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First discovery – and neglect

In [1929], Louis Karpinski published a short description of “The Italian
Arithmetic and Algebra of Master Jacob of Florence, 1307”. Among other things
he pointed out that the algebra chapter of the treatise in question presents the
algebraic “cases” in a different order than al-Khwārizmı̄, Abū Kāmil, and
Leonardo Fibonacci, and that the examples that follow the rules are also different
than those of the same predecessors. Karpinski did not mention explicitly the
absence of geometric proofs of the rules, nor that the examples differ from those
of the other authors already in general style, not only in detailed contents; but
close reading of Karpinski’s text and excerpts from the manuscript leave little
doubt on either account.

I have not been able to discover any echo whatsoever of this publication.
This may have at least three reasons.

Firstly, 1929 fell in a period where the interest in European medieval
mathematics was at a low ebb – probably the lowest since the Middle Ages, at
least since 1840. From 1920 to c. 1948 (from the death of Moritz Cantor to the
beginning of Marshall Clagett’s work in the field), the total number of scholarly
publications dealing with Latin and European vernacular mathematics does not
go much beyond the dozen.

Secondly, the existence of the distinct abbaco mathematical tradition was not
recognized, although Karpinski had already described another abbaco treatise
in [1910]. As early as [1900: 166], it is true, Cantor had spoken of the existence
throughout the fourteenth century of two coexisting “schools” of mathematics,
one “geistlich” (“clerical”, i.e., universitarian), the other “weltlich oder
kaufmännisch” (“secular or commercial” and derived from Leonardo Fibonacci’s
work); part of Cantor’s basis for this (but only a modest part) was Libri’s edition
[1838: III, 302–349] of a major section of what has now been recognized as Piero
della Francesca’s Trattato d’abaco[1] (which Cantor, accepting Libri’s wrong dating,
had located in the fourteenth century). Eneström [1906] had done what he could
to make a fool of Cantor by twisting his words[2]. Attentive reading would easily

1 On the identification of Libri’s manuscript with the very manuscript from which Arrighi
[1970] made his edition, see [Davis 1977: 22f].
2 Arguing from his own blunt ignorance of the institution within which university
mathematicians moved, he rejected the epithet “clerical” as absurd (“Sacrobosco und
Dominicus Clavasio waren meines Wissens nicht Geistliche”; actually, all university
scholars were at least in lower holy orders, as evident from the familiar fact that they
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have exposed Eneström’s arrogant fraud; but the kind of knowledge that would
have been required for that had come to be deemed irrelevant for historians of
mathematics and hence forgotten, and Sarton [1931: 612f] not only cites
Eneström’s article but embraces the whole thesis uncritically.

Thirdly, like Cantor, Karpinski took the continuity from Fibonacci onward
for granted, and concluded that the

treatise by Jacob of Florence, like the similar arithmetic of Calandri, marks little
advance on the arithmetic and algebra of Leonard of Pisa. The work indicates the
type of problems which continued current in Italy during the thirteenth to the fifteenth
and even sixteenth centuries, stimulating abler students than this Jacob to researches
which bore fruit in the sixteenth century in the achievements of Scipione del Ferro,
Ferrari, Tartaglia, Cardan and Bombelli.

Only those interested in manifestations of mathematical stagnation – thus
Karpinski invited to conclude – would gain anything from looking deeper into
Jacopo’s treatise.

The manuscripts

Whatever the reason, nobody seems to have taken interest in the treatise
before Van Egmond inspected it in the mid-seventies during the preparation
of his global survey of Italian Renaissance manuscripts concerned with practical
mathematics [1980]. By then, the autonomous existence of the abbaco tradition
in the fourteenth and fifteenth centuries was well-established; but Van Egmond
noticed that the manuscript which Karpinski had examined (Vatican ms. Vat.
Lat. 4826, henceforth V) could be dated by watermarks to the mid-fifteenth
century, and that the algebra chapter (and certain other matters) were missing
from two other manuscripts containing Jacopo’s Tractatus algorismi (Florence,
Riccardiana Ms. 2236, henceforth F; and Milan, Trivulziana Ms. 90, henceforth
M).[3] Because M can be dated by watermarks to c. 1410, some 40 years before
V, and since V contains rules for the fourth degree not present in the algebra

were submitted to canonical jurisdiction). Because Fibonacci is supposed to be spoken
of as a merchant only in late and unreliable sources (it was no part of Cantor’s argument
that he was one, although Cantor does refer to him elsewhere in pseudo-poetical allusions
as the “learned merchant” – pp. 85f, 154; yet the very preface to the Liber abbaci speaks
of Fibonacci’s commercial travelling), and because merchants’ mathematics teaching was
supposed never to treat useless problems like the “100 fowls”, no “commercial” school
could have been inspired by Fibonacci and teach such useless problems.
3 An edition of F was prepared by Annalisa Simi [1995]. A critical edition of F and M
by the late Jean Cassinet and Annalisa Simi has not yet appeared.
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of Paolo Gherardi’s Libro di ragioni from 1328, Van Egmond decided [personal
communication] “that the algebra section of Vat.Lat. 4826 [was] a late 14th-
century algebra text that [had] been inserted into a copy of Jacopo’s early 14th-
century algorism by a mid-15th-century copyist”.

Close textual analysis of V shows that this manuscript is very coherent in
style as well as regarding the presence of various characteristic features both
in the chapters that are shared with F and in those that are not; F, on the other
hand, is less coherent.[4] Van Egmond’s explanation of the differences between
the two versions must therefore turned around: V is a quite faithful descendant
of Jacopo’s original (or at least of the common archetype for F and V), whereas
F (and its cousin M) is the outcome of a process of rewriting and abridgement,
an adapted version apparently meant to correspond to the curriculum of the
abbacus school as described in a fifteenth-century document [ed. Arrighi 1967].

Internal evidence shows that V is a meticulously made (but not a blameless)
library copy made from another meticulous copy;[5] seeming setoffs from
Provençal orthography suggest that preceding steps in the copying process (if

4 See [Høyrup 2001]. Repetition of the details of the extensive argument would lead too
far; but let me list a few points that on the whole speak for themselves:
– in one place F refers to a diagram that is only present in V;
– in another problem, the illustrating diagram in F is so different from what is needed

that Simi inserts a “(sic!)”; the diagram in V corresponds to the description of the
situation in the text;

– one problem in F starts “egli è un terreno lo qual è ampio 12 braccia, cioè uno muro,
et è alto braccia 7 ed è grosso braccia 1 et 1/4”; the counterpart in V starts “egli è
uno muro, el quale è lungho 12 braccia e alto sette. Et grosso uno et 1/4”. The solution
in both speaks of a the wall presented in V.

– V tells regularly that the first-order approximation to an irrational square root is
approximate, and regularly also gives a (mistaken but easily explainable) second-order
approximation. Occasionally, F also mentions the approximate character of the first-
order formula; but in one place it believes it may be true, while in another it mixes
up the wrong second-order formula found in V with a correct formula, which makes
the whole thing quite nonsensical.

– In V, the commercial partnership serves (both in sections that have a counterpart
in F and in those that have none) as a general model for proportional partition; in
F, this trick is mostly avoided – but in one place it is not.

As we shall see, descendant treatises show that the algebra section in V must antedate
1328 by so much that 1307 seems a quite reasonable date.
5 On fol. 46v we find what according to its contents is a marginal note indicating that the
list of silver coins has been forgotten by mistake and comes later. But the note is not in
the margin but within the normal text frame, which shows it to be copied.
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any there are) can have been no less meticulous.[6] All in all it is thus legitimate
to treat V as identical with Jacopo’s treatise from 1307 apart from a few errors
and omissions.

The algebra section

The algebra section proper of V runs from fol. 36v to fol. 43r. It is followed
by an alligation problem dealing with grain and solved without algebra, and
four problems which we would consider algebraic but whose solutions do not
make use of cosa, censo, etc. One of them is an irreducible problem of the fourth
degree, which is solved correctly. We shall return to this group below.

The rules

The algebra section proper gives rules for the following cases – C stands for
censo, t for thing (cosa), n for number (numero):[7]

(1) αt = n
(2) αC = n

(3) αC = βt
(4) αC+βt = n

(5) βt = αC+n
(6) αC = βt+n

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
(7) αK = n
(8) αK = βt
(9) αK = βC

(10) αK+βC = γt
(11) βC = αK+γt

(12) αK = βC+γt
(13) αCC = n
(14) αCC = βt
(15) αCC = βC
(16) αCC = βK

(17) αCC+βK = γC
(18) βK = αCC+γC
(19) αCC = βK+γC
(20) αCC+βC = n

The first six cases are the traditional first- and second-degree cases, familiar since
al-Khwārizmı̄’s Kitāb al-jabr wa’l-muqābalah. The remaining are all either
homogeneous or reducible to second-degree problems, and thus nothing new
compared to what was done in the Arabic world since centuries. As already
mentioned, the order of the six fundamental cases differs, both from that of al-
Khwārizmı̄ (extant Arabic text as well as Latin translations) and Abū Kāmil (both
have 3-2-1-4-5-6) and from that of Fibonacci (who has 3-2-1-4-6-5).

Another noteworthy characteristic is that all cases are defined as non-

6 In one place, moreover, the text of V should transform 4√54 into a pure square root;
instead we find a blank, and in the margin the words “così stava nel’originale spatii”.
Obviously, the author did not want to compute 16×54 mentally but postponed – and
forgot; and all intermediate copyists have conserved the blank.
7 The Latin treatises (the translations of al-Khwārizmı̄ as well as Fibonacci) would refer
to the numbers as dragmas, but this idiom is absent from Jacopo’s formulation of the rules.
Similarly, Jacopo refers to the first power of the unknown as thing (cosa), never as root
(radix) as do the Latin treatises.
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normalized problems, and that the first step of each rule is thus a normalization.
In the Latin treatises, all cases except “roots equal number” (where the
normalized equation is the solution)[8] are defined as normalized problems, and
the rules are formulated correspondingly. (All also teach how to proceed when
a non-normalized problem is encountered, but this is done outside the regime
of rules.)

