The central
square represents the area, while the four “wings” that “project” from the
central square – rectangles whose width coincides with the “front” or side
of the square, and whose length is 1 – represent the four fronts. One fourth
of this configuration is a gnomon with area 10´25´́ , which is completed
as a square when the “projection 1” (representing the square, as the
Babylonian mithartum and the Greek δυναµις represent the square configur-
ation of which they are the defining side[7]. The resulting area 1°10´25´́
has the squaring side (corresponding to the Greek πλευρα τετραγωνικη)
1°5´, from which the projection is removed, leaving 5´ as half the front;
5´, when “repeated to two”, gives 10´ n i n d a n as the front (the n i n d a n
or “rod” of c. 6 m is the basic length unit).

In the Liber mensurationum – written in Arabic by an otherwise
unidentified Abū Bakr, probably from around 800 AD and translated into
Latin shortly after 1150 by Gerard of Cremona[8] – the following problem
is found:

And if somebody has said to you: Concerning a square, I have aggregated its
four sides and its area, and what resulted was 140, then how much is each side?

The working in this will be that you halve the sides which will be two, thus
multiply this by itself and 4 result, which you add to 140 and what results will
be 144, whose root you take which is 12, from which you subtract the half of
4, what thus remains is the side which is 10.

Even here, a geometric procedure is involved; since it is described quite
clearly in a problem from Geometrica to be quoted presently, I shall omit
analysis.

7 This parallel (and possible calque) is the topic of Høyrup, “Dýnamis, the
Babylonians, and Theaetetus 147c7—148d7.” Historia Mathematica 17 (1990), 201–222.
8 Critical edition in H. L. L. Busard, “L’algèbre au moyen âge: Le ‘Liber mensuratio-
num’ d’Abû Bekr.” Journal des Savants, Avril-Juin 1968, 65–125. Discussion, including
tentative dating in Høyrup, “Al-Khwârizmî, Ibn Turk, and the Liber Mensuratio-
num: on the Origins of Islamic Algebra.” Erdem 2 (Ankara 1986), 445–484.
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In the present millennium, the problem turns up in Savasorda’s early
twelfth-century Liber embadorum:[9]

If, in some square, when its surface added to its four sides, you find 77, how
many cubits are contained in the surface? Taking the half of its sides, which
is two, and multiplying it with itself, you find 4. If you add this to the given
quantity, you will have 81, whose root (which is 9) you take; and when you
subtract from this the half of the addition that was mentioned already, 7 remain.
This is the side of the square in question, whose surface contains 49.

Further, in Leonardo Fibonacci’s Pratica geometrie from 1220:[10]

And if the surface and the four sides [of a square] make 140, and you want
to separate the sides from the surface. ...,

in Piero della Francesca’s Trattato d’abaco:[11]

And there is a square whose surface, joined to its four sides, makes 140. I ask
what is its side. ...,

and finally in Luca Pacioli’s Summa de arithmetica:[12]

And if the 4 sides of a square with the area of the said square are 140. And
you want to know how much is the side of the said square. ...

As we see, there is some variation. Savasorda’s side is 7, but the others
have 10, as the Old Babylonian problem (there transposed into the order
of minutes, as mostly in Old Babylonian quasi-algebraic texts); Fibonacci
(followed by Piero) normalizes the order of the members, but Pacioli
corrects Fibonacci (whom he follows closely on other accounts) and

9 II.12, ed. Maximilian Curtze, Urkunden zur Geschichte der Mathematik im Mittelalter
und der Renaissance, Vol. I, 39. (Abhandlungen zur Geschichte der mathematischen
Wissenschaften, vol. 12–13. Leipzig: Teubner, 1902).
10 Ed. Baldassare Boncompagni, Scritti di Leonardo Pisano matematico del secolo
decimoterzo. II. Practica geometriae et Opusculi, 59. (Roma: Tipografia delle Scienze
Matematiche e Fisiche, 1862).
11 Piero della Francesca, Trattato d’abaco, Dal codice ashburnhamiano 280 (359*–291*)
della Biblioteca Medicea Laurenziana di Firenze. A cura e con introduzione di Gino
Arrighi, p. 122. (Testimonianze di storia della scienza, 6. Pisa: Domus Galileana,
1970).
12 Luca Pacioli, Luca, Summa de Arithmetica geometria Proportioni: et proportionalita,
II, fol. 15r. (2Toscolano: Paganinus de Paganino, 1523; 11494).
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reintroduces the original unusual order; Fibonacci thus cannot be his only
source (and other corrections show that he is not just using Gherardo’s
version of the Liber mensurationum).

It should be obvious that some sort of continuous tradition is involved.
It has also left its footprint in a treatise which Heiberg included in his
Geometrica (cf. Figure 2):[13]

A square surface having the area together with the

Figure 2. The procedure de-
scribed in Geometrica 24.3.

perimeter of 896 feet. To get separated the area and
the perimeter. I do like this: In general [i.e., in-
dependently of the parameter 896 – JH], place
outside (εκτιθηµι) the 4 units, whose half becomes
2 feet. Putting this on top of itself becomes 4.
Putting together just this with the 896 becomes 900,
whose squaring side becomes 30 feet. I have taken
away underneath (υφαιρεω) the half, 2 feet are left.
The remainder becomes 28 feet. So the area is 784
feet, and let the perimeter be 112 feet. Putting
together just all this becomes 896 feet. Let the area
with the perimeter be that much, 896 feet.

“In general”/καθολικως corresponds to semper in Abū Bakr’s treatise,
and indicates that the step undertaken does not depend on the number
896 (but certainly on the fact that precisely one area and one perimeter
are involved). “To get separated”/διαχωρισαι corresponds to berûm is Old
Babylonian texts of similar riddle character (adding, e.g., workers, days,
and the bricks produced), and to Leonardo’s separare.

These problems, of course, are not “practical”. They are riddles,
elements of that cultural superstructure by which the craft of practical
geometers upheld their professional identity – problems that allowed the
practitioner to prove himself “a keen and swift enquirer”, in Savasorda’s
words.[14] Such riddles are found wherever a community of practical

13 Geometrica 24.3, in Heronis Definitiones cum variis collectionibus. Heronis quae
feruntur Geometrica, ed. J. L. Heiberg, 418. (Heronis Alexandrini Opera quae
supersunt omnia, IV. Leipzig: Teubner, 1912). Heiberg’s translation and notes to
the problem are misleading, imputing his own faulty understanding on the ancient
copyist.
14 Liber embadorum II.7, ed. Curtze, 32 (cit. note 9).
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reckoners exists, and always connected to the kind of reckoning in which
they are engaged but always (which is what allows us to speak of a
“cultural” superstructure) somehow oblique in their relation to genuine
practical problems. In eighteenth-century naval officers’ notebooks, they
deal with navigation problems that could never present themselves in real
life;[15] nineteenth-century engineers, well trained in technical drawing
and descriptive geometry, constituted an eager public for the triangle
geometry of Journal des mathématiques élémentaires.[16] Al-Khwārizmı̄
characterized such problems as “brilliant” (latı̄f), and the Arabic tradition
in general referred to them as “rarities” (nawādir). In the perspective of
the modern mathematical institution they have become “recreational”.

