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Abstract

An introductory section discusses the utility of the algorithm concept in the
historiographic analysis of non-recent mathematics, in particular the sense that
can be given to claims that a particular mathematical culture was of algorithmic
type. It concludes that the adequacy of this epithet when applied to a
mathematical culture does not depend on whether texts used in teaching are
built up around paradigmatic examples but on whether the production of rules
or algorithms was regarded as a central activity for those whom we would count
as “mathematicians” (that is, producers of mathematical knowledge).

Three medieval examples of attitudes to algorithms follow. First, Jordanus
de Nemore’s De numeris datis is shown to develop a method to combine
algorithms and deductivity, in an alternative to algebra. Second, Barthélemy de
Romans’ graphic schemes for organizing the complex algorithms used to solve
the sophisticated variants of the problem of the “unknown heritage” are
discussed. Third is considered Nicholas Chuquet’s dismissal of these schemes
and algorithms, in favour of the algebraic tool.



Introductory observations about concepts

In translation, the original title of our workshop spoke about “deductive
algorithmic practices in pre-algebraic mathematics”. The only words here which
do not ask for conceptual clarification are “in” and, provisionally, “deductive”,
“mathematics” and “practices”.

We may claim, as a mathematician-friend of mine (Bernhelm Booß-Bavnbek,
personal communication) once did polemically, that “there was no algebra before
Emmy Noether”. Or, with Michael Mahoney [1971: 372], be more liberal and
accept as algebra that which began in the epoch of Viète and Descartes, while
the techniques of an al-Khwārizmı̄ and a Cardano (etc.) still represent an
“algebraic approach” only. Or, finally, we may accept that the technique which
al-Khwārizmı̄ and his successors until the mid-sixteenth century spoke of as
“algebra” was algebra.

If we take one of the former two of these roads, “pre” in “pre-algebraic”
may be taken without trouble in its usual, literal chronological sense, and “pre-
algebraic” can be take to mean simply “before 1900 CE” or “before 1600 CE”. If
we choose the third road, the chronological interpretation of the term means
“before 800 CE” – and if we accept Sanskrit “algebra” (not to speak of Old
Babylonian “algebra”) as algebras, we get still earlier limits. This would at best
prevent us from looking at anything from the Middle Ages or later, which would
not make much sense.

Instead, “pre-algebraic” may be interpreted metaphorically, as “not affected
by algebraic thinking”; this leaves us the possibility to work, and therefore I shall
apply this reading of the term. With this choice it does not matter much whether
al-Khwārizmı̄ etc. made algebra or only had an algebraic approach. On the other
hand, it is hard to imagine that anything mathematical which was created in
Europe after, say, 1750 CE should not be somehow affected by algebra, given
how pervasive use of algebraic symbolism had become by then – even avoiding
algebraic reasoning had by then become a deliberate choice, no consequence of
ignorance.

Regarding algorithms, we may start from the probably earliest paper which
tried to apply this concept to non-recent historical material: Donald Knuth’s
“Ancient Babylonian Algorithms” from [1972].1 According to Knuth (p. 672),

1 It is immaterial for the present purpose that Knuth’s argument was based on a reductive
reading of the Babylonian texts that omitted every semantics of the terminology not
translateable into the language of modern arithmetic.
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the Babylonians

were adept at solving many types of algebraic equations. But they did not have an
algebraic notation that is quite as transparent as ours; they represented each formula
by a step-by-step list of rules for its evaluation, i.e. by an algorithm for computing
that formula. In effect, they worked with a “machine language” representation of
formulas instead of a symbolic language.

Two things are to be noted. As Knuth points out, an algorithm is a “step-by-step
list of rules” (we shall return to Knuth’s complaints about the trivial character
of the Babylonian “algorithms”). Secondly, such a list can be the equivalent of
a formula. Indeed, a formula like is an algorithmic prescription, which weab ac

ab
may sketch as follows:

1. calculate a b, save the outcome as p;
2. multiply a c, save the outcome as q;
3. calculate p+q, save the outcome as r;
4. calculate a b, save the outcome as s;2

5. determine r/s.

In algebraic symbolism, we may reduce the formula first as and then, if web c

b
find that this is a simpler form, as 1+ . We may do this “naively”, just removingc

b
a common factor and then dividing term by term as we know it can be done;
or we may do it the “critical” way, arguing explicitly from arithmetical axioms
and from theorems ultimately depending on axioms. In both cases, the more
or less deductive process falls outside the algorithm expressed by the formula.

Elsewhere (p. 674), Knuth admits with regrets that the texts he has discussed
offer

only “straight-line” calculations, without any branching or decision-making involved.
In order to construct algorithms that are really non-trivial from a computer scientist’s
point of view, we need to have some operations that affect the flow of control.

But alas, there is very little evidence of this in the Babylonian texts

– and all he is able to offer in this respect are choices made outside the
calculation.3 So, his “algorithms” turn out to be nothing but what had

2 Evidently, step 5 is identical with step 1, and we might just remember that the outcome
was p. However, the literal reading of the formula as it stands does not have this shortcut.

3 At the workshop where this paper was presented, Christine Proust discussed a
Babylonian text applying an algorithm containing a loop (and thus implicitly a decision
to stop) for the determination of the reciprocals of numbers. But this text was unknown
to Knuth.
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traditionally been known as “rules”. One is tempted to ask whether we are not
confronted with a parallel to August Eisenlohr’s reading of the Rhind
Mathematical Papyrus through the spectacles of the equation algebra of his time
[1877: I, 5, 60–62, 65f, 69–72, 161, and passim ] – to mention but one example,
perhaps the first to call forth a thoroughly argued objection [Rodet 1881].