The examples

To each of the first six cases, Jacopo gives at least one, sometimes two or
three examples. For the remaining cases, only the rules and no examples are
given. In translation[9] the statements of these problems run as follows:

1a. Make two parts of 10 for me, so that when the larger is divided in the smaller,
100 results from it.

1b. There are three partners, who have gained 30 libre. The first partner put in 10
libre. The second put in 20 libre. The third put in so much that 15 libre of this
gain was due to him. I want to know how much the third partner put in, and
how much gain is due to (each) one of those two other two partners.

2. Find me two numbers that are in the same proportion as is 2 of 3: and when
each (of them) is multiplied by itself, and one multiplication is detracted from
the other, 20 remains. I want to know which are these numbers.

3. Find me 2 numbers that are in the same proportion as is 4 of 9. And when one
is multiplied against the other, it makes as much as when they are joined
together. I want to know which are these numbers.

4a. One lent to another 100 libre at the term of 2 years, to make (up at) the end of
year. And when it came to the end of the two years, then that one gave back
to him libre 150. I want to know at which rate the libra was lent a month.

4b. There are two men that have denari. The first says to the second, if you gave
me 14 of your denari, and I threw them together with mine, I should have 4 times
as much as you. The second says to the first: if you gave me the root of your
denari, I should have 30 denari. I want to know how much each man had.

5a. Make two parts of 10 for me, so that when the larger is multiplied against the
smaller, it shall make 20. I ask how much each part will be.

5b. Somebody makes two voyages, and in the first voyage he gains 12. And in the
second voyage he gains at that same rate as he did in the first. And when his
voyages were completed, he found himself with 54, gains and capital together.

8 Fibonacci actually defines even this case in normalized form – but gives no example
and thus escapes the absurdity.
9 Here as everywhere in the following, translations into English are mine if nothing else
is indicated. In the present case I use the translation from [Høyrup 2000] with minor
emendations.
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I want to know with how much he set out.[10]

5c. Make two parts of 10 for me, so that when one is multiplied against the other
and above the said multiplication is joined the difference which there is from
one part to the other, it makes 22.[11]

6. Somebody has 40 fiorini of gold and changed them to venetiani. And then from
those venetiani he grasped 60 and changed them back into fiorini at one venetiano
more per fiorino than he changed them at first for me. And when he has changed
thus, that one found that the venetiani which remained with him when he
detracted 60, and the fiorini he got for the 60 venetiani, joined together made 100.
I want to know how much was worth the fiorino in venetiani.

The first observation to make is that none of the problems are stated in terms
of numbers, things and censi (afterwards, of course, a “position” is made
identifying some magnitude with the thing; without this position, no reduction
to the corresponding case could result). In the Latin treatises, in contrast, the
first examples are always stated in the same terms as the rules.

Second, we notice that some of the pure-number examples follow the pattern
of the “divided ten”, familiar since al-Khwārizmı̄’s treatise and abundantly
represented in the Liber abbaci. Others, however, are of a type with no such
precedent: those where the ratio between two unknown numbers is given;[12]

for any given polynomial equation with a single unknown it is of course easy
to create an example of this kind, thereby adding cheap apparent complexity.

Further, we should be struck by the abundant presence of problems
apparently related to commercial activities – mu āmalāt-problems (“problems
dealing with social life”), in the classification of Arabic mathematics. The only
problem of this type found in the Latin algebra translations is the one where
an given sum of money is distributed evenly first among a an unknown number
x of people, next among x+1 [ed. Hughes 1986: 255], with given difference
between the shares in the two situations. Among the problems treated in the
algebra section of the Liber abbaci at most some 8 percent belong to the mu āmalāt
category: 4 variants of the problem type just mentioned, one problem treating
of the purchase of unspecified goods, and one referring to interest and

10 Both solutions are shown to be valid.
11 This example serves to demonstrates that one of the two solutions may be false (unless,
as we would say, the difference between the two numbers can be counted as negative).
12 There is an analogue of Jacopo’s superficially similar problem (1a) in al-Khwārizmı̄’s
treatise [ed. Hughes 1986: 248], repeated by Abū Kāmil [ed. Sesiano 1993: 360]; but like
Jacopo’s (1a) these problems speak of division, not of “proportion”, and like Jacopo’s
they are primarily divided-ten problems.
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commercial profit.
Finally, we should take notice of the square root of an amount of real money

in (4b); this is without parallel even in the non-algebraic chapters of the Liber
abbaci, where mu āmalāt problems abound.

Peculiar methods

In the main, the methods used by Jacopo to solve the problems of course
coincide with what we know from the Latin works. But some differences may
be observed here and there. We may look at the solution to (1b) – a paradigmatic
example of how to break a butterfly on the algebraic wheel – in which several
idiosyncrasies are represented (fols 36v–37r):

Do thus, if we want to know how much the third partner put in, posit that the third
put in a thing. Next one shall aggregate that which the first and the second put in,
that is, libre 10 and libre 20, which are 30. And you will get that there are three
partners, and that the first puts in the partnership 10 libre. The second puts in 20
libre. The third puts in a thing. So that the principal of the partnership is 30 libre and
a thing. And they have gained 30 libre. Now if we want to know how much of this
gain is due to the third partner, when we have posited that he put in a thing, then
you ought to multiply a thing times that which they have gained, and divide in the
total principal of the partnership. And therefore we have to multiply 30 times a thing.
It makes 30 things, which you ought to divide in the principal of the partnership,
that is, by 30 and a thing, and that which results from it, as much is due to the third
partner. And this we do not need to divide, because we know that 15 libre of it is
due to him. And therefore multiply 15 times 30 and a thing. It makes 450 and 15
things. Hence 450 numbers and 15 things equal 30 things. Restore each part, that
is, you shall remove from each part 15 things. And you will get that 15 things equal
450 numbers. And therefore you shall divide the numbers in the things, that is, 450
in 15, from which results 30. And as much is the thing. And we posited that the third
partner put in a thing, so that he comes to have put in 30 libre. The second 20 libre.
The first 10 libre. And if you should want to know how much of it is due to the first
and to the second, then remove from 30 libre 15 of them which are due to the third.
15 libre are left. And you will say that there are 2 partners who have gained 15 libre.
And the first put in 10 libre. And the second put in 20 libre. How much of it is due
to (each) one. Do thus, and say, 20 libre and 10 libre are 30 libre, and this is the
principal of the partnership. Now multiply for the first, who put in 10 libre, 10 times
15 which they have gained. It makes 150. Divide in 30, from which results 5 libre.
And as much is due to the first. And then for the second, multiply 20 times 15, which
makes 300 libre. Divide in 30, from which results 10 libre, and as much is due to the
second partner. And it is done, and it goes well. And thus the similar computations
are done.

Let us first concentrate on the start of the procedure, the one that leads to the
determination of what the third partner put in. It makes use of the “partnership
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rule”, a special case of the rule of three: the share of each partner in the profit
is found as the product of his share of the capital first multiplied by the total
profit, next divided by the total capital of the partnership,

.p
i

c
i

P

C

The second part of the procedure, the one determining the shares of the first
two partners by means of a ficticious new partnership, illustrates a feature of
Jacopo’s text that was already mentioned above: his recurrent use of the
commercial partnership as a general model or functionally abstract representation
within which all kinds of proportional distributions can be made.

Other idiosyncrasies

The use of the term “restore” (ristorare, corresponding to Arabic jabara) is
another departure from the Latin algebra writings, in which it designates the
cancellation of a subtracted term by addition. In Abū Bakr’s Liber mensurationum
translated by Gherardo da Cremona [ed. Busard 1968] it is also used a couple
of times (#7, #55) in the function of multiplicative completion, changing 2/5 and
1/4 into 1 through multiplication by 21/2 and 4, respectively. Cancellation of an
additive term, on the other hand, is nowhere spoken of in this way but instead
as opponere, the Latin equivalent of qabila (whence muqābalah), whereas Jacopo
uses “restore” in this way repeatedly.

Opporre is absent from Jacopo’s text, but that probably does not mean that
it contains no equivalent of qabila/muqābalah. Indeed, in Raffaello Canacci’s
Ragionamenti d’algebra [ed. Procissi 1954: 302] we read, in a passage ascribed to
Guglielmo de Lunis, that elmelchel (the neighbour of geber (i.e., jabr) in the text
and thus certainly a transcription of al-muqābalah in seemingly Mozarabic
pronunciation) means “exempio hovvero aghuaglamento”, “exemple or equation”.
This term (in the form raoguaglamento) is used in the end of example (5b).

A final characteristic by which Jacopo’s treatise differs from all the Latin
algebra writings is the complete absence of geometric proofs for the correctness
of the algorithms by means of which the cases 4–6 are solved.