“The four sides and the area” is one among several quasi-algebraic
riddles circulating among non-scholastic practical geometers in the earliest
second millennium BC.[17] The Old Babylonian school was inspired by
them and developed them into a whole discipline of “naive-geometric
algebra” with freely varied coefficients, using lines and areas to represent
entities of other kinds – prices, pure numbers. The practitioners’ riddles,
on the other hand, were always “natural”, referring to the single area, the
side or all four sides of a square, etc. Another riddle of the kind asks to find
the diameter, the perimeter and the area of a circle when their sum is
given – relevant in the present connection because it is also found in several
of the manuscript traditions aggregated in Geometrica, and because it is
often cited as evidence that (and how) Hero dealt with mixed determinate
second-degree equations.

15 Exemplified in Henrik Meyer & Jan A. van Maanen, “An Anonymous Danish
Mathematical Manuscript in Leiden University Library and its Author: Christian
Høyer (1758–1809).” Overdruk. Nieuw Archief voor Wiskunde, 4. Serie 9 (1991), 351–357.
16 Eduardo L. Ortiz, personal communication.
17 Since the culture of this practitioners’ environment was oral or semi-oral, the
evidence for the existence of these riddles is indirect though fairly rich, as discussed
in my “Four sides” (cit. note 3).
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Geometrica

That this use of the text is unwarranted follows already if we recall
what Heiberg wrote about Geometrica and the two manuscript groups:[18]

(1) Geometrica “was not made by Hero, nor can a Heronian work be reconstructed
by removing a larger or smaller number of interpolations” (p. xxi).

(2) Mss AC represent a book which, with additions, changes and omissions, only
reached the present shape in Byzantine times; it was not meant to serve field
mensuration directly but was for use “in [commercial and legal] life” and in
general education (p. xxi).

(3) Manuscript S, with the closely related ms V, was intended to serve youth
studying “architecture, mechanics and field mensuration” in the “University
of Constantinople” and thus “more familiar with theoretical mathematics” –
a use which in Heiberg’s view agrees with the presence of Hero’s (more or
less) genuine Metrica in the same manuscript (p. xxiii).

(4) Both versions of the work merge (each in its own way) “various problem
collections together with Heronian and Euclidean excerpts” (p. xxiv).

One may wonder whether it was really a sound editorial method to
fuse the two “versions” into one. Since Heiberg took over the task after
Wilhelm Schmidt, the choice may not have been his. As things are, only
very careful observation or reading of the Latin preface to volume V of the
Opera omnia will reveal that a work contained in volume IV is a modern
conglomerate of two (indeed more) ancient conglomerates. But Heiberg
knew, and he does tell. He also seems to have known, but does not say
it too directly, that the origin of the “problem collections” was neither
Heronian nor Euclidean.[19]

Levels of comparison

Comparison between ancient mathematical texts (in the present case,
texts representing the practitioners’ tradition with the Heronian and
pseudo-Heronian texts) can be made on at least five levels:

18 J. L. Heiberg, (ed., trans), Heronis quae feruntur Stereometrica et De mensuris, xxi.
(Heronis Alexandrini Opera quae supersunt omnia, V. Leipzig: Teubner, 1914).
19 He may not have noticed that his chapters 22 and 24, found in ms S but there
squeezed in between Stereometrica and Metrica, are independent treatises. Cf. note
29.
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(1) The overall organization of the material, reflecting the writer’s sense
of “natural progression”.

(2) The methods seen from the stance of modern mathematics, supposed
to reveal the mathematics involved.

(3) The procedures in their actual detail – we are in a world where
multiplying an area by 11 and then taking the 14th part was “another
way”, αλλως, with regard to the subtraction of 1/7 and 1/14 from the area
(Geometrica 17.15, mss AC).

(4) The numerical values involved – as we have seen, the solution to the
“four sides and the area” remained 10 for 3200 years; that successive
doublings are exactly 30 in number was the compulsory standard from
1800 BC until the earlier Middle Ages, when 64 arose as an alternative
possibility.

(5) The phraseology; even on this point, indeed, the conservatism of our
tradition is amazing to a modern mind.

The organization

Let us first look at the global organization of the subject-matter.
For two reasons, the cuneiform record tells us little about the standard

progression of the early practitioners: firstly, what we find in the clay
tablets has mostly already gone through a process of scholastic normal-
ization; secondly, those texts that are so extensive that they might tell a
progression through themes are instead either rather disorganized
“anthology texts” or organized around a particular theme. The only
exceptions – the so-called Tell Harmal compendium[20] and the text BM
80209,[21] both belonging to text groups close to the practitioners’ tradi-
tion – tell us that squares precede rectangles, which on their part precede
circles.

The Arabic Middle Ages, on the other hand, present us with a whole

20 Albrecht Goetze, “A Mathematical Compendium from Tell Harmal.” Sumer 7
(1951), 126–155.
21 Jöran Friberg, “Methods and Traditions of Babylonian Mathematics, II: An Old
Babylonian Catalogue Text with Equations for Squares and Circles.” Journal of
Cuneiform Studies 33 (1981), 57–64.
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array of treatises still close to the tradition – thus Abū Bakr’s Liber
mensurationum, al-Karajı̄’s Essentials of reckoning,[22] and ibn Thabāt’s
Reckoner’s Wealth (c. 1200 AD).[23] Al-Khwārizmı̄’s chapter on geometry
in the Algebra,[24] Savasorda’s Liber embadorum, and Leonardo Fibonacci’s
Pratica geometrie are a priori suspicious because of the explicit orientation
of their authors (Euclidean in the latter two cases, idiosyncratically al-
Khwārizmı̄’s own in the former) – but as we shall see, their stylistic efforts
are not always reflected in what they bring forth. The treatises in question
arrange the material on plane geometry as follows:[25]

Abū Bakr, Liber mensurationum
Square; rectangle; rhomb; trapezia (isosceles / acute-angled / right /

obtuse-angled).
Triangles (equilateral / isosceles / acute-angled / right / obtuse-

angled).
Circle; semicircle; circular segment (> semicircle); circular segment

(< semicircle).

Al-Karajı̄, Kāfı̄ fı̄’l-hisāb (“Essentials of Reckoning”)
Square and rectangle; rhomb; parallelogram; trapezia.)
Triangles (right / equilateral / isosceles, acute-angled / scalene,

acute-angled / isosceles, obtuse-angled / scalene, obtuse-angled).
Circle; segments (semicircle / major /minor).
Regular n-gons (ex. n = 6)

Ibn Thabāt, Ghunyah al-Hussāb (“Reckoner’s Wealth”)
Square and rectangle; rhomb; parallelogram; trapezia (right /

isosceles / scalene, acute-angled); other quadrangles (with
“surveyors’ formula”); “staircase-” and “drum-form” figures.