However, dismissal of a concept through polemical questions does not
promise much insight. So, let us look instead at the actual and possible
historiographic uses of the algorithm concept.

Firstly, of course, it may be the historian’s tool to analyze the procedures
of the sources (just as algebra may serve legitimately for this purpose). Even
though formulas are in principle to be read as algorithms, they are not always
an adequate means to render procedures in detail – for instance, to quote the
above example, to make clear whether ab in the denominator is recalculated,
or the result of the preceding determination of the same number which has been
(implicitly or explicitly) saved and is now simply retrieved; worse, modern
readers have a tendency not to read a formula literally, as the description of a
particular calculation but, so to speak, as an accidental representative of the whole
equivalence class of formulas into which it can be algebraically transformed –
thus, for instance, seeing no difference between , and 1+ . Therefore,ab ac

ab

b c

b

c

b
an explicitly algorithmic interpretation may be useful, sometimes even needed.
Such use of the algorithm concept as a tool for modern analysis is what Annette
Imhausen [2003: 1] offers in her Ägyptische Algorithmen, explicitly intended to
give “eine der Struktur der Texte gerechtwerdende Beschreibung der Aufgaben”.

This must be sharply distinguished from any ascription of “algorithmic
thinking” to the authors of the sources; one of course does not exclude the other,
but nor does one entail the other. So this deserves a separate discussion.

Evidently, any text which tells how to find a particular numerical result or
how to construct a particular geometric or other mathematical object can be
described as “an algorithm”, simply because it cannot avoid being “step-by-
step”.4 So, Elements I.1, the construction of an equilateral triangle on a given
base, is an algorithm; true, Euclid also offers a proof, but this can be understood
as a “comment field”.

Roughly speaking, a mathematical practice can aim at producing theorems;
at calculating something; and/or at constructing mathematical objects according

4 In principle, a numerical result or number is also a “mathematical object”. Since most
of those who find such a number – from the accountant to the engineer – do not think
of their results in such terms, it may be useful to uphold the distinction.
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to given specifications. Saying that it is algorithmic in this broad sense is
equivalent to saying that it is not aimed exclusively at the production of theorems.

That, however, is not common usage. Mostly, the term is reserved (in the
historiography of non-recent mathematics) for texts that teach how to produce
numerical results. In many cases one may get the impression that the term seems
to serve as a more positive formulation of the traditional characterization of non-
scholarly mathematical traditions, in particular those not derived from Greek
theory, as based on (supposedly empirically derived) rules and not on insight;
since the algorithms in question are precisely of the type Knuth characterizes
as “‘straight-line’ calculations, without any branching or decision-making
involved”, the difference belongs solely on the level of evaluative connotations.5

However, whether we speak of “algorithms” or – in better agreement with the
words of the texts themselves when they speak of regula, μεθοδος, etc.) – of
“rules”, the importance of such prescriptions is undeniable in certain
mathematical cultures. This is not only true when rules in abstract formulation
precede application to one or more examples (for instance, in many Chinese and
Indian works) but also at least suggested when (as in the late medieval abbacus
tradition) paradigmatic examples are followed by a phrase “do similarly in
corresponding cases”.

5 It may be objected that the algorithms for calculating on an abacus board or within a
place value system involves branching etc. However, who looks at early (and not so early)
books teaching these will discover that the explanations do not make this algorithmic
branching explicit but relies instead of some level of intuitive understanding of what goes
on. Look for instance at addition within a decimal place value system:

d c b a

h g f e

l k j i

?

An algorithm which is not restricted to three addends and not to four places will need
for each place to add all corresponding digits and the number carried; then to make a
loop where 10 is subtracted from this sum as long as possible, while a number 1 is added
to the carried number for the next place each time 10 is subtracted; and finally to write
the remainder at the corresponding place of the sum and go to the next level. If formulated
as a computer algorithm, all carried numbers will initially have to be set to 0, and a
procedure for deciding when to stop (not trivial if the number of digits in the addends
is not limited a priori). This may be a good exercise in an introductory course in
programming, but nobody will use it when teaching children how to add numbers by
hand.
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However, the suggestion should not automatically and not always be taken
to be a proof. At times, what has to be learned from the paradigmatic example
is not the exact rule but a principle that can be varied according to circumstances
(like the principles used in the addition within a place value system, cf. note
5).6 Even the use of a term like “rule” within the texts may be misleading – for
instance, when Fibonacci speaks of applying the regula recta [ed. Boncompagni
1857: 191 and passim], he refers to the expression of the givens of a problem
within a rhetorical first-degree equation with unknown res. In order to decide
whether a text that does not explicitly formulate rules abstractly is really meant
to train algorithms and not flexible use of more general principles we must look
at the text as a whole, investigating first of all whether it presents a plurality
of strictly parallel problems where only the “dress” and the numerical parameters
change.7

Whether texts that really appear to aim at the training of algorithms/rules
are meant to train blind obedience or understanding may be difficult to decide
unless the texts offer adequate explanations; we rarely know about possible oral
explanations that were supposed to accompany the teaching; nor do we know
to which extent commentaries, when they are known to exist of have existed,
were meant to be studied by students, by their teachers in general, or by select
“mathematicians”. Since no adequate general answer can be given, I shall leave
the matter aside.

Let us then approach the question from a different angle. If the notion of
“algorithms” is to tell us something of interest about a mathematical culture, we
should rather ask about its production of mathematical knowledge than about

6 In order to bar the proposal of a notion of a “flexible algorithm” for this case I shall
emphasize that this is a contradiction in terms which implies that the core of the
algorithm-concept disappears and thus removes its cognitive potentials; it has nothing
to do with the fruitful extension of concepts discussed by İmre Lakatos [1976]. But we
may of course see such texts as training a flexible ability to modify algorithms, that is,
to create new algorithms on the basis of others already known.