The fondaco problems

As mentioned above, Jacopo’s treatise contains four problems which we would
consider algebraic but which do not make use of the technique of thing and censo
(fols 43v–45v). All deal with the yearly wages of the manager of a fondaco or
warehouse. Their statements run as follows:

a. Somebody stays in a warehouse 3 years, and in the first and third year together
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he gets in salary 20 fiorini. The second year he gets 8 fiorini. I want to know
accurately what he received the first year and the third year, each one by itself.

b. Somebody stays in a warehouse 4 years, and in the first year he got 15 fiorini
of gold. The fourth he got 60 fiorini. I want to know how much he got the second
year and the third at that same rate.

c. Somebody stays in a warehouse 4 years. And in the first year and the fourth
together he got 90 fiorini of gold. And in the second year and the third together
he got 60 fiorini of gold. I want to know what resulted for him, each one by itself.

d. Somebody stays in a warehouse 4 years. And in the first year and the third
together he got fiorini 20 of gold. And in the second and the fourth year he got
fiorini 30 {...} of gold. I want to know what was due to him the first year and
the second and the third and the fourth. And that the first be such part of the
second as the third is of the fourth.

Obviously, we are missing some information which Jacopo takes for granted.
The solutions to (a) shows what:

Do thus, and let this always be in your mind, that the second year multiplied by
itself will make as much as the first in the third. And do thus, multiply the second
by itself, in which you say that he got 8 fiorini. Multiply 8 times 8, it makes 64 fiorini.
Now you ought to make of 20 fiorini, which you say he got in the first and third year
together, {...} two parts which when multipli〈ed〉 one against the other makes 64 fiorini.
And you will do thus, that is that you always halve that which he got in the two
years. That is, halve 20, 10 result. Multiply the one against the other, it makes 100.
Remove from it the multiplication made from the second year which is 64, 36 is left.
And of this find its root, and you will say that one part, that is, the first year, will
be 10 less root of 36. And the other part, that is, the second year, will be 8 fiorini.
And the third will be from 10 less root of 36 until 20 fiorini, which are fiorini 10 and
added root of 36. And if you want to verify it, do thus and say: the first year he gets
10 fiorini less root of 36, which is 6. Detract 6 from 10, 4 fiorini is left. And 4 fiorini
he got the first year. And the second year he got 8 fiorini. And the third he got fiorini
10 and added root of 36, which is 6. Now put 6 fiorini above 10 fiorini, you will get
16 fiorini. And so much did he get the third year. And it goes well. And the first
multiplied against the third makes as much as the second by itself. And such a part
is the second of the third as the first of the second. And it is done.

The beginning of this solution provides the clue: the yearly wages are tacitly
supposed to increase in geometric progression. When this is taken into account,
all four problems possess unique solutions, which are found correctly in the text.
In (a), it is used that the wages of the three years fulfil the condition

S1 S3 = S2 S2 = 64 .
At the same time, S1+S3 = 20. This problem could be solved by means of (al-jabr)
algebra – it is indeed of the same type as (5a) above. But the text offers an
alternative, a purely numerical algorithm – which coincides with the solution
to the corresponding rectangle problem given by Abū Bakr (and in the tradition
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of geometric rectangle riddles since this tradition is first attested in the Old
Babylonian clay tablets).

(b) first finds the quotient p of yearly increase (without giving it any name)

as , and then finds S2 and S3 as p S1 and p2 S1, respectively. (d) finds
3

S
4
/S

1

p as (S2+S4)/(S1+S3) (again without telling what is found) and next S1 as
(S1+S3)/(1+p2). Both solutions are straightforward for anybody who possesses
a fair understanding of the nature of the ascending algebraic powers as a
geometric series, but less straightforward for the one who knows his algebra
through al-Khwārizmı̄ or Fibonacci alone.

(c) is more complex. The solution makes use of the identity

S1 S4 = S2 S3 = ,
(S

2
S

3
)3

3(S
2

S
3
) (S

1
S

4
)

which can explained by the transformations (S1 = a)

= = a2p3 = a ap3 = ap ap2
(S

2
S

3
)3

3(S
2

S
3
) (S

1
S

4
)

a 3 p 3 (1 p)3

a (3p 3p 2 1 p 3)

– something which certainly requires more than a merely “fair” understanding
of the nature of the ascending algebraic powers as a geometric series. Who
understood this (no explanation in the text suggests that Jacopo himself
understood, fond though he elsewhere is of giving pedagogical explanations)
will have had no difficulty in seeing how the cases (7) through (20) in the algebra
proper could be solved either directly or by reduction to appropriate second-
degree cases.

Abbreviations and notation

It is a general and noteworthy characteristic of Jacopo’s algebra (or at least of
manuscript V, but there are good reasons to believe the manuscript to be true
to the original in this regard) that it avoids all abbreviations in the technical
algebraic terminology, as if the author was conscient of introducing a new field
of knowledge where readers would be unfamiliar with the terminology and
therefore unable to expand abbreviations correctly.[13] A fortiori, nothing in his

13 In a table listing the fineness of coins, meno is abbreviated (as was the standard);
in the rest of the text, this abbreviation will be looked for in vain. Abbreviations for radice,
cosa, and censo are equally absent. In contrast, terms that are not part of the algebraic
technical vocabulary (moltiplicare, libra, compagnia, etc.) are regularly abbreviated.

It may then seem strange that nothing is said in the beginning of the algebra chapter
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algebra reminds even vaguely of algebraic symbolism or syncopation. Early in
the treatise, however, we find an unusual variant of the Roman numerals – for

instance in the explanation of 400,000 as . This way to put the “denominator”
m

cccc

above the thing being denominated coincides exactly with the algebraic notation
found in Maghreb from the twelfth century onward [Abdeljaouad 2002: 11f;
Souissi 1969: 92 n. 2] – but since the same system was also used by Diophantos
and other ancient Greeks to write multiples of aliquot parts, and by Middle
Kingdom Egyptian scribes for the writing of large numbers, the similarity remains
suggestive and nothing more for the time being.

Whence?

Jacopo’s algebra is not derived, neither from Fibonacci nor from the Latin
translations of al-Khwārizmı̄ (or Abū Kāmil) – that much should already be clear.
Its ultimately roots in Arabic al-jabr are no less certain. In consequence, Jacopo’s
algebra confronts us with a hitherto unknown channel to the Arabic world and
its mathematics.

This conclusion raises two difficult questions. Firstly, Jacopo’s algebra, if
fundamentally different from the Latin translations of al-Khwārizmı̄ and Abū

explaining what cosa and censo mean. The reason could be that an introduction to the
chapter has disappeared during transmission – other chapters start by announcing what
comes next – for instance,
– Abiamo dicto dele multiplicationi et dele divisioni et de tucto quello che intorno a

ciò è di necessità. Ora lasciamo questo, et dirremo per propria et legitima forma et
regola sopre tucti manere de numeri rocti [...].

– Abiamo dicto de rotti abastanza, però che dele simili ragioni de rotti tucte se fanno
a uno modo e per una regola. E però non ne diremo più al punte. Et incominciaremo
ad fare et ad mostrare alcune ragioni secondo che appresso diremo. Se ci fosse data
alcuna ragione nela quale se proponesse tre cose [...].

– In nomine Domini amen. Qui appresso incominciaremo, et dirremo de tucte maniere
de mesure. Et primamente dirremo del tundo ad conpasso [...].

– In Christi nomine amen. Qui sonno sotto scripte tucte maniere de leghe de monete.
Et similmente tucti allegamenti de oro, argento et ramo [...].

The algebra chapter, in contrast, simply begins by stating the first rule (fol. 36v),
Quando le cose sonno eguali al numero, si vole partire el numero nelle cose, et quello
che ne vene si è numero. Et cotanto vale la cosa.

However, after the example to the sixth rule we read (fol 42r)
Qui finischo le sey regole conposte con alquanti assempri. Et incomincia l’altre regole
che sequitano le sopradicte sey como vederete.

Seemingly, the text presupposes that these six rules have already been spoken of as such.
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Kāmil, must also be fundamentally different from the Arabic originals, and his
Arabic inspiration must therefore be of a different kind; secondly, his treatise
contains no single Arabism, and direct use of Arabic sources on his part can thus
be safely excluded. We must therefore ask, firstly, which kind of Arabic material
provided his ultimate inspiration? And secondly, where in the Romance-speaking
world did he find an environment using this material actively?

The two questions must be addressed one by one. Let us first look at a larger
range of Arabic algebraic writings in relation to the parameters where Jacopo’s
algebra differs from the Latin treatises.

The order of cases

As stated above, al-Khwārizmı̄ as well as Abū Kāmil present the six
fundamental cases in the order 3-2-1-4-5-6 (Jacopo’s order being 1-2-3-4-5-6). This
“classical order” recurs in ibn al-Bannā ’s presentation of the cases in the Talkhı̄s
[ed., trans. Souissi 1969], in al-Qalasādı̄’s Kašf [ed., trans. Souissi 1988], in ibn
Badr’s Ikhtisār al-jabr wal’l-muqābalah [ed., trans. Sánchez Pérez 1916], and in ibn
al-Yāsamı̄n’s Urjuza fi’l-jabr wa’l-muqābalah (see [Souissi 1983: 220–223]).

Al-Karajı̄ arranges things differently. In the Kāfı̄ [ed., trans. Hochheim 1878]
as well as the Fakhrı̄ [Woepcke 1853], his order is 1-3-2-4-5-6. The same pattern
is found in al-Samaw al and al-Kašı̄ [Djebbar 1981: 60f] and in Bahā -al-Dı̄n al-
Āmilı̄’s Khulāsah al-hisāb [ed., trans. Nesselmann 1842] from c. 1600. In his
solution of the equations, ibn al-Bannā follows the pattern 3-2-1-4-6-5 (that of
the Liber abbaci).

Jacopo’s order is referred to by al-Māridı̄nı̄ in his commentary to ibn al-
Yāsamı̄n’s Urjūza from c. 1500 as the one that is used “in the Orient”, and it
is indeed that of al-Missı̄sı̄, al-Bı̄rūnı̄, al-Khayyāmı̄ and Šaraf al-Dı̄n al-Tūsı̄
[Djebbar 1981: 60]. But al-Quraši, born in al-Andalus in the thirteenth century
and active in Bejaia, has the same order [Djebbar 1988: 107].