22 Adolph Hochheim (ed., trans.), Kâfî fîl Hisâb (Genügendes über Arithmetik) des Abu
Bekr Muhammed ben Alhusein Alkarkhi. I–III. (Halle: Louis Nebert, 1878).
23 Ulrich Rebstock, Die Reichtümer der Rechner (Ġunyat al-Hussāb) von Ahmad b. _Tabāt
(gest. 631/1234). Die Araber – Vorläufer der Rechenkunst. (Beiträge zur Sprach- und
Kulturgeschichte des Orients, 32. Walldorf-Hessen: Verlag für Orientkunde Dr.
H. Vorndran, 1993).
24 Solomon Gandz, (ed.), “The Mishnat ha Middot, the First Hebrew Geometry of
about 150 C.E., and the Geometry of Muhammad ibn Musa al-Khowarizmi, the
First Arabic Geometry 〈c. 820〉.” Quellen und Studien zur Geschichte der Mathematik,
Astronomie und Physik. Abteilung A: Quellen 2 (1932).
25 These are rough outlines, and make some of the works look more orderly than
they are – in particularly those that have gone through the Byzantine mill.
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Regular n-gons, n>4 (ex. n = 6).
Acute-angled triangles (equilateral / isosceles / scalene); right

triangles (isosceles / scalene); obtuse-angled triangles (isosceles /
scalene) – rūmı̄-method (= Heronic Formula).

Circle (incl. diameter+perimeter+area-“algebra”); circular sector;
segments (semi-circle / major / minor) – “egg-shaped” (doubled
minor segment).

Figure within figure, including concentric squares.
Al-Khwārizmı̄, Algebra (chapter on geometry):
Square; equilateral triangle; rhomb; circle; circular segment; volumes.

Pythagorean theorem.
Square; rectangle; rhomb; parallelogram; irregular quadrangle.
Triangles (right; acute-angled; obtuse-angled).
Circle.
Frustum; square inscribed in isosceles triangle.

Savasorda, Liber embadorum:
Square; rectangle; rhomb; “quasi-algebra” on squares and rectangles.
Triangles (equilateral / isosceles / acute-angled / right / obtuse-

angled); parallelogram; trapezia (isosceles / acute-angled /
right / obtuse-angled); irregular quadrangles.

Circle; semicircle; segments (minor / major); ellipse; chord table.
Regular polygons; fields on mountain slopes.

Leonardo Fibonacci, Pratica Geometrie:
Square; rectangle.
Triangles (equilateral; isosceles ; acute-angled; obtuse-angled).
Square; rectangle; rhomb; parallelogram; trapezia (right / isosceles /

acute-angled / obtuse-angled); irregular quadrangles; polygons,
primarily regular.

Circle; semicircle; chords with table; sectors, segments, “egg-” and
other mixed shapes; fields on mountain slopes.

It is natural that any treatise on mensuration begins with the square –
more precisely with the unit square, which provides the area unit; going
on with rectangles is almost as natural, since rectangles provide the basis
for area computation. After that point, a mind trained in the Euclidean
tradition will tend to go on with triangles, from there to quadrangles of
increasing irregularity, etc. There would be no reason to treat the semicircle
as a particular configuration, but the use of approximations may ask for
separate treatment of minor and major circular segments. This sequence
corresponds to what we see in the beginning of al-Khwārizmı̄’s and
Fibonacci’s treatises (italicized above; Fibonacci goes no further than the
triangle). Both, however, have a second start from the square, and then

10



follow a sequence that grosso modo coincides with what we find in Abū
Bakr, al-Karajı̄ and ibn Thabāt, representing the “normal progression” of
themes as seen by the practitioners:

After squares and rectangles (both with quasi-algebraic problems) follow
rhombs, at times treated at great length with trivial variations of the quasi-
algebraic problems on rectangles. Parallelograms may come next, but much
more important is the treatment of trapezia. Then irregular quadrangles
may follow, either split into triangles or treated by means of the “surveyors’
formula”, average length times average width (always yielding a result
which is too great, except for rectangles where it is trivially correct; avoided
by the “mathematicians” but found with ibn Thabāt, and mentioned by
other Arabic authors as a practitioners’ formula). If included, regular
polygons may follow next.

Only then come the various triangles, followed by circle, semicircle,
segments (Abū Bakr, al-Karajı̄ and ibn Thabāt treat the major segment first,
all others have it last). If not dealt with after quadrangles, regular polygons
may come after circles and segments

A corresponding analysis of Metrica gives the following result;

Unit square; rectangles.
Triangles (right / isosceles / acute-angled / obtuse-angled do. /

[Heronic formula] / with irrational height)
Trapezia (right / isosceles / acute-angled / obtuse-angled) /

irregular quadrangles.
– regular n-gons, 2<n<13.
– circle; 2 concentric circles; segments (minor / major).
– ellipse; parabola.
– cylindrical surface; conic surface; spherical surface; segment of this.

The order of Geometrica/AC is as follows:[26]

Metrology; square; rectangle.

26 This is the order of Heiberg’s edition, which follows ms A apart from an inversion
of 15.17–19 (first in the ms) and 15.15–16 (all five sections deal with parallelograms,
but the wording suggest that section 15 and not section 17 be first). I omit the
various metamathematical discussions contained in the work (the origin of
geometry, etc.), as irrelevant for the present purpose.
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Triangles (right / isosceles / acute-angled / obtuse-angled /
“Heronic formula” / obtuse-angled, continued / isosceles with
inscribed square).

Rhombs; rectangle; various triangles; parallelograms; trapezia
(right / isosceles / acute-angled / obtuse-angled); irregular
quadrangles (Heronic formula, and triangulation).

Circle (incl. 1.-degree “algebra”); semicircle; segments (minor /
major); 2 concentric circles; circles from “another book”
(including diameter+perimeter+area-“algebra”).

Regular n-gons, 4<n<13; irregular polygons; ...

The Geometrica-part of ms S exhibits this structure:[27]

Metrology; square; rectangle; irregular quadrangle (surveyors’
formula).
Triangles (right / isosceles); circles inscribed in and circumscribed

around isosceles and scalene (13-14-15) triangle.
Circle; semicircle;[28] segments (major / minor / major by

subtraction / minor).

Then follows Stereometrica, after which come two separate treatises that
Heiberg has inserted in Geometrica.[29]

The first (inserted as 24.1–51; henceforth thus S:24) contains, among
other things, determinate and indeterminate problems about geometrical
configurations, but also the section on circles inscribed in and circumscribed
around triangles which already entered after triangles. Here we find the
problem on the square diameter+perimeter, and that of the circular area+

27 On the whole, ms V depends so strongly on ms S that S can be taken to represent
the better version.
28 After the semicircle follows the volume of a semicircular wall, in practice only
a calculation of its base, moved by Heiberg to Stereometrica.
29 Probably because he had no other work in which to put them; they are not
coherently in mss A+C (isolated pieces are, e.g. the problem on circular diameter+
perimeter+area, though in words that do not suggest use of precisely this treatise,
cf. below); they should certainly not have been merged with neither the modern
nor the ancient conglomerates. In references to Geometrica/S below they are hence
not included. Instead, I shall refer to the treatise which Heiberg inserted as chapter
24 as S:24, and to the other as S:22.