7 Or. alternatively, whether in the presentation of solutions it is made explicit what has
to be done “in general”, that is, independently of the actual parameters. This is particularly
common in the pseudo-Heronian corpus [ed. Heiberg 1912; 1914], which sometimes uses
καθολικως/“in general”, sometimes παντος or αει/“always”, and sometimes παντοτε/“at
all times” – see [Høyrup 1997: 92f]; but it is also done often enough to be significant in
Abū Bakr’s Liber mensurationum [ed. Busard 1968: 95, 98 and passim] (the word being semper
in the Latin translation).
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the written traces of its teaching, even though these traces are often our only
way to know not only about the teaching but also about the production. Indeed,
if a particular mathematical culture is to be characterized distinctively as
“algorithmic”, it is not because those who are trained in using its knowledge
do so following rules or algorithms in any sense; everybody who uses
mathematics does so somehow. What is decisive is whether or not the production
of rules or algorithms is regarded as a central activity for those whom we would
count as “mathematicians” (that is, producers of mathematical knowledge). This
production can never be blind nor by mere trial-and-error except in the simplest
cases (which, eo ipso, we would hardly characterize as “mathematics”).8 In this
respect it is probably justified to speak of much of Chinese and Sanskrit
mathematics as “algorithmic” – cf. also [Duan & Nikolantonakis 2010: 171].

First example: Jordanus’s De numeris datis

Neither medieval Latin university mathematics nor the abbacus tradition
and what was derived from it were “algorithmic” in this sense. None the less,
they offer examples that elucidate some of the general deliberations above. Let
us first look at Jordanus de Nemore’s De numeris datis.

8 A. P. Juschkewitsch [1964: 5], after having discussed some of the advanced techniques
of Chinese mathematics, has this to say:

In einigen Arbeiten zur Wissenschaftsgeschichte wurde die Meinung geäußert, daß
die Mathematik des antiken China rein empirisch war. Es wird darauf hingewiesen,
daß die alten chinesischen Bücher keine Beweise enthalten, daß sie im Wesentlichen
Rezeptsammlungen sind, die durch Beispiele erläutert werden. [...] Man muß aber
zwischen der Art der Darstellung, die hauptsächlich durch den Zweck des Buches
bestimmt ist, und den Untersuchungsmethoden unterscheiden. Der Dogmatismus
der Darstellung, das mechanische Auswendiglernen verschiedener Regeln sowie die
Vielfalt und Zersplitterung der letzteren waren dadurch bedingt, daß die
mittelalterlichen Lehrbücher vor allem für Praktiker, wie Kaufleute, Landvermesser,
Beamte, Bauleute usw., bestimmt waren. Solche Leser benötigten mechanische und
nach Möglichkeit kurze Regeln zur Lösung eines scharf umrissenen und engen
Problemkreises.

Ferner sei darauf hingewiesen, daß keineswegs sämtliche alten chinesischen
Werke über Mathematik frei von Schlußfolgerungen und Erläuterungen sind. Beides
sind z. B. in verschiedenen Werken enthalten, deren Ziel die Erläuterung und
Weiterentwicklung der “Mathematik in neun Büchern” war. Viele wissenschaftliche
Ergebnisse konnten überhaupt nicht empirisch gewonnen werden und mußten sich
auf eine logische Deduktion stützen.
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According to its title as well as its format, this work was intended as an
arithmetical counterpart of Euclid’s Data, and it is related to Jordanus’s De
elementis arithmetice artis in the same way as Euclid’s Data are related to the
geometrical books of his Elements. It is likely to have been written in the 1220s,9

but the precise date is unimportant for the present discussion.
The propositions of the De numeris datis state that if certain arithmetical

combinations of certain numbers are given, then these numbers will also be
given – for instance (I.17), [ed. Hughes 1981: 63],10 “When a given number is
divided into two parts, if the product of one by the other is divided by their
difference, and the outcome is given, then each part will also be given”. Such
propositions evidently correspond to algebraic equations, but Jordanus says
nothing about algebra; on the other hand, the propositions are followed by
numerical examples, and these often coincide with problems known from Arabic
algebra or from the algebra section of Fibonacci’s Liber abbaci.11 Some are also
obvious repetitions of matters currently dealt with in familiar algebra treatises,
like IV.9 [ed. Hughes 1981: 29], indicating the existence of a double solution to
what we would express x2+b = ax, “a square which with the addition of a given
number makes a number that is produced by its root multiplied by a given
number, can be obtained in two ways”. Since the propositions are provided with
deductive proofs, there is no doubt that Jordanus’s intention was to derive the
results known from Arabic algebra in a way which agreed better than there with
the norms of Euclidean mathematics.

Let us look at a simple example, prop. I.3 [ed. Hughes 1981: 58]:

If a given number is divided into two and if the product of one with the other is
given, each of them will also be given by necessity.

Let the given number abc be divided into ab and c, and let the product of ab with
c be given as d, and let similarly the product of abc with itself be e. Then the
quadruple of d is taken, which is f. When this is withdrawn from e, g remains, and

9 It must be written after the De elementis, since it refers explicitly to this treatise, which
for its part must postdate the second version of the algorism treatises. Here, indeed, the
letter symbolism is first developed which was then used more fully in the De elementis
and the De numeris datis. Finally, one of the algorism treatises is copied (apparently by
Grosseteste) in 1215/16 [Hunt 1955: 133f].