Normalization

Al-Khwārizmı̄’s original text, as the Latin translations, defines all cases except
“things made equal to number” in normalized form and gives corresponding
rules.[14] This also applies to ibn Turk’s [ed., trans. Sayılı 1962] and Thābit’s

14 The Arabic manuscript published first by Rosen [1831] and later by Mušarrafa & Ahmad
[1939] defines the cases in non-normalized form, even though its rules presuppose
normalized equations. However, Gherardo’s extreme grammatical faithfulness in other
respects attests to his reliability even on this account. The different pattern of the Arabic
text is thus an innovation – an adaptation of the original to changing customs within
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[ed., trans. Luckey 1941] demonstrations of the correctness of the rules, and to
al-Khayyāmı̄’s algebra [ed., trans. Rashed & Djebbar 1981]. Al-Karajı̄’s Kāfı̄
confronts us with a mixed situation: the three simple cases (1–3) are non-
normalized (definitions as well as rules); case (4) is defined as non-normalized,
but its rule presupposes normalization; the two remaining composite cases are
presented only through normalized paradigmatic examples, and the formulations
of the rules presuppose this normalization. The Talkhı̄s and the Kašf treat the
simple cases as the Kāfı̄; they give no explicit definitions for the composite cases,
but state rules that presuppose normalization. Ibn Badr defines gives non-
normalized definitions for all cases, and corresponding rules for the simple cases;
his rules for the composite cases presuppose normalization. Only Bahā al-Dı̄n
makes everything in non-normalized form, as does Jacopo.

Examples

Basic examples formulated in the same terms as the rules, i.e., of a māl
(“possession”, the equivalent of Jacopo’s censo) and its jidhr (“[square] root”),
are found in almost all the Arabic works I have looked at – al-Khwārizmı̄’s, Abū
Kāmil’s and al-Khayyāmı̄’s treatises, in al-Karajı̄’s Kāfı̄ and Fakhrı̄, in al-Qalasādı̄’s
Kašf and in ibn Badr’s Ikhtisār. Only ibn al-Bannā ’s Talkhı̄s and Bahā al-
Dı̄n’s Khulāsah contain no examples of this kin – but the Talkhı̄s contains no
examples at all.[15]

The divided ten turns up everywhere, from al-Khwārizmı̄ and Abū Kāmil
to Bahā al-Dı̄n. Problems where two unknown numbers are given in proportion
are as absent from the Arabic treatises I have inspected as from the Latin ones.

Abū Kāmil, like al-Khwārizmı̄, deals with the division of a given amount
of money between first x, then x+p men, but apart from that none of them treat
of mu āmalāt-problems in the properly algebraic parts of their treatises. Most
other treatises keep mu āmalāt matters wholly apart from their algebra. The only
exceptions among the works I have inspected are the Fakhrı̄ and ibn Badr’s and
Bahā al-Dı̄n’s treatises. Ibn Badr, after a large number of divided-ten and māl-
jidhr problems, has others dealing with the remuneration of a principal,

the field. Indeed, comparison of the published Arabic version with Gherardo’s and Robert
of Chester’s Latin translations shows that it has must have been submitted to at least
three successive revisions – see [Høyrup 1998].
15 The Khulāsah does contain a first-degree problem about a māl, but apparently meant
to stand for real money.
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dowries,[16] the mixing of grain, the distribution of booty among soldiers, travels
of couriers, and reciprocal gifts (three or four of each type). Of Bahā al-Dı̄n’s
illustrations of the six fundamental cases, two deal with pure numbers and four
with feigned mu āmalāt (that is, with “recreational”) problems. In a later chapter
listing 9 problems that can be resolved by more than one method, the share of
recreational problems is the same.

Square roots of real money

One of Jacopo’s problems – (4b), the only one of his mu āmalāt problems
that belongs to a familiar recreational type – refers to the square root of an
amount of real money. From a purely formal point of view this is highly
traditional, the basic al-jabr cases being defined as problems dealing with a māl
or “possession” and its square root, and treating the known number as a number
of dirham. But already in al-Khwārizmı̄’s time this had become a formality. It
is true that he states not only the root when it has been found but also the māl,
remembering thus that once this had been the real unknown quantity of the
problem. But stating the case “māl made equal to number” in normalized form
(and defining first the root as one of the numbers and next the māl as the product
of this number by itself [ed. Hughes 1986: 233f]) he clearly shows to consider
the root as the fundamental unknown – in perfect agreement indeed with his
later identification of the root with the šay or thing. From al-Khwārizmı̄ onward
we may thus claim that the root was a square root of formal, not real money.

Roots of real money are absent from almost all of the Arabic algebra writings
I have examined – the only exceptions being al-Karajı̄, who in the Fakhrı̄ once
takes the root of an unknown price and twice of unknown wages, and ibn Badr,
who twice takes the root of a dowry. However, the Liber mahamaleth, a Latin
composition made in Spain during the twelfth century, contains at least two
algebraic problems of the kind: in one, the square roots of a capital and a profit
are taken, in another the square root of a wage [Sesiano 1988: 80, 83].

In order to find copious square roots of real entities (not only money but
also, for instance, a swarm of bees, the arrows fired by Arjuna, or a horde of
elephants) we have to go to India.

Commercial calculation within algebra

Jacopo employs the rule of three as a tool for algebraic computation; further,
he uses the commercial partnership as a functionally abstract representation for

16 Principal as well as dowry are designated māl, but the problem texts show that real
invested money and real dowries are meant.
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proportional distributions. I have never noticed anything similar in an Arabic
treatise – al-Khwārizmı̄ presents the rule of three in a separate chapter after the
algebra proper and before the geometry, but this is a different matter.

Jabr and muqabalah

Jacopo’s use of the equivalent of jabr and of the likely equivalent of muqābalah
differs from al-Khwārizmı̄’s use of the terms (which is also the main usage of
Abū Kāmil, and that of ibn al-Bannā , al-Qalasādı̄ and Bahā al-Dı̄n). However,
the Arabic usage is far from uniform, as can already be seen from the various
Latin translations.

Firstly, Abū Bakr’s Liber mensurationum, whose multiplicative use of restaurare
was mentioned above, uses the phrase restaura et oppone repeatedly in situations
where no subtraction is to be made. The meaning of “opposition” is clearly in
concordance with Canacci’s explanation, namely to form a (simplified) equation –
and thus with Jacopo’s usage. Even in Abū Kāmil’s Algebra the same phrase turns
up time and again with the same sense (see the index in [Sesiano 1993]). Similarly
ambiguities are found in ibn Badr [Sánchez Pérez 1916: 24 n. 1].

In the Fakhrı̄ [Woepcke 1853: 64], jabr may be additive as well as subtractive,
just as in Jacopo’s treatise. Muqābalah, on its part, is explained to be the formation
of a simple equation where one or two terms is equal to one or two terms (three
at most in total). In the Fakhrı̄ [ed., trans. Hochheim 1878: III, 10], jabr is also said
to include multiplicative completion (as in the Liber mensurationum). For the rest,
this text seems to be ambiguous (as far as can be judged from the translation);
perhaps it means to leave subtractive balancing unnamed and uses muqābalah
as the Fakhrı̄, perhaps this latter term is meant to designate the removal which
leads to the formation of the simplified equation.[17]

Geometric proofs

Geometric proofs for the correctness of the rules for the three composite cases
are found in al-Khwārizmı̄ and ibn Turk, and (with new ones add) in Abū Kāmil
and in the Fakhrı̄. They are absent from the Kāfı̄, from the treatises belonging

17 As Saliba [1972] has argued, the meaning of the Fakhrı̄ appears to be the original one;
the ambiguity in the Kāfı̄ illustrates the way in which the new interpretation as the
subtractive counterpart of jabr can have come about.

Raffaello Cannacci, in the passage where he explains elmelchel to stand for “exemple
or equation”, states that elchel (al-qābila, according to the parallel) stands for “opposition”,
explained to be the simplified equation.
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to the Maghreb school (ibn al-Bannā , al-Qalasādı̄) and from those of ibn Badr
and Bahā al-Dı̄n.

Polynomial algebra and geometric progressions

I have seen nothing similar to Jacopo’s four fondaco problems in Arabic works,
and never received a positive answer when asking others who might know better.
But the basic underlying theory – that which also allows one to see that Jacopo’s
cases (7) through (20) can be solved – was known at least since al-Karajı̄ and
al-Samaw al,[18] and part of it was inherent in all writings that presented the
sequence of algebraic powers as a geometric progression and also stated the rules
for multiplying binomials.[19]

Summing up

Almost every seeming idiosyncrasy we find in Jacopo can be found in Arabic
writings (the exceptions being the use of the rule of three and the partnership
structure as tools for algebra, the examples asking for numbers in given
proportion, and the idea that wages increase by default in geometric progression).
But they never occur together in treatises I have inspected. Those who are
furthest removed from Jacopo are al-Khwārizmı̄ and Abū Kāmil. The exponents
of the Maghreb school are somewhat closer (in their omission of geometric proofs
and, hypothetically, in the similarity between their algebraic notation and Jacopo’s
multiplicative writing of Roman numerals). But Jacopo’s order of cases, his use
of the jabr- and muqābalah-equivalents, his square roots of real money and his
ample use of mu āmalāt-problems within the algebra links him to (some middle
ground between) al-Karajı̄’s writings, ibn Badr’s possibly Iberian Compendium
of Algebra, the certainly Iberian Liber mahamaleth, and Bahā al-Dı̄n’s Essence of
the Art of Calculation; his consistent presentation of non-normalized cases is only
shared with the latter much younger work. In other, more explicit words: We
do not know the kind of Arabic algebra that provided him with his ultimate
inspiration, but it was certainly different from those (scholarly or “high”) currents

18 In the Fakhrı̄, al-Karajı̄ makes use of the formula for the third power of a binomial
[Woepcke 1853: 58]. At first he exemplifies it on (2+3)3, next he uses it to show that

.
3

2
3

54
3

128
19 With hindsight, not only “part” but all that is required to resolve all of Jacopo’s fondaco
problems was implied. But hindsight may amount to historiographical blindness:
Cardano’s solution to the third-degree equation is “implied” in Old Babylonian “algebra”,
in the sense that he combines tricks that were in use in that discipline; but it took more
than three millennia to discover it.
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that have so far been investigated by historians of mathematics.