According to the text edition, S:22.3–24 is also contained in ms A; however,
as can be seen from the manuscript description of the preface (p. xi), it is not part
of its Geometrica-text.
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diameter+perimeter.
The other (22.1–24) contains, after a section on metrology, the areas

of regular n-gons, 2<n<13, followed by circle and semicircle, in abstract
formulation (everything else in Metrica and either Geometrica is set forth
through numerical examples).

For comparison, the section on mensuration from Columella’s De re
rustica V (a close contemporary of Metrica) may be of interest:[30]

Metrology; square; rectangle; trapezium.
Triangles (equilateral / right).
Circle; semicircle; minor segment; regular hexagon.

Hero obviously deviates most clearly from the established pattern; he
makes triangles follow directly upon the rectangle; he omits the semicircle
(obviously considering it trivial), and replaces the “egg-shape” (if it was
indeed part of the heritage, which Old Babylonian texts suggest) by a
“scientific” figure – the ellipse.

Mss AC is not far from the Heronic pattern; but the semicircle appears
as a configuration of its own. Ms S, on the other hand, shows closer
affinities with the practitioners’ tradition, as revealed both by the presence
of the surveyors’ formula and the place where it occurs. In all its brevity,
Columella’s treatment of the subject is also close to the traditional and well
away from the scientific and Heronian order, and shows that the character-
istic order of the medieval handbooks was not the result of a later trans-
formation of a tradition derived from Hero.

Methods, considered abstractly

On this level, one feature is usually referred to as indubitably Heronian
in Geometrica as well as De re rustica: The use of the Archimedean value
for π. Strangely enough once again, since Hero tell us that the evidence
is not valid. Two passages in Metrica are decisive:
(1) I.xxx explains that “the ancients” – οι αρχαιοι – measured the minor

segment as [½(c+h)] h, where c is the chord and h the height. As he
argues, these “ancients” seem to have “followed those who took the

30 Lucius Iunius Moderatus Columella, Zwölf Bücher über Landwirtschaft, ed. Will
Richter. 3 vols (München & Zürich: Artemis Verlag, 1981–83).
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perimeter to encompass the triple of the diameter”; if π = 3, indeed,
the formula is exact for the semicircle. The argument implies that Hero
had no direct information about the provenience of the formula, but
that he knew about the use of π = 3 (the traditional Babylonian value,
reappearing in the Ancient Testament and hence probably current in
the Syrian Near East, and also reappearing in Demotic mathematics).

(2) I.xxxi tells that “those who made more precise investigations” add
1/14 ( c/2 )2, and argues with a similar argument that they must have
followed the other course according to which the perimeter is the triple
diameter and in addition 1/7 of the diameter. Even here, we see, the
use of the Archimedean value (transformed from the ratio 22:7 into
the number 3 1/7 ) is already established practice, and has been so for
so long that Hero does not find its traces; it has also generated an
approximate formula which is even worse for small segments, in all
probability found via fitting by practitioners with neither theoretical
mathematical training nor propensity.[31] The formula is post-
Archimedean, but certainly not Archimedean.
The whole organization of the discussion of segments is clear evidence

that Hero worked on the basis of an earlier treatise which he emended
but did not rewrite consistently: The text includes the theorem that a
segment is greater than 1 1/3 times the triangle with the same base and the
same height, and suggest that this limit – the exact area of the correspond-
ing parabolic segment, as the text tells with due reference to Archimedes –
be used to approximate the area of segments whose chord is more than
three times the height. A lemma and the first two theorems leading to this
result open the whole treatment of circular segments (I.xxvii–xxix). Then
the two received approximation formulae are given in I.xxx and I.xxxi; in
the end of I.xxxi comes the demonstration that the formula used by “those
who made more precise investigations” yields absurd results when the

31 The approximation is indeed so much worse that Hero’s reconstruction is almost
certain; mathematical reflection would have shown (in modern terms) that the
relative error goes to infinity when the arc goes to zero; the text does not make
this inference, but it does show that the formula is impossible when the height is
less than 1/3 of the chord. The idea to add 1/14 ( c/2 )2 must come from fitting to a
particular case – and probably to a semicircle with diameter 14.
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base is more than thrice the height. Quite appropriately, the rest of the
proof begun in I.xxvii–xxix is given in I.xxxii – after which I.xxxiii goes
on as if neither I.xxxii nor the final warning of I.xxxi had existed, and
applies the formula A = [½(c+h)] h+ 1/14 ( c/2 )2 to a segment where it has just
been shown not to apply, viz c = 4h.

Instead of accusing Hero of inconsistent emendations one might of
course suggest that somebody else produced the text we know by adding
the warning and the parabolic approximation to Hero’s original text, which
will then have contained nothing but the received approximations; without
other arguments than a general stylistic impression I find this explanation
of the textual inconsistencies unlikely. Somewhat more plausible is the
possibility that Hero did not write the Archimedean approximation into
the text but as a marginal scholion to a borrowed treatise – a scholion that
was so long that he distributed it over several manuscript pages – and that
a later copyist inserted the scholion in the running text.[32]

32 A similar argument shows that the “Heronic formula” does not belong straight-
forwardly in the text but is an interpolation – either made by Hero in a source
which he does not correct in details, by some later editor in Hero’s text, or both
in combination. I.vii proves a quasi-algebraic lemma (“κατα αναλυσιν” ; the lemma
tells that √ { (a), (b)} = (a,b), if (d) designates the square on d and (f,g) the
rectangle contained by f and g.); I.viii goes on with a numerical example, introduced
independently of I.vii; this example is followed by the sentence “The geometrical
demonstration of this is the following”, after which it goes on with the words in
which Dioptra treats the same matter – words which fit the Dioptra context but
which constitute a pointless repetition in Metrica. The whole proof follows the
Dioptra version almost verbatim, inserting a couple of extra explanations, changing
a few formulations, and changing the order of letters designating lines in order
to make it alphabetic (this alphabetic order prevails in Metrica I). The exposition
in Metrica closes with the numerical example of Dioptra, which is different from
its own initial example (replacing µοιρα with µονας as the name of the unit, another
instance of stylistic adjustment) – and then goes on in I.ix as if I.vii–viii had not
been there. That I.vii–viii is an interpolation is obvious. The confusion of numerical
examples and the double introductions of I.vii and I.viii speaks against an ascription
of the passage in its entirety to a single hand. If we remove the introduction of
I.viii and the ensuing numerical example, the whole structure – an introductory
lemma (here algebraic, there dealing with the sum of a geometric progression)
followed by a geometric proof – is similar to that of I.xxvii–xxix,xxxii, the
Archimedean approximation to the segment. The most likely explanation may be
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In all three cases, Hero’s debt to the extra-theoretical tradition remains
obvious. The presence of the Archimedean π in other treatises is thus no
indication that they depend on Hero; and in so far as they do not mention
the Archimedean approximation formula for segment areas (and neither
Columella nor any Geometrica do so[33]) they are more likely not to use
Hero (unless of course the insertion be post-Heronian).

The procedures in their actual detail

Only procedures of a certain complexity allow so much variation that
the question of dependence or independence can be discussed – it is
difficult to invent more than one reasonable way to calculate a rectangular
area. But the procedures used to find the heights of scalene triangles and
trapezia do offer significant contrasts, and so do the ways the circle, the
semicircle and the segments are dealt with. Heights first.