10 I translate from Barnabas Hughes’ edition of the Latin text, since his English translation
it too free for my present purpose. Here as elsewhere, translations with no identified
translator are mine.

11 Details in [Høyrup 1988:310].
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this will be the square on the difference between ab and c.12 Therefore the root of
g is extracted, and it will be b, the difference between ab and c. And since b will be
given, c and ab will also be given.13

As we see, Jordanus uses letters to represent numbers (juxtaposition of two
numbers indicates their sum); as we also see, each operation produces a new
letter.

Historians tend to see this as an algebraic symbolism on which operations
can be performed, and complain that it is not adequate as such. Thus Florian
Cajori [1928: II, 3]:

Letters are used instead of special particular numbers. But Jordanus Nemorarius was
not able to profit by this generality on account of the fact that he had no signs of
operation – no sign of equality, no symbols for subtraction, multiplication, or division.
He marked addition by juxtaposition. He represented the results of an operation upon
two letters by a new letter. This procedure was adopted to such an extent that the
letters became as much an impediment to rapid progress on a train of reasoning as
the legs of a centipede are in a marathon race.

Similarly, but much more recently [Alten et al 2008: 211]:

während noch lange nach [Jordanus] jede Operation mit allgemeinen Zahlen an
Strecken oder Rechtecken ausgeführt wurde, tritt bei ihm das Buchstabensymbol als
rein arithmetisches Zeichen für eine beliebige Zahl auf. Allerdings führt er für die
Ergebnisse der Zwischenschritte stets weitere neue Buchstabenbezeichnungen ein;
dies erschwert dem modernen Leser das Verständnis.

In such cases, it is always wise to reflect on Georg Christoph Lichtenberg, Wenn
ein Buch und ein Kopf zusammenssstoßen und es klingt hohl, ist es allemal im Buch?
Actually, if we take a closer look at Jordanus’s text, we discover that its initial
part translates easily into an algorithm:

ab c —> d
abc abc —> e
4d —> f
e–f —> g
√g —> b

12 This follows from De elementis I.17 [ed. Busard 1991: 69], which in symbolic translation
states that (a+b)2 = 4a b+(a–b)2.

13 This follows from De numeris datis I.1, “If a given number is divided into two parts
whose difference is given, each of them will be given”.
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We also observe that the deductive argument is external to the algorithm – not
posterior, as the proof of Elements I.1, but inherent in the formulations, which
make us recognize the theorems that are drawn upon. None the less, we are
clearly confronted with a case of deductive algorithmic thought – not pre-
algebraic, however. On the contrary, indeed, since the text is a deductive
reformulation of existing algebra, post-algebraic.

The final part of the formulation does not translate directly; this has to do
with the eventual reduction to the situation of I.1, which has induced Jordanus
to designate the two parts ab and c, where b is the difference and therefore a =
c. In the numerical example, where no reduction occurs, √g is subtracted from
the total, which is halved, thereby giving the minor part. In modern algorithmic
language, this might result in the embedding of a sub-routine; but Jordanus’s
algorithms are, in Knuth’s words, and in spite of their theoretical sophistication
in other respects, “‘straight-line’ calculations, without any branching or decision-
making involved”.

The echo of Jordanus’s treatise was extremely faint. It is nothing but a fable
that it served as the standard textbook for algebra teaching in the scholastic
university. Firstly, there is not the slightest evidence that there was any regular
teaching of the topic; nor, secondly, is the existence of such teaching to be
expected, algebra having no place, neither within the quadrivial tradition14 nor
within the framework of that “medico-astrological naturalism” which had been
the driving force behind the twelfth-century translations from the Arabic and
for the university teaching of natural philosophy and Greek-style mathematics.
Secondly, we have very few references to the treatise before the mid-fifteenth
century. Campanus refers explicitly to the De elementis once in his version of
the Elements, and uses its propositions elsewhere [ed. Busard 2005: I, 174, cf. 33],
but he never mentions or uses the De numeris datis. Richard de Fournival took
care to have most of Jordanus’s works copied, but his own interests as revealed
by the library he collected [Birkenmajer 1970/1922] were directed toward
geography, astronomy, astrology and magic. Roger Bacon refers to the De
elementis repeatedly in his Communia mathematica [ed. Steele 1940: 47 and passim]
but finds it much less useful than Boethius’s arithmetic because of its being
burdened by proofs; evidently the De numeris datis would be beyond his horizon.

14 No doubt, we may claim that this was exactly what Jordanus attempted to give it by
basing it on theoretical arithmetic – but even his De elementis with its Euclidean aspirations
was too different from what was customary in the quadrivial tradition to be generally
accepted before Lefèvre d’Étaples made an edition in [1496].
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And around 1300 the Dominican chronicler Nicholas Trivet confuses Jordanus
of Nemore and the Dominican General Jordanus of Saxony, ascribing to the latter
a work on weights and another one De lineis datis, which seems to mix up
Jordanus’s Liber de triangulis and his De numeris datis ([Curtze 1887: iv], cf.
[Høyrup 1988:341 n. 76]. This confusion would hardly have come about if the
latter work had been in use.

After the mid-fourteenth century, Oresme cites the De elementis and the De
numeris datis in three works15. Already in 1343, Jean de Murs had included
algebra derived from al-Khwārizmı, Fibonacci and contemporary abbacus writers
in his Quadripartitum numerorum, but he seems to have known nothing about
the De numeris datis. Actually, we have to wait for George Peurbach and
Regiomontanus before we find anybody who gives evidence of having
understood Jordanus’s undertaking: in a poem, Peurbach [ed. Größing 1983: 210]
refers to “the extraordinary ways of the Arabs, the force of the entirety of
numbers so beautiful to know, what algebra computes, what Jordanus
demonstrates”; Regiomontanus speaks in his Padua lecture on the mathematical
sciences from 1464 [ed. Schmeidler 1972: 46] about the “three most beautiful boo-
ks about given numbers” which Jordanus

had published on the basis of his Elements of arithmetic in ten books. Until now,
however, nobody has translated from the Greek into Latin the thirteen most subtle
books of Diophantos, in which the flower of the whole of arithmetic is hidden, namely
the art of the thing and the census, which today is called algebra by an Arabic name.

