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This book was extremely important at its appearance, and no less so today when
available in paperback. It does not deal primarily nor systematically with the contents
of Greek mathematics, impressing but well explored as this is (sometimes in
anachronistic compromises with modern understanding, sometimes in less anachronistic
presentation). Nor does it deal exclusively with deduction per se; what it offers is an
investigation of the cognitive-structural factors which shaped the emergence of deductive
mathematics, and a further exploration of the way this deduction directly concerned
with particular objects only produced knowledge of general validity – knowledge not
just about the particular right triangle ABC of the diagram but about all right triangles.
All of this is concerned with the form of Greek mathematics, that is, with that which
makes “Greek mathematics” stand out as a historical novelty (becoming eventually
the standard model for how mathematics should be configured).

As Netz points out (p. 3), his project has some affinity with that of recent sociology
of science, but the approach is different, asking not “just what made science the way
it was” but “what made science successful, and successful in a real intellectual sense” –
not seeing “‘deduction’ as a sociological construct [but] as an objectively valid form,
whose discovery was a positive achievement”; in this he is even closer to Kuhn than
he is aware of, but to the rather unknown Kuhn of 1961/63,1 the one who emphasized
the importance for shared training (“finger exercises”) and not just shared beliefs for
the development of that paradigm which establishes a scientific community with a
shared practice.

Most of the argument, namely chapters 1–6, and most of the new insights which
emerge, are based on very close attention to various features of the mathematical texts.
The last chapter, “The historical setting”, goes beyond the texts and explores what we
know about the development of the Greek mathematical enterprise in a wider historical
context.

Mathematical texts consist of lettered diagrams and words. That Greek mathematics
(not only geometry) makes use of lettered diagrams is so familiar that we have forgotten
to think about what it implies; that its words not only belong to a restricted lexicon
but are also used within a highly formulaic language is also familiar for anybody
reading them in Greek – but with one exception (Germaine Aujac, credited for
inspiration by Netz), nobody again has analyzed the air we breathe, and nobody seems
to have been aware of how restricted and standardized the language is – for instance,

1 “The Function of Dogma in Scientific Research”, first presented at an Oxford
Symposium in 1961, in A. C. Crombie, (ed.), Scientific Change, 347–369 (London:
Heinemann, 1963).



that synonyms are very rare. Netz analyzes both, also extensive statistics at hand, thus
coming to understand the cognitive metabolism sustained by them. Indeed, in fairly
large samples from Euclid, Archimedes, Apollonios (and others), every word has been
registered several times according to various parameters, and every letter in a diagram
taken note of similarly.

Along another dimension, mathematical texts are partially first-order (making the
mathematics), partially second-order (speaking about mathematics). The second-order
parts mostly contain no lettered diagrams, their lexicon is much larger and more varied,
and they consist of real language, not formulae. Writing a mathematical text was clearly
an activity which the Greek mathematician kept very distinct from writing anything
else, even an introductory letter (or a definition!).

Lettered diagrams and the use of a small array of formulae serve a common
function: to reduce the fuzziness of geometrical space and of natural language arguing
about it to finite mathematics.2 For Netz, the details of the lettering (the order in which
letters appear in proofs, the statistics of cases where, e.g., line AB returns as line BA)
serve to demonstrate that the construction of the diagram precedes the writing of the
final text of the proof, which can be understood as a secondary, written version of a
tale told about the diagram.

Of particular interest in a logicians’ context are Netz’s conclusions concerning the
function of definitions: as a rule they do not settle linguistic usage; they are part of
the second-order discourse – catering to “the wish to say something on the ‘what it
is’ question”, functioning as axioms, or expressing explicitly the extension of concepts
(p. 103) – not exactly according to Aristotle’s book.

Formulae are then the building blocks for the arguments of the proofs; but a
formula is not in itself a premise. At the level of premises the notion of the ‘tool box’
comes in (borrowed with explicit credit from Ken Saito). Greek mathematical treatises
may contain explicit backward references to results obtained within the same treatise;
but they never contain the references to, e.g., Elements I.47, familiar from modern
translations. However, they presuppose a large number of propositions with which
the reader is supposed to be familiar enough to recognize and accept them as true.
Most of this tool box turns out to be contained in the Elements (minus book X), and
a large proportion of the theorems from the Elements turn up as constituents of the
tool box. The Data provide quite a few constituents. Propositions from more advanced
treatises are extremely rare.3

2 E.g., a point may be outside, on or inside a circle. According to the (admittedly
medieval) manuscript evidence, diagrams were not meant to be metrically correct but
as structure diagrams characterizing the situation. In arithmetic, dealing with a countable
infinity of qualitatively distinct situations, things are more complex; Netz suggests that
this may be one reason that the diagrams of arithmetical proofs represent numbers
by lines, not by dot patterns.
3 This is fully confirmed by the outcome of Saito’s tool box project, based on a different



The tool box constituents enter as premises in arguments, which in first-order
mathematical texts are ordered as almost linear chains, with few interruptions and rare
“backward-looking arguments” (stating the reasons after the conclusion they lead to);
second-order texts containing mathematical proofs are shown to behave differently –
Netz analyzes Aristotle’s geometrical discussion of the rainbow (Meteorology 373a6–30)
and Archimedes’ Method. Once the tool box is accepted, the linear progression makes
the proofs inescapable in a way (e.g.) philosophical texts never were.