These are calculated from a side and its projection on the base by means
of the Pythagorean theorem. For inner heights, three different formulae
for the projections of the sides turn up in the material (see Figure 3): One
is “Euclidean”, based on Elements II.13; one is “algebraic”, based on the
principle of Elements II.8; one, finally, is a variant of the “algebraic”
formula, replacing II.8 with II.6. All formulae are of course algebraically

that Hero made both interpolations apart from the introduction and first numerical
example of I.viii (either as marginal scholia or without smoothing the text
consistently), following Dioptra closely in the demonstration but expanding a few
difficult points; and that a later editor added the opening of I.viii and the first
numerical example in order to motivate the ensuing proof.

While the Heronic formula is thus in some way an interpolation in Metrica,
there seems to be no reason to doubt that it belongs originally in Dioptra – cf.
Schöne’s rejection of Hultsch’s contrary opinion in the preface, pp. xixf (cit. note
1). Nor is there any serious reason to doubt that it was discovered within the Greek
world, even though those Arabic writers may be mistaken who ascribe it to
Archimedes – Hero, when we know for sure that he has reasons to do so, always
gives credit to the great Syracusan. But neither Dioptra nor Metrica do so on this
occasion.
33 Both, moreover, give the post-Archimedean formula for the minor segment in
the impossible case c = 4h.
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equivalent, but it is clear that the sources consider them different,[34] and
that they were handed down consistently as different methods.

One is based on Elements II.13 (the “Extended Pythagorean theorem”),

Figure 3.

(a)+2 (q,c) = (b)+ (c),

whence

q
b 2 c 2–a 2

2
÷c

The “main algebraic formula” makes use of semi-
sum and semi-difference, as the quasi-algebraic tradi-
tion had always done:

,

Figure 4

q–p
2

b 2–a 2

2
÷c

q p
2

c
2

whence

q
c
2

b 2–a 2

2
÷c

p
c
2

–
b 2–a 2

2
÷c

The probable argument behind this formula runs as follows (see Figure 3):

(b)– (a) = { (q)+ (h)}–{ (p)+ (h)} = (q)– (p)

(q)– (p), however, is the difference between two squares, most likely to
be understood as the band between concentric squares (see Figure 4):

(q)– (p) (
q–p
2

,2(q p)) (
q–p
2

,2c)

(This argument, a “naive” version of Elements II.8, is found in ibn Thabāt’s
treatise and in Metrica I.xxvi). Therefore,

q–p
2

b 2–a 2

2
÷c

34 Thus very explicitly in Fibonacci’s Pratica geometrie III.2, ed. Boncompagni, 34ff
(cit. note 10).
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The “algebraic alternative” has an analogous proof, but presupposes

Figure 5.

Elements II.6 (or “proto-Elements-II.6”) instead of “proto-Elements-II.8” (see
Figure 5):

p ½ (c–
b 2–a 2

c
)

since

(c,q–p)+ (p) = (q)

whence

(c,q–p) = (q)– (p) = (b)– (a) ,

and since, moreover,

2p = c–(q–p).

For the outer heights of an obtuse-angled triangle, two methods occur

Figure 6.

(see Figure 6). One is based on Elements II.12 (“Extended Pythagorean
theorem”):

(a) = (b)+ (c)+2 (p,c)

whence

p
a 2–b 2–c 2

2
÷c

The other, analogous to the above “main
algebraic formula”,

p
a 2–b 2

2
÷c –

c
2

q
a 2–b 2

2
÷c

c
2

is only found in one case (viz in Liber mensurationum), anomalous also for
other reasons and probably Abū Bakr’s own invention (apart from the
equilateral triangle it is the only polygon in the work that is not composed
from Pythagorean triangles).
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The distribution of the different formulae can be summarized, using the
following abbreviations:

Alg: “Main algebraic formula” based on semi-sum and semi-difference
and proto-Elements II.8

ExtP: Elements II.13 or 12 (“Extended Pythagorean theorem”)
II.6: The variant of the “algebraic” method that refers to Elements II.6.

Abū Bakr, Liber mensurationum
Acute-angled trapezium: Alg; alternative, ExtP
Obtuse-angled trapezium: Alg (Abū Bakr’s own construction)
Acute-Angled triangles: Alg; alternative, ExtP
Obtuse-angled triangles: Inner height Alg; outer heights ExtP

Al-Khwārizmı̄, Algebra
Acute-angled triangle: determination by al-jabr
Obtuse-angled triangle: Only one height exists, cross-reference

Al-Karajı̄, Kāfı̄ fı̄’l-hisāb
Acute-angled triangle: Alg
Obtuse-angled triangle: ExtP

Ibn Thabāt, Ghunyah al-Hussāb
Acute-angled trapezium: Alg
Obtuse-angled trapezium: absent
Acute-angled triangle: Alg; alternative, II.6
Obtuse-angled triangle: ExtP

Savasorda, Liber embadorum
Acute-angled triangle: ExtP; alternative, II.6
Obtuse-angled triangle: ExtP
Acute-angled trapezium: Alg, with a mistaken cross-reference
Obtuse-angled triangle: ExtP

Leonardo Fibonacci, Pratica geometrie
Acute-angled triangle: ExtP; alternatives, Alg and II.6
Obtuse-angled triangle: ExtP; cross-references to Alg and II.6
Acute-angled trapezium: Alg
Obtuse-angled trapezium: ExtP

Hero, Metrica
Acute-angled triangles: ExtP
Obtuse-angled triangles; ExtP
Trapezia: Only a cross-reference

Geometrica/AC
Acute-angled triangle: ExtP
Obtuse-angled triangle: ExtP, alternative akin to II.6
Acute-angled trapezium: corrupt or erroneous
Obtuse-angled trapezium: cross-reference
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Geometrica/S
Scalene triangles and trapezia are not treated

Heights are never computed in the Old Babylonian tablets, and the few
Late Babylonian texts that have been found only calculate those of isosceles
triangles and trapezia. It would seem a natural guess that the determination
of heights in scalene figures be a Greek invention. The material at hand,
however, contradicts this assumption.

Hero, as we see, builds on Euclid, and Geometrica/AC does so,
presenting the “algebraic” method in II.6 version as an alternative
possibility. In the Arabic treatises, however, the situation is different – but
only for internal heights. The determination of external heights follows
Elements II.12; when finding internal heights, as a rule, the texts first state
the “algebraic” solution, and then sometimes add the Euclidean method
as an alternative. Savasorda, who tries to be primarily Euclidean when
treating triangles, slips when he comes to the trapezium. So does Fibonacci.

The conclusion appears to be that the practical tradition knew the
principle in “algebraic” form already before the Greeks; but that it had
only applied it to internal heights, in agreement with al-Khwārizmı̄’s
statement that an obtuse-angled triangle possesses only one height. The
Greeks generalized the concept of a height to the perpendicular on a side
or its extension, and both theorems went into Elements II in a formulation
that brought them into connection with the Pythagorean theorem and
proved them from II. 4 and II.7. One may even guess that the reason that
II.12 (external heights) precedes II.13 (internal) is that it was new and hence
more interesting. The practical tradition adopted the innovation and handed
it down as faithfully as always, but kept the old way where it served,
pointing however at times to the Euclidean method as an alternative way.