University teaching of mathematics, based on lectures and disputations, with
texts, commentaries and questiones as the appurtenant literary genres, tended
to perpetuate existing theory and bolster it up with metatheoretical reflection.
It had little space for anything reminding of algorithms even in the most diluted
sense. However, since Carolingian times one strain of Latin mathematics had
consisted of (mostly) recreational problems with the solutions. If there had been
interest for it, Jordanus’s technique for making deductive algorithms would have
offered an opportunity to submit this kind of mathematics to theoretical scrutiny
and justification. Since this seems never to have been done, we may conclude

15 De elementis in Algorismus proportionum [ed. Curtze 1868: 14], in De proportionibus
proportionum [ed. Grant 1966: 140, 148, 180] and Tractatus de commensurabilitate vel
incommensurabilitate motuum celi [ed. Grant 1971: 294] (a complaint that Jordanus’s subtle
work is inapplicable to the presumably irrational ratios of celestial speeds); De numeris
datis in De proportionibus proportionum [ed. Grant 1966: 164, 266] (references to propositions
about elementary proportion theory).
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that there was no such interest.16

Barthélemy de Romans and the schematization of algorithms

Problems solved (by necessity) via step-by-step procedures of course abound
in late medieval abbacus culture (and its Provençal and Iberian cognates, as well
as that early reflection of the same culture which is represented by the Liber
abbaci); it would certainly be possible to dissect the way these procedures are
handled so as to distinguish more from less algorithmic aims of the texts. This,
however, I shall leave aside, and concentrate instead in the present section on
a peculiar graphic representation of algorithms found in Barthélemy de Romans’
Compendy de la praticque des nombres [ed. Spiesser 2003], an outgrowth of the
Provençal branch of the tradition.17

These algorithms concern a strange problem type.18 In the simple version
it may run as follows:

Somebody toward the end of his life tells his oldest son thus. Divide my moveable
property between you in this way: you take one bezant, and a seventh of what
remains. An to the second son he says, you take 2 bezants, and the seventh of what
remains. An to the third, that he should take 3 bezants, and take control of of what1

7
remained. And in this way he called all his sons in order, giving to each of them
one more than to the other, and afterwards always of what was left. The last,1

7
however, got the remainder. It happened, however, that each of them got from the

16 Interest in procedures for solving simple problems was not totally absent. Six late
thirteenth- to fourteenth-century copies survive of a small treatise De regulis generalibus
Algorismi ad solvendum omnes questiones propositas [ed. Hughes 1980]. It starts by giving
the rules for finding the smallest common multiple of numbers (used for adding fractions)
and then shows how to find a number from the sum of specified fractions of it or vice
versa; the total of the sum of the parts from the residue; the fourth proportional; and
the initial possession of somebody offering God 4 pence for doubling his possession, doing
so four times, after which he is broke (with variants; misunderstood by the modern editor).
The latter problem is widespread in Arabic practical arithmetic and is first known from
the seventh-century Armenian priest Ananias of Shirak, the others though formulated
in the abstract are provided with examples known from the latin “sub-universitarian”
tradition and from abbacus as well as Arabic mathematics. There are no proofs, only
explanation of the rules.

17 Probably first written in 1467, but known from a revised redaction from 1476 due to
Mathieu Préhoude.

18 The problem type, its variations and its occurrences are dealt with in [Høyrup 2008].
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property of their father the same, on the given condition. It is asked, how many were
the sons, and how much was his possession.

This version is taken from the Liber abbaci [ed. Boncompagni 1857: 279]. Next
comes a variation where each first receives of the available amount, and only1

7
afterwards 1, 2, 3, ... bezants – and then further variations where the fraction
is no aliquot part, and where the absolute contributions, still in arithmetical
progression, do not have the difference equal to the first member.

Fibonacci is the earliest extant source for the problem type but not its
inventor. This follows already from the fact that his algebraic solution for one
of the cases does not fit the rule he gives for the same case – see imminently.
For convenience we may introduce these notations for the various types:
– (α,ε|φ) designates the type where absolutely defined contributions α+εi (i =

0, 1, ...) are taken first, and a fraction φ of the remainder afterwards;
– (φ|α,ε) designates the type where a fraction φ of what is at disposal is taken

first and absolutely defined contributions α+εi (i = 0, 1, ...) afterwards.
In this notation, Fibonacci’s examples are the following:

(1,1| )1

7
( |1,1)1

7
(3,3| )1

7
( |3,3)1

7

(1,1| )2

11
(4,4| )2

11
( |1,1)2

11
( |4,4)2

11

(2,3| )6

31
( |2,3)6

31

(3,2| )5

19
( |3,2)5

19

If N designates the number of sons, Δ the share of each, and T the total (T =
N Δ), the rules for the case (1,1| ) are given as N = Δ = 7–1, and those for1

7
( |1,1) as N = 7–1, Δ = 7. If it understood as , the rules for all cases in the1

7

2

11

1

5½
two leftmost columns are easily derived (for non-integer values of d = , the1

Φ
last son gets a fractional part – for = 5 , the last son (being counted as of1

Φ

1

2

1

2
a son) only gets half of what the others receive). All these rules are stated without
argument.