The next generation

We ought now to concentrate on the second part of the “whence” question:
where in the Romance-speaking world did Jacopo find an environment actively
engaged in algebra?

However, an answer to this question (indirect or negative as it will be) can
only be given if we look closely at the still extant Italian expositions of algebra
from the immediately following generation.

One of these (G) is contained in Paolo Gherardi’s Libro di ragioni, written
in Montpellier in 1328.[20] Two others are contained in an abbaco manuscript
from Lucca from c. 1330 [ed. Arrighi 1973], a conglomerate written by several
hands. Its fols 80v–81v (pp. 194–197) contains a section on “le reghole dell’aligibra
amichabile” (henceforth L); another section on “le reghole della chosa con
asenpri” is found on fols 50r–52r (pp. 108–114; henceforth C).

Somewhat later but so closely related to one or more members of the first
generation that they can inform us about it are two other items: A, a Trattato
dell’Alcibra amuchabile from c. 1365 [ed. Simi 1994]; and P, an anonymous Libro
di conti e mercatanzie [ed. Gregori & Grugnetti 1998] kept today in the Biblioteca
Palatina of Parma and probably compiled in the Tuscan-Emilian area – according
to problems dealing with interest in the years immediately after [13]89–95.

All of these depend to some extent on what we know from V, that is, on
Jacopo. The first vernacular algebra that does not depend on him – and the
earliest vernacular work dedicated exclusively to algebra – is the Algibraa argibra,
according to one manuscript written by an otherwise unidentified Master Dardi
from Pisa in 1344 (henceforth D).

The scheme on p. 18 summarizes some important features of these
presentations of algebra. If a work has a rule for a particular case, it is marked
R if the rule is true; X if it is false and constructed merely as an illegitimate
imitation of the solution to a similar-looking second-degree problem; and S if
the rule is valid only in a special case modelled after Jacopo’s example (4a) from
which the rule has been guessed (Sn if stated for the normalized case). The
presence of examples is indicated E, marked by subscript digits (E12 thus indicates
that two examples are given; E1 and E2 in the same row but different columns
indicate that examples differ, E1 and E1* that they are identical apart from the

20 Published by Gino Arrighi in [1987] – the chapter on algebra separately with translation
and mathematical commentary by Van Egmond in [1978]; mentioned above, p. 3.
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Case V G L C A P D

αt = n 1.R,E12,n 1.R,E1*,n 1.R,E1,n 1.R,E1*,p 1.R,E12,n 1.R,E1*,p 1.R,E1**,p

αC = n 2.R,E1,p 2.R,E2,n 2.R,E2,n 2.R,E2*,n 2.R,E1,p 2.R,E2
[a],p 2.R,E3,p

αC = βt 3.R,E1,p 3.R,E1*,n 3.R,E1*,p 3.R,E2,p 3.R,E1,p 3.R,E1,p 3.R,E2*,p

αC+βt = n 4.R,E12,n 4.R,E1*,n 4.R,E1*,n 4.R,E1**,n 4.R,E12,n 4.R,E1*,p 4.R,E3p

βt = αC+n 5.R,E123,n 5.R,E2*,n 5.R,E2**,p 5.R,E2***
[b],n 5.R,E123,n 5.R,E2*,p 5.R,E1*45,p

αC = βt+n 6.R,E1,n 6.R,E2,n 6.Omitted[c] 6.R,E3,n 6.R,E1,n 6.R,E2,p 6.R,E4
[d],p

αK = n 7.R,p 7.R,E1,p 7.R,n 7.R,p 7.R,E1,p 7.R,E2,p 7.R,E3,p

αK = βt 8.R,p 9.R,E1,p 8.R,n 8.R,p 8.R,E1,p 9.R,E1
[e],p 8.R,E2,p

αK = βC 9.R,p 10.R,E1,p 9.R,p 9.R,p 9.R,E1,p 10.R,E1,p 9.R,E2,p

αK+βC = γt 10.R,n 15.R,E1,n 10.R[f],p 14.R,n 15.R,n 15.R,E1,p 14.R,E1*,p

βC = αK+γt 11.R,n 11.R,n 15.R,n 16.R,n

αK+γt = βC 14.R,E1,n 16.R,E1,p 15.R,E234,p

αK = βC+γt 12.R,n 11.R,E1,n 12.R[g],n 16.R,p 10.R,E1,n 11.R,E1,p 16.[h]R,E2,p

αK = √n 8.R,E1,p 11.R,E1,p 8.R,E1,n 21.R,E2,p

αK = βt+n 12.X,E1,n 12.X,E1
[i],n 12.X,E1,p

αK = βC+n 13.X,E1,n 13.X,E1,n 13.X,E1,p

αK = γt+βC+n 14.X,E1,n 14.X,E1,n

αCC = n 13.R,n 13.R,p 11.R,p 17.R,n 17.R,E1,p 11.R,E2,p

αCC = βt 14.R,p 12.R,p 18.R,p 18.R,E1,p 12.R,E2,p

αCC = βC 15.R,p 13.R,p 19.R,p 19.R,E1,p 13.R,E2,p

αCC = βK 16.R,p 10.R,p 20.R,p 22.E1,p 10.[j]R,E1,p

αCC+βK = γC 17.R,n 21.R,n

βK = αCC+γC 18.R,n 22.R,n

αCC = βK+γC 19.R,n 23.R,n

αCC+βC = n 20.R,n 24.R,n

αCC+n = γC 20.R[k],E1,n

αC = √n 21.R,E1,n

αC = n+√ν 23.X,E1,p

αK+βC+γt = n 24.Sn,E1 A1.S,E1,p

αCC+βK+γC+δt = n 25.S,E1,n A2.E1,p

a. With the difference that 1/3+
1/4 has been replaced by 7/12.

b. In the end of the solution, the compiler of C tinkers with the
double solution which was present in his original. In the short
collection of further illustrative examples, C also has the
problem E1 of V.

c. Absent; but since the ensuing text refers to “6 reghole”, this
is clearly by involuntary omission.

d. E4 in this line is closely related to E3.

e. With a copying error in the statement which might look like
being inspired by E2.

f. The rule should read “Quando li chubi 〈e li censi〉 sono egualj
alle cose [...]”.

g. The rule should read “Quando li chubi sono egualj 〈a’ censi〉
e alle chose [...]”.

h. Formulated βC+γt = αK.

i. Correcting a lacuna in the statement, which should read
“Trouami 2 numeri che tale parte sia l’uno dell’altro come 2
di 3 e, multiprichato il primo per se medesimo et poi 〈per〉
quello numero faccia tanto quanto e più 12”.

j. Formulated βK = αCC.

k. With a copying error, “traendone” instead of “più”.



choice of numerical parameters). The letters “p” and “n” indicate whether the
division by which the equation is normalized is expressed as “partire per” or
“partire in”; we shall see that this “neutral mutation” is an interesting
parameter.[21] K stand for cubo, C for censo, CC for censo di censo, t for cosa, n
for numero (in whatever spellings the manuscripts may use), and Greek letters
for coefficients (implied by the plurals cubi, censi, and cose). We notice
immediately that all works have the six fundamental cases in the same
characteristic “non-Latin” order as Jacopo.

Paolo Gherardi

Let us first take up the column for G, Gherardi’s algebra from 1328,
composed in that very town where Jacopo had written 21 years before him.
Gherardi, as we see, follows Jacopo fairly closely in the six fundamental cases.
The differences are the following:
– Gherardi never gives more than one example;
– he replaces Jacopo’s pure-number example for case (2) with a different pure-

number example;
– in example (4), he divides the amount borrowed by 5;
– in Jacopo’s example (5b), he changes the given numbers in such a way that

the result becomes irrational, and omits the second solution even though
the rule mentions it;

– he replaces Jacopo’s example (6) by a pure-number version of the problem
of dividing a given quantity (here 100), first among x, then among x+p (here

x+5) persons and adding the two results: = 20. The description of100

t

100

t 5

the procedure refers to a number diagram[22]

21 Etymologically, “partire a in b” refers to the division of the quantity a into b equal parts,
and “partire a per b” to the numerical computation; but I have never remarked any
reference to the “parts” in question in any Italian writing from the epoch dividing “in” –
the etymology must already have been forgotten. Any systematic choice of one or the
other formulation (for instance, Jacopo dividing always the product of circular diameter
and perimeter in 4 in order to find the area, and the perimeter per 31/7 in order to find
the diameter) therefore points to a source in time or space where the distinction was still
semantically alive.
22 The diagram is actually missing from the manuscript, but it can be reconstructed from
the verbal description and coincides with what is known from later manuscripts – see
[Van Egmond 1978: 169 n. 11].
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in a way (with “cross-multiplication” and all the other operations needed
to add fractions) that implies underlying operations with the “formal”

fractions and .100

1 cosa

100

1 cosa piu 5

Further on, major differences turn up:
– Gherardi leaves out all fourth-degree cases;
– he introduces αK = √n as a case on its own;
– he introduces three irreducible third-degree cases, giving false rules fashioned

after those for the second degree – solving for instance the case αK = βt+n
as if it had been αC = βt+n;

– all higher-degree rules are illustrated by examples, all of which are pure-
number problems of the kind that could easily be constructed ad hoc (finding
two or three numbers in given proportion so that ...).