On this point we notice that Hero as well as Geometrica/AC follow the
Euclidean way; but Geometrica/AC also shows that it knows the “algebraic”
trick. Geometrica/S, in agreement with its use of the archaic surveyors’
formula, does not care about such sophisticated questions.

Circle computation may seem slippery ground – after all, everything that
is involved are squarings, square roots and numerical factors. None the
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less, they turn out to be informative (diameter d, radius r, perimeter p, area
A):

Abū Bakr, Liber mensurationum
A = d2– 1/7 d2– 1/2

1/7 d2; or A = ( 1/2 d) ( 1/2 p)
p = 3 1/7 d; or p = √(A+ 3/11 A)

Al-Khwārizmı̄, Algebra
p = 3 1/7 d, “a convention among people without mathematical proof”)

(two Indian alternatives, p = √(10d2) and p = 62832/20000 d)
A = ( 1/2 d) ( 1/2 p)

Al-Karajı̄, Kāfı̄ fı̄’l-hisāb
A = ( 1/2 d) ( 1/2 p); or A = ( 1/4 d) p; or A = d ( 1/4 p); or A =

d2– 1/7 d2– 1/2
1/7 d2; or A = p2÷12 4/7

p = 3 1/7 d
d = p÷3 1/7

Ibn Thabāt, Ghunyah al-Hussāb
A = ( 1/2 d) ( 1/2 p); or A = ( 1/4 d) p; or A = d ( 1/4 p); or A =

d2– 1/7 d2– 1/2
1/7 d2; or A = p2÷12 4/7 or 1/4 p2÷3 1/7 ; or A = 1/4 (d p)

p = 3 1/7 d
d = p÷3 1/7

Savasorda, Liber embadorum
p = 3 1/7 d
A = ( 1/2 d) ( 1/2 p), alternative A = d2– 1/7 d2– 1/2

1/7 d2

(followed by a correction of the π-value, π = 377/120 )

Old Babylonian texts
p = 3d ; A = p2 5´ (normal method)
A = 1/4 (d p)[35]

Hero, Metrica
A = 1/14 11d2

p = 1/7 (22d)
d = 1/22 (7p)
2A = r p

35 Strictly speaking, this formula is only used for semicircles in the Old Babylonian
texts – in the problem text BM 85210, rev. I 18, and in various coefficient lists.
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Geometrica/AC[36]

A = 1/4 (d p); or A = ( 1/2 d) ( 1/2 p); or A = 1/88 (7 p2); or A =
1/14 (11 d2); or A = d2– 1/7 d2– 1/14 d2 (“In Euclid”!)

d = 1/22 (7p); or d = 7 ( 1/22 p)
p = 3d+ 1/7 d
p and d from p+d; p = 3d+ 1/7 d; d = 1/3 (p– 1/22 p); or d = 1/22 (7p); A =

1/88 (7 p2); or A = d2– 1/7 d2– 1/14 d2; or A = 1/14 (11 d2); or A =
3 ( 1/2 d)2+ 1/7 ( 1/2 d)2; or A = (d2– 1/4 d2)+ 1/21 (d2– 1/4 d2); or 4A = p d;
or A = ( 1/2 d) ( 1/2 p); or A = ( 1/4 p) d; etc. (more complex
numerical examples follow)

Geometrica/S
A = (11d2)÷14
p = (22d)÷7
d = (7p)÷22
p = 3d+ 1/7 d;
d = (p÷22) 7;
A = 1/14 (11d2); or A = 1/4 (p d); or A = 1/88 (7p2); or [corrupt or
deliberately misleading]

Columella, De re rustica
A = 1/14 (11d2)

Here we should distinguish as carefully as our texts between A =
1/4 (d p) and A = d/2

p/2 , between taking 1/n and dividing by n (µεριζω),
and between 1/7 (22d), (22d)÷7 and 3d+ 1/7 d. The “orthodox” Archimedean
formulae are those found in Metrica. “Those who made more precise invest-
igations”, as we remember, took p to be 3d+ 1/7 d – and in all cases where
this formula is used,[37] the formulation tells very clearly that the diameter

36 This scheme covers only chapter 17. Chapter 21, which tells to be an insertion
“taken from another book by Hero”, returns to the topic of circles, in ms C as
follows: p = 1/7 (22d); d = 1/22 (7p); 2A = p r; “circulation” of a given area; separation
of d+p+A ; the corners between a circle and the circumscribed square. The first three
formulae follow Metrica rather closely, using even the same verbs though not the
same grammatical forms; throughout, as in Metrica but not in chapter 17, magni-
tudes are told to be n “units”/µοναδες; elsewhere, mss AC reckons explicitly or
implicitly in “ropes” (σχοινια) or “fathoms” (οργυιαι), whereas mss C and C.24
have the “foot” as their all-pervasive standard unit. Ms A represents a rewritten
version of the same material, which expands both the explanations and the number
of formulae (adding, e.g., the non-Heronian A = 1/4 pd = d ( 1/4 p), but retains enough
of the Heronian words to make us sure of the connection.
37 Mss AC, 17.8, 17.10, 17.29; S:22.16; and S:24.45; cf. ms A, 17.16, where the area
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is taken thrice, and calculated explicitly, after which a supplementary
seventh is added. Everywhere, the expressions τρισσακις and τριπλασιον
are used even when neighbouring multiplications are επι n. This is quite
striking. The Old Babylonian texts, indeed, find the perimeter as the
diameter “repeated until three” or as “thrice” the diameter, not by the
normal multiplication used, e.g., when A is found as 5´ times p2; and the
same idea is still found in a design booklet from c. 1488, written by the
master builder Mathes Roriczer – in a constructive formulation that betrays
the probable reason for the survival of the particular wording[38]. It seems
beyond doubt that the anonymous practitioners who “made more precise
investigations” belonged within the tradition which is already reflected
in the Old Babylonian tablets, although Archimedes’s calculation caused
them to add a supplementary seventh;[39] in the Arabic writings the
characteristic formulation was discarded,[40] but it was conserved by the
higher artisans of Christian Europe.