For the case (2,3| ), Fibonacci derives the solution by means of first-degree6

31
algebra (regula recta, cf. above), identifying T with the res and assuming the
equality of the first two shares. This leads to T = 56 , N = 4 , Δ = 12 . Fibonacci1

4

1

2

1

2
does not mention that this has not been shown to be an actual solution to the
heavily overdetermined problem, but he may have been aware of the logical
difficulty; in any case he makes a complete calculation of all shares. Afterwards
he claims to “extract” this rule from the calculation (Φ = ) – evidently expressedp

q
rhetorically:
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(1a) T = ,
[(ε–α) q (q–p)α] (q–p)

p 2

(1b) N = ,
(ε–α)q (q–p)α

εp

(1c) Δ = .
ε (q–p)

p

If we look closer at the matter, the rule is seen not to be extracted. Following
the algebraic calculation step by step, we get

(2a) T =
q 2(α ε)–(q–p)qα–(q–p)pα–(α ε)pq

p 2

which (by means at Fibonacci’s disposal) transforms into

(2a*) T =
[q (α ε)–(p q)α] (q–p)

p 2

but not in any obvious way into (1a) – if anything, further manipulation would
rather lead to

(3a) T = .
[εq–αp] (q–p)

p 2

We may conclude that Fibonacci adopted a rule whose basis he did not know,
and then pretended that it was a consequence of his own (correct but partial)
calculation.

This is confirmed by his treatment of the case (3,2| ). Here, ε–α becomes5

19
negative, for which reason Fibonacci (who knew well how to make such
operations) replaces (1) by

(4a) T = ,
[(q–p)α–(α–ε)q] (q–p)

p 2

(4b) N = ,
(q–p)α–(α–ε)q

εp

(4c) Δ = .
ε (q–p)

p

If Fibonacci had derived (1a) from the outcome (2a) of his algebraic calculation,
why would he have chosen to reduce it to a form that is neither fully reduced
nor valid independently of the sign of ε–α, as are (2a), (2a*) and (3a)?

For the case ( |2,3), Fibonacci states and applies the rules
6

31
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(5a) T = ,
[(ε–α) q (q–p)α] q

p 2

(5b) N = ,
(ε–α)q (q–p)α

εp

(5c) Δ = ,
εq
p

without algebra, and for ( |3,2)
5

19

(6a) T = ,
[(q–p)α–(α–ε)q] q

p 2

(6b) N = ,
(q–p)α–(α–ε)q

εp

(6c) Δ = .
εq
p

If (1a) had really resulted from the algebraic solution, why should (5) and (6)
be set forth without being derived from the corresponding but different algebraic
operations?

In the late thirteenth century, the problem (1,1| ) is dealt with by Maximos1

7
Planudes [ed. Allard 1981: 191–194], who bases the solution on a number-
theoretical statement (probably based on psephoi arranged in a square pattern).
Subsequently, the problem is dealt with (without argument, and regularly with 1

10
replacing ) in many Italian, Provençal and Byzantine abbacus treatises; some1

7
of them also give easily reducible variants (n,1| ) (whose solution takes away1

q
n–1 sons from the solution to (1,1| )). Occasionally, solutions by means of1

q
algebra or double false position (based in both cases on the equality of the first
two shares) are offered.

Sophisticated variant like those in the two right-hand Fibonacci columns only
turn up again in Barthélemy de Romans’ Compendy de la praticque des nombres
[ed. Spiesser 2003: 391–423]. In this work, the problem type receives the most
extensive treatment ever under the heading “composite progressions” (progressions
composees) – as Barthélemy has noticed, the principle of the problem combines
those of the arithmetical and the geometrical progressions. At the same occasion,
the inheritance dress is left behind, Barthélemy deals with numbers in composite
progression. Because of partial coincidence of Φ-values, Maryvonne Spiesser [2003:
156] supposes Barthélemy to have borrowed from the Liber abbaci. Closer
statistical analysis undermines this conclusion [Høyrup 2008: 635 n. 31]; since
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there is evidence that Cardano knew about solutions to the sophisticated versions
that do not come from the Liber abbaci [Høyrup 2008: 641], it seems plausible
that even Barthélemy drew upon knowledge that circulated during the thirteenth
through fifteenth centuries but has left no traces in sources preceding Barthélemy
which we know of.

Barthélemy gives rules for all cases, similar to those of Fibonacci but not
identical. He has no derivation of these from the givens of the problem,19 but
he performs some kind of theoretical work on the rules and the problem type.
He introduces a name for the quantity d = , which already Fibonacci had used,1

Φ
namely “the true denominator”, and distinguishes two “modes”. The first mode
is the one where the absolutely defined contributions (les nombres de la progression)
are taken first and the fraction of what remains (la partie ou les parties que l’on
veut du demourant) afterwards; the second is the one where “part or the parts”
are taken first, and afterwards “the numbers that make the progression” from
what remains.

The introduction of the true denominator d allows Barthélemy to formulate
a “general rule” for the first mode:

(7c) Δ = (d–1) ε ,
(7a) T = ([d–1]ε–α) d+α ,
(7b) N = T/Δ .

If α = ε he points out that it “can be done by another practice, for which this
is the appurtenant rule”:

(8b) N = d–1 ,
(8c) Δ = (d–1) ε ,
(8a) T = N2 ε ,

which seems not to be derived from his general rule but rather to be a
formulation as a rule of the current practice of abbacus books.

For the second mode, the rule for the case α = ε is given first,
(9b) N = d–1 ,
(9c) Δ = d ε ,
(9a) T = (d–1) d ε .