The illustrations to the false rules all lead to solutions containing irrational roots.
This allowed the fraud to go undetected, since no approximate value of these
solutions was computed – this was not the custom, even Jacopo when finding
correctly a monthly interest of √600–20 denari in his example (4a) left it there.

The Lucca manuscript

L and C are closer to V, and largely to be described as somewhat free
abridgments of Jacopo’s algebra. The changes they introduce in the numerical
parameters of some examples do not change the character of these. Two of the
examples where Gherardi differs from Jacopo are shared with L, but both are
too simple to suggest particular affinity.

Trattato dell’Alcibra amuchabile

In those cases and problems that have a counterpart in V, A is much closer
to this treatise than L and C (while sharing the title with L); it has all of Jacopo’s
examples with identical parameters, deviating mainly at the level of orthography;
however, where Jacopo left spaces open in example (4b) in order to insert later
the result of 4 √54 (cf. note 6), A has the correct result “radicie di 864”. As we
see, it even agrees strictly with V in the decision whether to divide in or per;
both must hence descend by careful copying from a common archetype.

With a single exception, however – viz Gherardi’s only four-member case –
A has all those examples for the higher-degree cases which we find in Gherardi,
including his false rules for irreducible cases; but the agreement is not verbatim
as with Jacopo. There also is a rule and an example for the reducible case αK+γt =
βC, which A distinguishes from its mirror image βC = αK+γt; only the latter and
not the former shape is present in V. Those higher-degree rules that are found
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in V but not in G (including the just-mentioned βC = αK+γt) follow V and are
equally devoid of examples.

So far, only the middle part of the tripartite Trattato dell’alcibra amuchabile
was spoken of. The first part starts by presenting the sign rules (“più via più
fa più e meno via meno fa più ...”) and then goes on to teach operations with
roots – number times root, root times root, products of binomials containing roots
and the division of a number or one such binomial by another binomial. For
the product of binomial by binomial, a diagram is introduced to illustrate the
procedure – for instance, for (5+√20) (5–√20):

.

As was usual in algebraic manuscripts from the Maghreb [Abdeljaouad 2002],
the diagram stands outside the running text and recapitulates what is done by
rhetorical means in the text. For the division of a number by a binomial, for
instance 100 by 10+√20, we find the similar diagram

,

which serves to illustrate that both dividend and divisor are to be multiplied
by 1–√20. Whether the writer thinks in terms of formal fractions is not clear at
this point.

However, in the third part [ed. Simi 1994: 41f] we find Gherardi’s illustration

to the sixth case; in A it is stated in direct words that the addition is to100

t

100

t 5

be performed “in the mode of a fraction”, explained with the parallel .24

4

24

6

The Parma manuscript

The algebra section of P, the Libro di conti e mercatanzie, is closer to G, also
in the treatment of those cases that had been dealt with by Jacopo. But in the

illustration of the case αC = βt+n (still the problem = 20) it has the explicit100

t

100

t 5

formal fractions of A (distorted in the beginning in a way that suggests the writer
did not understand) and not Gherardi’s diagram. It also has the case αK+γt =
βC that was absent from G but present in A, with the same example as A – but
the mirror case βC = αK+γt is absent from P though present in A. Gherardi’s
only four-member problem (αK = γt+βC+n), absent from A, is present in P.

P also provides examples to four of those fourth-degree rules which had
none in A; three of these are of the usual facile pure-number type, but one
(αCC = n) is illustrated by a geometric question – to find the side of an equilateral

21



triangle with given area. Further we find
a biquadratic that was omitted in V (and
A), and more examples involving roots of
numbers (αC = n+√ν being solved by
taking the root of the right-hand members
separately!). The four-member problem and
the three problems involving roots of
numbers all normalize by dividing in,
where all other normalizations are per.

The two cases αK+βC+γt = n and
αCC+βK+γC+δt = n are of a new kind. The
rules are still false, but they are not copied
from rules for second-degree cases – and
they work for the examples that are given.
The former example coincides with Jacopo’s
example (4a), with the difference that the
100 libre are lent for three, not two years –
but the capital still grows to 150 libre, which
leaves little doubt about the inspiration. In
the latter example, 100 libre are lent for four
years and grow to 160 libre. The rules, (complicated as they look because the
thing is put equal to the interest in denari per month of one libra) appear to be

constructed from the solutions that may be found from and
3

150/100

. The fraud is certainly more intelligent than that behind Gherardi’s
4

160/100

formulae – but it remains a fraud, and was probably recognized as such by its
inventor (who was not the compiler of P).[23]

23 There is not much reason to wonder that mathematicians would invent and publicize
wrong formulae. As a rule, the authors of the abbaco texts were not “mathematicians”
but teachers advertising and selling their proficiency in a free market, where cheating
the customers (parents of future students or communal councils) successfully was just
as efficient as convincing them honestly. The condition for successful fraud was not
mathematical truth but the inability of competitors to unmask the deceit (whence the
usefulness of solutions containing roots). Tartaglia’s fortunes and misfortunes illustrate
the point well.

Compilers of texts like P were probably quite unaware of the fraud; they merely
repeated what they believed to be good algebra.
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Lines of ancestry and descent

We have now come to the point where it is possible to construct an
approximate stemma showing the connections between the various treatises
discussed so far (the vertical axis corresponds to time, Jacopo writing in 1307,
G being from 1328 and V from c. 1450). On top, we have Jacopo’s original
writing. V´ is the hypothetical archetype for all the actual manuscripts – perhaps
identical with Jacopo’s original work.[24] V´´ is the faithful copy from which
V is made (cf. note 5 and preceding text). A´´ is the common archetype for A,
L and C, which must still have been very faithful to V´ and can have contained
none of the false rules, nor examples for the higher-degree rules. C´ must be
the common ancestor of L and C (since everything that is in C is also in L they
are likely to have a common ancestor not very different from C but already free
with respect to A´´). A´ is a common ancestor to A and G, faithful to V´ in the
parts coming from Jacopo but already provided with examples for some of the
higher-degree cases and false rules for some irreducible cases. G´ is an ancestor
to G from which P descends (the agreement of P and A in the case αK+γt = βC
appears to exclude direct descent of P from G). The extra cases in P involving
square roots of numbers (and the striking agreement in their choice of division
preposition) suggests that these has been borrowed from an unidentified source
or area labelled “?” and not created between G´ and P as generalizations of the
case αK = √n. It is likely that the latter problem (shared by G and A) has been
adopted into A´ from the same area.

Crosswise contamination is not to be totally excluded, but the distribution
of shared versus particular features in the various treatises makes more than
minimal importance of such influences unlikely. The stemma suggested here
should hence be close to the truth.

This means, firstly, that everything written on algebra in Italian vernacular
in the first generation after Jacopo depended on his work, with only a marginal
influence from the “area ?”. This excludes the existence of an Italian environment
practising algebra before his times. Jacopo must have gone abroad in order to
find the discipline – and his whole treatise indeed suggests that he was very
conscious of presenting knowledge that was new to his public. Secondly, since
A, L and C are all written in Tuscan with no traces of non-Tuscan orthography,

24 But probably not if the hypothesis formulated in note 13 is correct, and the beginning
of the algebra chapter has disappeared in transmission: A starts the chapter in question
exactly as V.
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even A´´ and A´ are likely to have been written in Tuscan area; if this is so, then
Paolo Gherardi must have sought his inspiration in Italian writings[25] and
found little or nothing of algebraic interest in Montpellier.[26] But if there was
no environment practising algebra in Montpellier in 1328, there can hardly have
been any in 1307.

This gives us no direct answer to the question concerning the localization
of that Romance-speaking area from which Jacopo drew his knowledge of
algebra. Indirectly, however, things begin to narrow down: if Italy and Provence
are excluded, little beyond Catalonia remains – easily attained from Montpellier,
and at the time involved in intense trading relations with the Arabic world as
far as Egypt, and also an obvious channel for Ibero-Islamic influences.[27]

Maestro Dardi da Pisa

Dardi’s Aliabraa argibra, apparently from 1344, is the first vernacular algebra
that does not depend on Jacopo. It is also the earliest extant vernacular work
devoted solely to algebra – and it is more than four times as long as the Trattato
dell’Alcibra amuchabile from c. 1365.[28] Like Jacopo’s treatise, it contains no single
Arabism (unless we count the word “algebra” of the title as one).

Its structure is fairly similar to the first two sections of A. However, at first

25 In the introductory passage [ed. Arrighi 1987: 15] he also presents himself as being from
Florence.
26 Pure veneration for Jacopo can be excluded, since his name does not appear in
Gherardi’s treatise. Since Jacopo knows none of the false rules (according to the style
of his work he would have mentioned it if he knew about them and understood them
to be false), even they cannot come from Montpellier. Only the so far enigmatic “area
?” could perhaps be Montpellier (but see below, p. 31).
27 It is worth observing in this connection that the semantic distinction between “partire
in” and “partire per” (see note 21) is still fairly present in Francesc Santcliment’s Catalan
Summa de l’art d’aritmètica from 1482 [ed. Malet 1998]. Thus, fol. 27v, “digues: que partisses
589 en 6 parts”, versus fol. 32r, “no es nenguna altra cosa partir per 25, ho per 35 ho 57
ho 77 [...] sino partir per 12 ho per 19”.
28 I used the Vatican manuscript Chigi M.VIII.170 from c. 1395 (D1), together with Raffaella
Franci’s edition [2001] of the Siena manuscript I.VII.17 from c. 1470 (D2) – both datings
based on watermarks and according to [Van Egmond 1980]; the former is in Venetian,
the latter in a Tuscan dialect. See also the description in [Van Egmond 1983], and Hughes’
account of a newly discovered manuscript [1987]. I thank Raffaella Franci for
supplementary information on D2 and for discussions.