The determination of the area as 1/4 (p d) seems to be inherited, too;
whether the variant A = ( 1/2 d) ( 1/2 p) is also part of the Near Eastern legacy

is found as 3( 1/2 d)2+ 1/7 ( 1/2 d)2.
38 “If anyone wishes to make a circular line straight, so that the straight line and
the circular are the same length, then make three circles next to one another, and
divide the first circle into seven equal parts”, one of which is marked out in
continuation of the three circles – Geometria deutsch, 9, trans. Lon R. Shelby, in Shelby
(ed.), Gothic Design Techniques. The Fifteenth-Century Design Booklets of Mathes Roriczer
and Hanns Schmuttermayer, 121. (Carbondale & Edwardsville: Southern Illinois
University Press, 1977).
39 The formula A = (d2– 1/4 d2)+ 1/21 (d2– 1/4 d2) looks like a similarly corrected version
of A = (d2– 1/4 d2), a formula that seems to be presupposed in Nos 32–33 of the
Demotic P. Cairo J.E.89127–30,89137–43 (third century BC). The proofs of the same
problems use the formula A = ( 1/4 p) d, where p is found as 3d. See Richard A.
Parker, Demotic Mathematical Papyri, 40f. (Providence & London: Brown University
Press, 1972). Another corrected version of the Demotic rule seems to be found in
S:24.39 (the independent treatise from ms S), A = 1/2 d2+ 1/4 d2+ 1/28 d2.
40 Al-Khwārizmı̄ thus multiplies (daraba) the diameter directly with the number
3 1/7 (šalāšah wasubu ).
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or derived from Archimedes is undecidable.[41] Equally undecidable is
the questions whether the idea of determining the area from the perimeter
was inherited from the Old Babylonian orbit – however much the idea
seems unfamiliar to us, the practical problem of finding the volume of a
standing log or column would easily call for independent “invention”. So
much is sure, however, that none of these formulae in Geometrica/AC and
Geometrica/S are borrowed from Hero’s Metrica, and that the treatment
of the circle is strongly eclectic in either Geometrica;[42] among other
sources they may also have used Metrica; but material from Metrica, if at
all there, is by no means privileged.[43] As we see, mss AC – in other
respects more “Greek” than ms S – even favour the primacy of the
perimeter. Particularly intriguing is the supposedly “Euclidean” formula
from AC 17.5. It corresponds so closely to the Arabic formula A =
d2–1/7 d2– 1/2

1/7 d2 that we may presume it a translation from a language
using ascending continued fractions as a standard idiom – either the Arabic
or the Aramaic/Syriac.[44] Since the same formula is also used in the

41 Al-Khwārizmı̄ gives the sketched proof that in every regular polygon “you find
the area by multiplying half of the perimeter with half of the diameter of the largest
inscribed circle” (trans. Gandz, cit. note 24). This is evidently not a direct reference
to the Archimedean proof; but it may equally well be an argument produced by
al-Khwārizmı̄ himself for an inherited formula and an argument inherited together
with the formula and sharpened by the mathematician al-Khwārizmı̄.
42 This eclecticism is abundantly confirmed both by the random organization of
the text, by the shift between επι ... ποιεω- and πολυπλασιαζω-multiplication even
within the same chapter (e.g., chapter 17), and the use of division instead of part-
taking, in some passages correlated with πολυπλασιαζω-multiplication (e.g.,
17.32–36), in others not (e.g., 17.18–22).
43 Even isolated borrowings into ms S and mss AC, chapter 17, are highly unlikely
(AC 21.1–3, on the other hand, are clearly derived from Hero but also presented
as an extraneous insertion – see note 36): in all cases where formulae are shared
with Metrica, either the choice of numerical example, the details of the terminology,
or both, are different. Since neither Geometrica shows traces of stylistic normalization,
such differences are significant. Ms A chapter 21, moreover, shows to which extent
even expanding rewriting would conserve the original vocabulary.
44 Alternatively, one might think of an adoption of the Archimedean result in
Demotic Egypt. On one hand, however, better candidates for a Demotic-
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separate treatise S:24, in a context that does not suggest a late Byzantine
borrowing of Arabic material, it seems that the Archimedean π had already
reached the Syrian practitioners well before the Hegira.[45]

Semicircles offer the same picture – there is no need to go into details.
The very fact that they are not dealt with on their own in Metrica but are
so in both Geometrica (and in the brief treatment of mensuration in De re
rustica) shows that Hero is not the main reference of these works.

The treatment of segments is informative in a different way. As we
know from Hero, the determination of their area by means of approximate
formulae was old in his world – whatever this world was.[46] One was

Archimedean formula are at hand – see note 39; on the other, the Arabic formula,
which would then be likely to derive from the same source, is found in treatises
that contain no hints of such a connection.

Ascending continued fractions are not uncommon in Geometrica/AC, it is true,
but only as the outcome of multiplications and where reduction would yield an
unhandy result – e.g., when 7 1/2

1/10
1/15

1/75 is reduced no further than 7+(3+ 2/5 )/5
(12.48) or 24/49 expressed as (3+ 3/7 )/7 (12.54). But all these cases conserve that form
of the ascending continued fraction which is reduced to a mere allusion in the
expression 1/7 + 1/14 , and use as their elementary building blocks expressions no less
complex than 3/14 .
45 In this connection is should also be noted that the circular area is also determined
as A = d2– 1/7 d2– 1/2

1/7 d2 in the Hebrew Mišnat ha-middot (ed. Gandz, cit. note 24).
The date of this work is disputed – c. 150 CE according to Gandz, early Islamic
period if we believe Gad Sarfatti, Mathematical Terminology in Hebrew Scientific
Literature of the Middle Ages. [In Hebrew, English abstract]. Jerusalem: The Magnes
Press/The Hebrew University, 1968. As far as I can judge from Sarfatti’s abstract,
he overlooks the Aramaic/Syriac influence on the formation on both Hebrew and
Arabic terminologies, and that shared metaphors as close at hand as the “arrow”
(for the height of a circular segment understood as a “bow-shape”) are likely to
be common heritage. All in all, Gandz’s dating seems the better. The subject-matter
points in the same direction: Mišnat ha-middot gives the post-Archimedean
approximation for the circular segment, which is absent from all the Arabic
treatises – in particular from al-Khwārizmı̄’s, which one way or the other is closely
related to the Mišnat. Cf. also note 48.
46 Segment computations are indeed found in a couple of Old Babylonian texts from
a text group which also gives the area of the semicircle as 1/4 (d p); unfortunately
one is corrupt and the other badly broken, but the former seems to involve arc,
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pre-, another post-Archimedean. The mathematical quality of the formulae
is not impressing. If Hero is responsible for the Archimedean approximation
to small segments, his work was messy (see text before note 32); if, against
my expectations, the insertion is later, he was also a not very critical
compiler. Both Geometrica versions, in any case, are such compilations, and
not with Metrica as their main source; both also offer approximate formulae
for the length of the arc.

The treatment of segments is in Arabic treatises is totally different. They
find the area from height, chord and arc, using thus a procedure that is
both correct and exact, but evidently overdetermined.[47] This contrast
is important: since practitioners’ mathematics is invisible, we have almost
no other evidence that those of the Hellenistic world (or some of them)
had developed canons and procedures of their own – procedures which
went no further in the Near Eastern tradition than Mišnat ha-middot, in
contrast to Elements II.12 and the Heronic formula.[48] The problem of
Hero’s historical position cannot be reduced to a simple dilemma between
a Euclidean-Archimedean and a Near Eastern practitioners’ tradition.

chord and height, while the latter has a vague similarity with the formula of “the
ancients” but apparently no more. One text, finally, demonstrates that the Babylon-
ians knew how to calculate the diameter of the circle from the chord and the height
of a segment – essential if a major segment is to be found from the formula for
the minor segment, or vice versa.
47 The reason for this is not ignorance but practical wisdom; al-Karajı̄ teaches indeed
how to find the arcs for 60° and 120° and how to interpolate from these values;
but he also tells that direct measurement is much better – ed. Hochheim, II, 25f
(cit. note 22).
48 The only analogous case which I know of is the survival of the “thrice the
diameter plus an extra seventh” in Europe, a formula that is not found in Arabic
treatises (see note 38). Even in this case, Mišnat ha-middot contains the information
that “the people of the world [or, “the landmeasurers”] say that the circumference
of a circle contains three times and a seventh of the thread” (V.4, trans. Gandz).
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Numerical values

Numbers are treacherous – apparently striking coincidences may result
from the compulsion of mathematical relations. That the sides of the
standard scalene triangle are 13–14–15 may look as evidence for con-
nections, but proves nothing in environments that know the Pythagorean
theorem and want to work in integer numbers. Whether the special status
of 7 is a number-psychological universal in cultures that count until 7 or
is the outcome of cultural diffusion (and, in the latter case, diffusion at
which level) is so far undecided. If we want to show that a particular
number is chosen because it belongs with a particular problem type and
not because the author likes it in general or because it is more convenient
than other choices we need to demonstrate that it is only chosen in this
particular situation and not elsewhere.