19 To a superficial inspection, he may seem to make a derivation by means of a double
false position. What he actually does is to find Δ from the corresponding formula and
then to make two guesses for T and derive the corresponding values for the first share.
From their deviations from the true common share Δ the true value of T can then be
determined.
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Then separate rules are given for the cases α < ε and α > ε (similarly to what
is done in the Liber abbaci), respectively

(10a) T = ,
[(ε–α) q (q–p)α] q

p 2

(10b) N = ,
(ε–α)q (q–p)α

εp

(10c) Δ = ,
εq
p

and

(11a) T = ,
[(q–p)α–(α–ε)q] q

p 2

(11b) N = ,
(q–p)α–(α–ε)q

εp

(11c) Δ = .
εq
p

This is already complicated enough when everything is stated in algebraic
symbolism. In words, it is evidently worse, even when all rules are illustrated
by examples. If we accept that the subject is important (and for Barthélemy it
is the high point of his treatise), Barthélemy therefore has very good reasons
to introduce a graphic representation of the algorithms, which is almost certainly
his own idea. “For the practice of this rule and in order to see rapidly how one
should make the necessary multiplications for the three numbers that should
be divided by the three dividers to get the three hidden numbers”, he shows
“how the necessary numbers can be put into a diagram”, here following [Spiesser
2003: 405]:
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A number of examples show the use of the diagram; for the problem (3,3| )3

11
it becomes

In our general symbolic terms, the diagram can be seen from the examples to
stand for
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Evidently, this diagram does not represent an argument leading to the formulae.
Nor is it the analogue of a flow chart representing the algorithm – which anyhow
would make no sense when no branchings are present. What it does is to lay
out all numbers that enter the algorithm, after which the calculator has to
remember how to use then. However, by freezing the oral formulae graphically,
Barthélemy makes it more clear (to us) that a fixed algorithm is really thought
of. The diagram helps as much as the Indian graphic representations of the
algorithms by which algebraic equations are solved, and it has the same
limitations (pace Nesselmann [1842: 302f], who saw no difference between these
schemes and symbolic algebra): it is unable to represent more than one linear
algorithm, and has no space for embedding (of subroutines, if we speak the
algorithmic language; of the replacement of a single number by an algebraic
composite if we choose that language).

Nicholas Chuquet and algebraic rejection of algorithmic schemes

Chuquet probably understood the potentials of algebra better than anybody
in Europe during his century – probably better than anybody between Antonio
de’ Mazzinghi and Cardano, perhaps even Bombelli; he certainly understood
them better than Estienne de la Roche, whose borrowings from Chuquet’s Triparty
for his Larismetique from 1520 made public part of Chuquet’s mathematics but
excluded everything too radically new [Moss 1988: 120f].

Apart from Barthélemy, nobody has dedicated as much space to the
“unknown heritage” as Chuquet. He does so is in the problem collection attached
to his Triparty from 1484. The problems, listed in [Marre 1881: 448–451], are of
the following types:
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(1,1| )1

10
(2,1| )1

7
(2,3| )1

8

(2,3| )2

11
(3,2| )3

13
( |2,2)1

7
( |3,3)2

11

( |3,5)1

7
( |3,5)2

9
( |2,3)6

31

( |5,3)1

6
( |5,2)2

11
( |5,3)5

19

Those in the left-hand column are independent of Barthélemy. All the others
are found in Barthélemy’s Compendy in the same order, and only one is missing
from the sequence of problems which Barthélemy brings before going into
“theoretical” deliberations (after these deliberations, Barthélemy has more
problems, probably of his own making, whereas those preceding his “theory”
probably come from his sources). Since Chuquet knew Barthélemy’s treatise (he
refers to it elsewhere [ed. Marre 1881: 442]), it is a fair guess that this earlier work
is Chuquet’s source for these problems; alternatively, if they use a common
source, he is at least likely to have known what Barthélemy did to that source.

In any case, Chuquet treats the material in a different way than Barthélemy.
He returns to the inheritance dress, speaking of “the number of children” even
when N is not integer. He gives no diagrams and only one rule (after the problem
(2,1| ) [ed. Marre 1881: 449]),1

7

Multiply the number which is 1 less than the denominator of the common part
by the number which makes the progression. Which multiplication [i.e., product]
you put aside, because it is the number of deniers which each one shall receive.
Then subtract from this multiplication the number which the first one takes when
he goes to the box, that is the number by which the progression begins. And
multiply the remainder by the denominator of the common part, to which
multiplication join the number by which the progression begins, because the
addition [i.e., sum] is the number of deniers in the box. Which number divide
by the multiplication which was put aside, that is, by the share which each one
gets, and you have the number of children.

In symbols once more:
(11c) Δ = (d–1) ε ,
(11a) T = ([d–1] ε–α) d+α ,
(11b) N = T/Δ ,

that is, Barthélemy’s “general rule” (7) for his “first mode”. But Chuquet speaks
of d simply as the denominator, not as a “true denominator” – at this point in
his text only integer values for d have in fact occurred. Apart from that (including
in the problems that follow the “second mode”), no explanations or calculations
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but only results are given.20 But after the last problem of the group [ed. Marre
1981: 451] there is the observation (in italics in the edition, thus probably in red
in the manuscript) that Toutes telles raisons facilement se peuent faire par la rigle
des premiers, “all such calculations can easily be done by the rule of algebra”.

In Chuquet’s view, it appears, rules or algorithms embodied in diagrams
were pre-algebraic and not worth conserving once the algebraic tool was
understood.