“Inescapable” – but in the first instance only for the particular diagram dealt with.
How does this type of argument on what is properly no more than a paradigmatic
case produce theorems of general validity? Netz, continuing a line of thought
inaugurated by Ian Mueller,4 proposes an answer to the problem which should both
be satisfying to us and coincide with that understanding of the matter which shines
through the actual organization of the proofs (first a general enunciation, then a
paradigmatic example formulated around a lettered diagram leading to a conclusion
about this diagram, then a general conclusion repeating verbatim the enunciation). What
guarantees general validity is repeatability for any other case.5 Generality thus is not
algorithmic, no quantifiers occur in the text; understanding it asks for “mathematical
intelligence” (Mueller’s term); however, as Netz points out (going beyond Mueller),
even Hilbert’s Grundlagen contains no explicit quantifiers, even readers of Hilbert have
to be mathematically intelligent and see that they can be applied.

The last chapter on the historical setting falls into three parts.
“The beginning of Greek mathematics” (where “mathematics” is, as throughout

the book, to be understood as “mathematics based on explicit proof”) gives sound
reasons for rejecting a gradual development beginning in the sixth century BC (e.g.,

sample but not yet finished when Netz’s book was written – see:
http://www.greekmath.org/Pappus_index_0.html (Pappos Collection, book VII)
and
http://www.greekmath.org/Apollonius_index.html (Apollonios, Conics I-IV).
4 Philosophy of Mathematics and Deductive Structure in Euclid’s Elements, 12–14. Cambridge,
Mass., & London: MIT Press, 1981
5 We are thus not very far from what we read in Aristotle’s Metaphysics XIII, 1078a16–21
(Aristotle, The Metaphysics, vol. II, transl. Hugh Tredennick, correction in 〈 〉 ; Cambridge,
Mass.: Harvard University Press / London: Heinemann, 1935):

Thus if we regard objects independently of their 〈accidents〉 and investigate any
aspect of them as so regarded, we shall not be guilty of any error on this account,
any more than when we draw a diagram on the ground and say that a line is a
foot long when it is not; because the error is not in the premises.

But Aristotle’s theory of abstraction should not automatically be ascribed to the
mathematicians; it rather represents his attempt to make sense of the practice of these.
Moreover, Aristotle does not address the issue of generality explicitly any more than
do the mathematicians.



with Thales, Pythagoras, or “the Pythagoreans”6); instead he suggests that the earliest
mathematical author whom Eudemos really knows was indeed the first of his kind –
that is, that “Greek mathematics” was created around 440 BC, by Hippocrates,
Oinopides, and a few others. Our first evidence for mathematics practically in Euclidean
style is Aristotle.

“Demography” looks at the mathematicians. All belonged to the elite – Greek
mathematicians were machines that transformed leisure into theorems (to paraphrase
a familiar saying about modern mathematicians and coffee). Of such strange machines
there were at most a thousand throughout Antiquity (a full millennium) – statistical
analysis of late ancient sources (Pappos, Proclos, Eutocios) shows that the total number
of names known in their times will have been around 300; both numbers presuppose
a very permissive definition of the term, encompassing anybody who at some moment
in his life made a piece of explicitly reasoned mathematics. Even in the heyday of Greek
mathematics, Archimedes was desolate when Conon died – who would then be able
to understand him? In later centuries, Augustine will certainly not have been alone
in the experience to have to learn Euclid on his own, nobody he knew about being
able to explain it to him (Confessions IV.xvi.30). Greek mathematics, though shaped by
oral-type tales about lettered diagram, could only exist as an extremely literate
undertaking. Papyri, inscription and the total surviving textual evidence also shows
that interest in (theoretical) mathematics was utterly rare outside the Platonic and
Aristotelian philosophical schools and the Galenic medical tradition (itself close to
Aristotelianism). More popular was what Netz characterizes (p. 290) as the “book which
suddenly becomes a bestseller after being turned into a film – in the version ‘according
to the film’”: that is, (Neo)Pythagorean and Neoplatonic numerology; but this is not
explicitly reasoned mathematics (and hardly implicitly reasoned). “But on the whole”,
as Netz concludes (p. 289), “Greek culture, excluding the Platonic-Aristotelian tradition,
knew no mathematics” – “the quadrivium is a myth”.

“Mathematics within Greek culture” is where Netz comes closest to the concerns
of the “sociology of scientific knowledge”, if not to prevailing approaches. Netz locates
the mathematicians’ practice in the tense intersection between the agonistic debate
culture of the public domain of the polis, the “quiet” retreat from politics common from
Plato’s time onward, an international intellectual network mimicking the institution
of “institutionalized friendship”; at the intersection between oral and literate culture,
between democracy and aristocracy, between theoretical interest in the material world
and productive application of insights (the former being ideologically acceptable to
the elite, the latter a provocation of “the banausic anxiety of the ancient upper classes”
(p. 303). The argument is much too complex to render within a single paragraph, but

6 Pythagoras fares worst of all: “Pythagoras the mathematician perished finally AD 1962”
(p. 272), the year Walter Burkert’s Weisheit und Wissenschaft (Nürnberg: Hans Carl) was
published.



well documented and certainly worth reading.7

Not concentrating on the “contents”, the book contains very little technical
mathematics. In spite of its concentration on vocabulary, most of it asks for no
understanding of Greek. It is very well written (it shines through that Netz is also a
publishing poet). The only reason it is difficult to read is that almost every sentence,
indeed next to every clause, carries a message that asks for the reader’s active thought.
It can safely be recommended as a must to anybody who is genuinely interested in
the relation between Greek mathematics and logic and not satisfied with the book
according to the various films of standard philosophy of mathematics and standard
historiography of mathematics.

Jens Høyrup

7 For late Antiquity, it can be read withe advantage along with Serafina Cuomo, Pappus
of Alexandria and the Mathematics of Late Antiquity (Cambridge: Cambridge University
Press, 2000). But is should be kept in mind that Cuomo’s analysis includes mathematical
practitioners and the colporteurs of “the book according to the film”, thus a much wider
group.