24



comes an introduction and an index listing all 194+4 cases to be dealt with.[29]

The sign rules of A are missing – but Dardi proves[30] when arriving to the
point where it is first needed that “meno via meno fa più” (using the example
(10–2) (10–2)). Instead the index is followed directly by a “Treatise on the rules
which belong to the multiplications, the divisions, the summations and the
subtractions of roots”.[31] Then comes a presentation of the six fundamental
cases, with geometric demonstrations (A has nothing similar), and finally a
presentation of 194 “regular” and 4 “irregular” cases, all with rule and example
(at times several examples). The distinction regular/irregular is made in the
introduction; a note to the index instead distinguishes between cases governed
by general respectively non-general rules.

In D1, the following abbreviations are made use of consistently: ç for censo,
c for cosa, nũo for numero, for radice, m̃ for meno; the notation for multiples
of ç and c emulates that for fractions, writing the “denominator” below the

“numerator” with a stroke in between – for instance, for “10 things”. ç, c and10

c

are also used in D2, but the fraction-like notation not; whether it was used in
Dardi’s original or introduced by a copyist thus remains an open question.[32]

Chapter 1: calculating with roots

In the chapter on roots, we find diagrams illustrating the multiplication of
binomials similar to those in A – for instance, for (3–√5) (3–√5),[33]

29 The index is absent from D2, but the introduction promises to bring it and leaves three
empty pages – the obvious intention being to insert it once the equally promised
corresponding folio numbers were known. In D1, the introduction and the first page of
the index is missing, and the first folio number is 2.
30 D2 p. 44; D1 fol. 5v.
31 D2 p. 38; D1 fol. 3v.
32 In general, however, D1 is not only much closer to Dardi in time than D2 but also closer
to their common archetype in various respects (apart from its Venetian dialect). One
example is the reference to the rule of three in the passage of D1 quoted in note 34 and
the absence of the reference in D2; since D2 cites it when referring backwards to the
passage, it must have been present in the original. Another is the use of the term adequation
in D1, corresponding to dequazione in D2; they are indistinguishable in the definite form
ladequation/ladequazione, which explains that one of the manuscript has misunderstood
the intended term of the original; but in one place (p. 77) D2 has an unexpected and
indubitable adequazione.

Globally, the differences between the two manuscripts are modest.
33 D2 p. 45; D1 fol. 6r.
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.

We notice that Dardi’s diagram is fuller than that of A, which makes it
implausible that A should have simply borrowed from D.

When looking at the explanation of how to divide a number by a binomial
we find greater differences.[34] In order to divide 8 by 3+√4, Dardi first makes
the calculation (3+√4) (3–√4) = 5 and concludes that 5 divided by 3+√4 gives
3–√4. What, he next asks, will result if 8 is divided similarly and finds the answer
by application of the rule of three.

Chapter 2: the six fundamental cases

The chapter proving the correctness of the second-degree rules has no
counterpart in A, nor in any of the other Italian treatises discussed so far. The
demonstrations descend from those found in al-Khwārizmı̄’s algebra, but their
style is as different as it would be if somebody not versed in the received
conventions governing the use of letters in geometric diagrams were to relate
al-Khwārizmı̄’s proofs from memory to somebody not too well versed in
geometry. As an illustration (which should speak for itself as soon as it is
confronted with any version of al-Khwārizmı̄’s text) I translate the beginning

34 I render the text of D1 (fol. 12v); punctuation and diacritics have been adjusted/added;
words in 〈 〉 are corrections of copyist’s omissions inserted between the lines in a different
hand (as is evident from the presence of the same words in D2):

Se tu volessi partir nũo in e nũo, serave a partir 8 in 3 e de 4, tu die moltiplicar
3 e de 4, che monterà 5. Adonqua a partir 5 in 3 e de 4 te ne vien 3 m̃ de 4
perché ogne nũo moltiplicado per un’altro nũo, la moltiplication che ne vien partida
per quel nũo si ne vien l’altro nũo moltiplicado per quello. Adunqua partando 5 in
3 e de 4 si ne vien 3 m̃ de 4, e partando 5 in 3 m̃ de 4 si ne vien l’altra parte,
zoè 3 e de 4, e inperzò diremo che questo 5 sia partidor, e metteremo questo
partimento alla regla del 3, e diremo, se 5, a partir in 3 e de 4, ne ven 3 m̃ de
4, che ne vegnirà de 8, e moltiplica 3 m̃ de 4 via 8, che monta 24 m̃ de 256, la

qual moltiplication parti in 5, che ne vien 4 per lo nũo. Ora resta a partir de 2564

5

〈meno〉 in 5, che ne vien de 10 , che a partir in nũo el se die redur lo nũo a6

25

, zoè lo 5 redutto in monta de 25. E così avemo che a partir 8 in 3 e de 4

si ne vien 4 men de 10 .4

5

6

25

D2 omits the explicit mentioning of the rule of three, but it turns up in a later backward
reference to the calculation (p. 62, corresponding to D1 fol. 14r); it thus belongs to the
common archetype.
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of the first proof verbatim (repeating the
grammatical inconsistencies of the text),[35]

reproducing also the first diagram :

How 1 ç and 10 c are proved to be equal to
39. Since the c, which is said to be of the
ç, the ç now comes to be a quadrangular and
equilateral surface, that is, with 4 corners and
four equal and straight sides. Now we shall
make a square with equal sides and right
corners, and we shall say that the ç is its sur-
face, which is ab, and since the c is the of
the ç, it comes to be the sides of the said

square, and since to the ç are added, we10

c

divide this in 4 parts, which comes to be each, and since the c comes to be10

c

2

c

1

2

the sides of the ç, we shall place each of these four parts along ç, each along its own
side of ç, the surface of each being cd, and outside each of the corners of ç falls an
equilateral quadrangle with right corners, which as side will have the breadth of
the c, that is, 2½, which breadth, or length, multiplied by itself amounts to 6¼, that
is, ef, [...].

A closer look at some textual details reveals that the chapter has been adopted
from the same environment as Jacopo’s algebra (which was not a priori to be
expected, given that Jacopo brings no geometric proofs). Dardi’s rule for the fifth
case runs as follows in D1 (fol. 16r, emphasis added; D2 similarly, p. 66):

Quando li ç e’l numero e equali ala c, el se die partir tutta l’adequation per la quantità
dei ç, e pò partir le c in 2, e una de queste mità, zoè la quantità de una de queste
parte, moltiplica in si medesima, e de quella moltiplication trazi lo numero e la
de quello che roman zonzi all’altra mità dela quantità dele c, e tanto vegnirà a valer
la c, e sappi che in algune raxon te convegnirà responder esser la c per lo primo modo, zoè
la mità dela quantità dele c più de quello che roman, e algun fiade per lo secondo modo,
zoè la mità dela quantità dele c m̃ la de quello che roman, e algune se pò responder per
tutte e 2 li modi, com’io te mostrerò.

Jacopo’s corresponding rule (fol. 39v) is not very similar (except, by necessity,
in mathematical substance):

Quando le cose sonno oguali ali censi et al numero, se vole partire nelli censi, et poi
dimezzare le cose et multiprichare per se medesimo et cavare el numero, et la radice
de quello che romane, et poi el dimezzamento dele cose vale la cosa. Overo el
dimezzamento dele chose meno la radice de quello che remane.

35 D2 pp. 68f; D1 fols 16v–17r.
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However, when Jacopo comes to present the double solution of example (5b),
we find the following passage (fol. 40r–v, emphasis added):

Siché tu vedi che all’uno modo et all’altro sta bene. Et però quella così facta regola
è molto da lodare, che ce dà doi responsioni et così sta bene all’una come all’altro.
Ma abbi a mente che tucte le ragioni che reduchono a questa regola non si possono respondere
per doi responsioni se non ad certe. Et tali sonno che te conviene pigliare l’una responsione,
et tale l’altra. Cioè a dire che a tali ragioni te converà rispondere che vaglia la cosa el
dimezzamento dele cose meno la radice de rimanente. Et a tale te converrà dire la radice de
remanente e più el dimezzamento dele cose. Onde ogni volta che te venisse questo co’tale
raoguaglamento, trova in prima l’una responsione. Et se non te venisse vera, de certo
si piglia l’altra senza dubio. Et averai la vera responsione.

The similarities between the two italicized passages are too particular to allow
explanation merely from shared general vocabulary and style. However, several
reasons speak against Dardi copying directly from Jacopo’s text: not least the
total absence of shared examples and of anything similar to the Jacopo’s fondaco
problems from the Aliabraa argibra. Moreover, if Dardi had found the italicized
passage in Jacopo interesting and moved it to the rule (because the examples
he promises only come in the following chapter), he would not have changed
its finer texture as seen in the excerpt;[36] nor would he have had any reason
to invent the term adequazione in replacement of raoguaglamento if using Jacopo’s
treatise. In consequence, Dardi must have drawn his inspiration for this chapter
from the very environment which Jacopo had once drawn on. And he must have
kept fairly close to his direct source: only too faithful copying explains the sudden
appearance of “78 dramme, zoè numeri” in the example illustrating the fourth
case (D1, fol. 16r, similarly D2, p. 65) – up to this point, all numbers have been
nothing but numeri.