The use of 10 as the preferred side length for regular polygons can be
argued in this way to belong with the situation. We have encountered it
as the standard side in the problem on the four sides and the area, but
the evidence is much more impressing:

Abū Bakr, Liber mensurationum
Square, equilateral triangle

Al-Khwārizmı̄, Algebra, and al-Karajı̄, Kāfı̄
Equilateral triangle (and the square side corresponding to the
paradigmatic irrational root, √200)

Ibn Thabāt, Ghunyah al-Hussāb
Square, equilateral triangle, regular hexagon (exemplar for regular
polygons)

Savasorda, Liber embadorum
Square, equilateral triangle

Hero, Metrica
First square; regular n-gons, 2<n<13; diameter of first circle

Geometrica/AC
First equilateral triangle; regular n-gons, 6<n<13; second example for

n = 5.

That 10 is not chosen with this high frequency just because it is a round
number, in Greek as well as Hebrew and Arabic, follows if we look at other
situations where parameters are chosen freely – e.g. the width of the
rectangle that is squeezed into the 13-14-15-triangle in order to produce
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a convenient trapezium. This width is never 10. As far as the Old Babylon-
ian problem is concerned one may notice that this problem is the only
problem in the whole Old Babylonian record concerned with a single
square where the side is 10. The Old Babylonian school norm – evidently
connected to the characteristics of the place value system – is 30, mostly
in the order of magnitude of “minutes”. Even in Metrica and Geometri-
ca/AC, 10 possesses no generally favoured status. That it plays a central
role precisely as the standard side of the regular polygons is thus an
indubitable and very direct reference to the Near Eastern tradition. How
it was mediated through local traditions we cannot say.

Phraseology

As far as phraseology is concerned, I shall limit myself to two observa-
tions with different but not contradictory implications.[49]

Above, the phrase καθολικως/“in general” and its correspondence with
the use of semper in Abū Bakr’s Liber mensurationum was mentioned. In
Geometrica/AC 21.9, καθολικως and αει/“always” occur in the riddle about
the circular diameter+perimeter+area, αει without καθολικως in a few other
circle and segment formulae and in some formulae dealing with regular
polygons – and as far as I have noticed nowhere else in AC;[50] both
words tell that a certain number used in the procedure does not depend
on the particular free parameter of the problem – in the quadratic problems
thus the sum (the coefficients are not free, as it follows, they have to be
the “natural” parameters of the problem). In the context of mss AC it is
thus evident that the problem d+p+A = Σ – found for the first time in an
Old Babylonian text from a group which gives the semicircular area as
1/4 (p d) – is brought into the main text from outside (cf. also note 36 on
the status of chapter 21).

S:24 uses καθολικως in the square area+perimeter- as well as the

49 But see also note 42 on the conclusions that can be drawn from the distribution
of the terms for multiplication.
50 Of course, formulae for circles and their parts and for regular polygons are
precisely those where fixed numerical parameters occur; but only a small minority
of the corresponding problems contain the αει.
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diameter+perimeter+area-problem (S.24.3 and S.24.46–47, respectively),
alternating in the latter with παντοτε/“at all times”; S:24.46 and 47, fully
parallel apart from different values of the sum Σ, use both words but in
changing places, treating them thus as synonyms. παντοτε is also used in
other problems dealing with circles (Nos 43–45, the first of which asks for
the separation of p+d), while a sequence of problems asking for the
separation of area and perimeter of a Pythagorean triangle (Nos 10–13) use
παντος/“always” in the same function (once παντοτε). παντοτε is also used
in S:22.4, the formulation in general terms of the 1/2 base height-rule for
the triangular area, and together with καθολικως in Geometrica/S 17.5–6,
19.6 (circle and segment formulae).

Most of the occurrences of the explicitation of general validity are thus
within problems that ask explicitly for the “separation” of a sum,[51] a
familiar phrase from the Near Easter tradition already reflected in the Old
Babylonian school texts. Even though these texts contain no similar term
for generality, there is little doubt that the usage was adopted together
with the area+perimeter and diameter+perimeter+area problems, indubi-
table legacy of the Near Eastern tradition.

As we see, the word chosen to express general validity varied from
one text to the other; so does the term for separation. Geometrica/AC 21.9
has διαστελλω (with καθολικως and αει); S:24.3 (square area+perimeter)
uses διαχωριζω (with καθολικως); S:24.10–13,43–47 (triangular area+
perimeter, circle problems including d+p and d+p+A) employ αποδιαστελλω
(with παντος, παντοτε and, in the d+p+A-problem, καθολικως). The
correlations seem to reflect separate developments that were accidentally
brought together again, first by Byzantine compilators and next by Heiberg.

This inference is confirmed by other terminological considerations.
Many of the παντος/παντοτε-problems of S:24 (but not S:24-problems in
general) share the characteristic phrase φανερον, “obviously”. The two
mixed second-degree problems of S:24 (square area+perimeter, circular
diameter+perimeter+area), on the other hand, use quite different ter-

51 And all separation problems in the material except Geometrica/AC 17.9 (circular
diameter+perimeter) use καθολικως, αει, παντοτε or παντος. The coupling is
certainly strong.
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minologies in spite of their shared ultimate origin – the former thus the
geometrically suggestive ποιεω επι/“I put on top of” for squaring, the latter
πολυπλασιαζω/“I make multiple”, with its purely arithmetical (and even
integer-arithmetical) connotations. If we think of Moritz Cantor’s old
metaphor,[52] according to which the development of mathematics is to
be likened to a river landscape, the river that had sprung from Near Eastern
geometrical practice had dissolved itself in later antiquity into a delta, in
a multitude of independent streams now running together, now splitting
apart. Hero knew some of them and used them – at times literally – in
Metrica; Geometrica/AC collected others, Geometrica/S and S:24 still others.
Further studies of terminology and style may help us sort out more details;
given the complexity of the situation and the paucity of sources for
precisely the practitioners’ level of mathematical activity, however, we are
not likely to get very far.

52 Moritz Cantor, Die römischen Agrimensoren und ihre Stellung in der Geschichte der
Feldmesskunst. Eine historisch-mathematische Untersuchung, 2. (Leipzig: Teubner, 1875).
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