Chapter 3: 194+4 regular and irregular cases

As mentioned, the final chapter presents 194 “regular” cases with rules, only
a small selection of which are listed in the scheme on p. 18. A very large part
of them involve radicals, not only roots of numbers but also of things, censi, cubi

and censi di censo – thus, for instance, no. 59, αt = , and no. 123, =
3

βC βt
3

n

αt (notation as in the scheme). All are solved correctly (apart from two slips,

36 When we are able to compare Dardi’s text with another one deriving from the same
source, as Dardi’s first irregular case with the corresponding case in P (see presently),
Dardi can be seen to change at most the wording of the single phrases while conserving
their order and mutual relation (but since P is later and hence more likely than D to have
changed with regard to the original source, Dardi may well be even more faithful).
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convincingly explained in [Van Egmond 1983: 417], and all provided with an
illustrative example (at times two or, with rules allowing a double solution, three
examples). All are pure-number problems, almost half of them of the fraudulently
complicated type asking for two or three numbers in given proportion; a good
fourth asks for a single number fulfilling conditions fashioned in agreement with
the equation type, some 15 percent deal with a divided ten. The order of the
six fundamental cases is the same as in the other treatises we have looked at,
which is likely to be significant. Even the order of the next three cases coincides
with that of Jacopo – but since these are simply the simplest higher-degree cases
(cubes equal to number/things/censo), this agreement is not significant. After
that, Dardi’s order is wholly his own.

The four “irregular” cases are inserted between the regular cases no. 182
and 183, after a note pointing out that all equations up to this point contain no
more than three members. In contrast, the regular cases from no. 183 onwards
all correspond to four-member equations. The irregular cases are presented at
this point as “adapted solely to their problems, and with the properties these
possess”[37] but included all the same because they may turn up in certain
problems. This, and their separate numbering, suggests that Dardi has adopted
the group wholesale and inserted it into the main body of his treatise. The
character of the examples supports this inference. Two of them (no. 1 and no.
2) are strictly identical with examples (24) and (25) from P, which means that
they are the only problems in Dardi’s treatise that do not treat of pure numbers
(but of lending with interest, as we remember), and that they are directly inspired
by Jacopo’s example (4a). The other two, αt+βC+γCC = n+δK and αt+γCC =
n+βC+δK, are based on the divided ten; had it not been for their constituting
a closed group together with the former two, they could have been Dardi’s
invention; as things actually stand, this is unlikely.

Dependency or independence

Dardi’s many rules involving radical and roots of numbers shows him to
share in the inspiration coming from “area ?”. They do not tell whether he only
received general inspiration and used that as a starting point for something going
far beyond what his source tradition had made, or he borrowed in large scale.

37 “[...] reghulati solamente alle loro ragione, e di quelle proprietà delle quale elle sono
ordinate” (D2 p. 269; similarly D1, fol. 102r).
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Some details in the chapter on roots
suggests dependency on a model,[38]

and the importance of a model for
several features of the presentation of
the 6 fundamental cases was already
discussed. But the main body of the
last chapter, the regular cases 1–194,
may still have been structured by
Dardi. Of the single cases, quite a few
had been dealt with before, as we
have seen, and Dardi may plausibly
have known about that, just as he
knew about the way to construct
pseudo-complex examples by asking
for numbers in given proportion
(while copying no examples directly
from the known predecessors, neither
Jacopo nor Gherardi); yet no evidence
contradicts a conjecture that most
were devised by Dardi.

The principle of creating new
algebraic cases involving roots, as
argued, was inspired from the
unidentified “area ?”. For the use of
diagrams, Dardi seems to have shared
a common inspiration with A; A and
G (and hence their shared archetype
A´) make use of the related calculations with formal fractions. Finally, the order

38 Thus, a number of procedures are illustrated by polynomials containing rational roots
(e.g., 36/(√4+√9+√16), treating them as if they were surds (“intendando de queste
discrete como s’elle fosse indiscrete” – D1, fol. 3v, similarly D2 p. 62), the obvious point
being that this allows control of the correctness of the result; however, no proof is made,
nor is any other advantage taken of the choice of rational roots, except an unproven
statement that the result coming from the calculation (in the exemple

+ + – – ) can be reduced. Skipping a proof when copying40 24

25
92 4

25
5 19

25
163 21

25
10 6

25

(or using a model where it has been lost in transmission) may easily happen; but that
the author prepares it repeatedly and then himself omits it each time is less likely.
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of the fundamental cases, the discussion of the double solution to the fifth case
and the use of the rule of three as an algebraic tool shows affinity with Jacopo,
while, as we have seen, the details of Dardi’s text speak against direct borrowing;
even Jacopo and Dardi hence share a source of inspiration.

Occam’s razor is a dangerous weapon – wielding it was what led to the
assumption that abbaco algebra had to come from Fibonacci. But ad hoc
multiplication of explanatory entities beyond what is needed remains gratuitous,
and a reasonable working hypothesis is that all these unidentifiable sources of
shared inspiration belong to the same area – that is, our “area ?” (in which case
this area can hardly be Montpellier itself). The only extra entity that we are forced
to accept appears to be the one which, in the wake of the success of Jacopo’s
higher-degree cases, invented P’s and Dardi’s irregular cases – which we may
designate I. These various observations cause the addition of new elements and
links to our stemma, without changing anything (except the age ascribed to “area
?”) in what was already drawn up.

Summing up

The existence of the “area ?” followed from indirect arguments and, as far
as its being a single area is concerned, from plying Occam’s razor. However,
the fact that several of the lines connecting “?” with known Italian writings in
the revised stemma represent multiple inspirations (for instance, V´ and D having
in common the order of the basic cases, the way the double solution to the fifth
case is spoken of, and the use of the rule of three as an algebraic method),
rejection of the assumption of one unitary area of inspiration would force us
to accept that each author belonging to the first generation of Italian vernacular
algebra was inspired by several or all of a multiplicity of direct sources – a
multiplicity of Romance-speaking sources, moreover, given the absence of
Arabisms in the texts.

Since the only Romance-speaking area outside Italy where the next 150 years
offers any evidence of algebraic interest is the Provençal-Catalan region, and
since Montpellier itself appears not to have been a rich source, it seems
reasonable to conclude that the “area ?” was indeed one area, to be identified
with or located in the Catalan region (see also note 27 and preceding text).

Within this area, most of that by which the first generation of Italian algebra
goes beyond al-Khwārizmı̄ will already have been known either fully unfolded
or in germ: polynomial algebra, the use of diagrams, the beginnings of formal
computations. The easy way to create problems looking more complex than they
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are may have originated here together with the interest in equations involving
roots of numbers and perhaps other radicals. The carrying environment is likely
to have been close to the teaching of commercial mathematics, given the
generalized use of the rule of three and of the partnership structure and the
preponderance of mu āmalāt problems in V. Only the invention of false rules
for the irreducible higher-degree problems seems to be a local Italian
development (the cheap imitations of the second-degree rules as well as the rules
valid for special cases only).

Quite independently of this we may notice that the points where the first
generation of Italian vernacular algebras goes beyond al-Khwārizmı̄ were to
become centrally important when, in Karpinski’s words, two centuries of abbaco
algebra “bore fruit in the sixteenth century in the achievements of Scipione del
Ferro, Ferrari, Tartaglia, Cardan and Bombelli”: viz polynomial algebra, schematic
number diagrams, the use of standard abbreviations in formal operations
preparing the genuine symbolic operations of Descartes – and even the thirst
for solutions to irreducible higher-degree problems notwithstanding the fraud
it had led to. The mathematical competence of a Jacopo and a Paolo Gherardi
and even a Dardi will plausibly have been well below that of Fibonacci, and
many of the abbaco teachers may hardly deserve a characterization as “mathema-
ticians”; but collectively they were the ones who prepared the algebraic take-off
of the sixteenth century and that whole transformation of the mathematical
enterprise which it brought about in the seventeenth and eighteenth centuries.
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Sigla

A: Florence, Riccardiana Ms. 2263, fols 24r–50v. Anon., Trattato dell’Alcibra
amuchabile. [Ed. Simi 1994].

C: Lucca, Biblioteca Statale, Ms. 1754, fols 50r–52r. Anon., “Le reghole della cosa”.
[Ed. Arrighi 1973].

D1: Vatican Library, Chigi M.VIII.170, fols 2r–114r (original foliation). Dardi da
Pisa, Aliabraa argibra.

D2: Siena, Biblioteca Comunale, I.VII.17. Dardi da Pisa, Aliabraa argibra. [Ed.
Franci 2001].

F: Florence, Riccardiana Ms. 2236. Jacobo da Firenze, Tractatus algorismi
(abridged). [Ed. Simi 1995].

G: Florence, Magliabechiana Cl. XI, 87, Paolo Gherardi, Libro di ragioni. [Ed.
Arrighi 1987; Van Egmond 1978 (partial)].

L: Lucca, Biblioteca Statale, Ms. 1754, fols 81r–82v. Anon., “Le reghole
dell’aligibra amichabile”. [Ed. Arrighi 1973].

M: Milan, Trivulziana Ms. 90. Jacobo da Firenze, Tractatus algorismi (abridged).
P: Parma, Biblioteca Palatina, Ms. Pal. 312. Anon., Libro di conti e mercatanzie.

[Ed. Gregori & Grugnetti 1998].
V: Vatican Library, Vat. Lat. 4826. Jacobo da Firenze, Tractatus algorismi. [Ed.

Høyrup 2000 (partial)].
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