References
Allard, André (ed., trans.), 1981. Maxime Planude, Le Grand calcul selon les Indiens.(Travaux de la

Faculté de Philosophie et Lettres de l’Université Catholique de Louvain, 27. Centre d’Histoire
des Sciences et des Techniques, sources et travaux, 1). Louvain-la-Neuve: [Faculté de Philosophie
et Lettres].

Alten, Heinz-Wilhelm, et al, 2008. 4000 Jahre Algebra. Berlin & Heidelberg: Springer.
Birkenmajer, Aleksander, 1970/1922. “La bibliothèque de Richard de Fournival, poète et érudit

français du début du XIII siècle, et son sort ultérieur”, pp. 117–215 in Aleksander Birkenmajer,
Études d’histoire des sciences et de la philosophie du Moyen Age. (Studia Copernicana I). Wroclaw:
Zaklad Narodowy Imienia Ossolinskich.

Boncompagni, Baldassare (ed.), 1857. Scritti di Leonardo Pisano matematico del secolo decimoterzo.
I. Il Liber abbaci di Leonardo Pisano. Roma: Tipografia delle Scienze Matematiche e Fisiche.

Busard, H. L. L., 1968. “L’algèbre au moyen âge: Le «Liber mensurationum» d’Abû Bekr”. Journal
des Savants, Avril-Juin 1968, 65–125.

Busard, H. L. L. (ed.), 1991. Jordanus de Nemore, De elementis arithmetice artis. A Medieval Treatise
on Number Theory. Part I: Text and Paraphrase. Part II: Conspectus siglorum and Critical Apparatus.
(Boethius, XXII,I-II). Stuttgart: Franz Steiner.

Busard, H. L. L., 2005. Campanus of Novara and Euclid’s Elements. 2 vols. (Boethius, 51,1–2). Stuttgart:
Franz Steiner.

Cajori, Florian, 1928. A History of Mathematical Notations. I. Notations in Elementary mathematics. II.
Notations Mainly in Higher Mathematics. La Salle, Illinois: Open Court, 1928–29.

Curtze, Maximilian (ed.), 1868. Der Algorismus Proportionum des Nicolaus Oresme zum ersten Male
nach der Lesart der Handschrift R. 4o. 2. der königlichen Gymnasial-Bibliothek zu Thorn
herausgegeben. Berlin: Calvary & Co.

Maximilian Curtze, 1887. “Jordani Nemorarii Geometria vel De triangulis libri IV”. Mitteilungen des
Coppernicusvereins für Wissenschaft und Kunst zu Thorn 6.

Duan Yao-Yong, & Kostas Nikolantonakis, 2010. “The Algorithm of Extraction in Greek and Sino-
Indian mathematical Traditions”, pp. 171–184 in B. S. Yadav (ed.), Ancient Indian Leaps into
Mathematics. Basel: Birkhäuser.

Eisenlohr, A., 1877. Ein mathematisches Handbuch der alten Ägypter (Papyrus Rhind des British Museum)
übersetzt und erklärt. 2 vols. Leipzig: J. C. Hinrichs.

20 Marre’s transcription is incomplete in as far as calculations are concerned, but after
inspecting the manuscript Stéphane Lamassé confirms to me (personal communication)
that there are no further rules or calculations.

- 20 -



Grant, Edward (ed., trans.), 1966. Nicole Oresme, De proportionibus proportionum and Ad pauca
respicientes. Madison etc.: University of Wisconsin Press.

Grant, Edward (ed., trans.), 1971. Nicole Oresme and the Kinematics of Circular Motion. Tractatus de
commensurabilitate vel incommensurabilitate motuum celi. Madison etc.: University of Wisconsin
Press.

Größing, Helmuth, 1983. Humanistische Naturwissenschaft. Zur Geschichte der Wiener mathematischen
Schulen des 15. und 16. Jahrhunderts. (Saecula Spiritualia, Band 8). Baden-Baden: Valentin Koerner.

Heiberg, J. L. (ed., trans.), 1912. Heronis Definitiones cum variis collectionibus. Heronis quae feruntur
Geometrica. (Heronis Alexandrini Opera quae supersunt omnia, IV). Leipzig: Teubner.

Heiberg, J. L. (ed., trans.), 1914. Heronis quae feruntur Stereometrica et De mensuris. (Heronis
Alexandrini Opera quae supersunt omnia, V). Leipzig: Teubner.

Høyrup, Jens, 1988. “Jordanus de Nemore, 13th Century Mathematical Innovator: an Essay on
Intellectual Context, Achievement, and Failure”. Archive for History of Exact Sciences 38, 307–363.

Høyrup, Jens, 1997. “Hero, Ps.-Hero, and Near Eastern Practical Geometry. An Investigation of
Metrica, Geometrica, and other Treatises”, pp. 67–93 in Klaus Döring, Bernhard Herzhoff & Georg
Wöhrle (eds), Antike Naturwissenschaft und ihre Rezeption, Band 7. Trier: Wissenschaftlicher Verlag
Trier. (For obscure reasons, the publisher has changed into ~ and into ¤§ on p. 83 after
having supplied correct proof sheets).

Høyrup, Jens, 2008. “The ‘Unknown Heritage´: Trace of a Forgotten Locus of Mathematical
Sophistication”. Archive for History of Exact Sciences 62, 613–654

Hughes, Barnabas B., 1980. “De regulis generalibus: A 13th Century English Mathematical Tract
on Problem-Solving”. Viator 11, 209–224.

Hughes, Barnabas B., O.F.M. (ed., trans.), 1981. Jordanus de Nemore, De numeris datis. A Critical
Edition and Translation. (Publications of the Center for Medieval and Renaissance Studies,
UCLA, 14). University of California Press.

Hunt, Richard William, 1955. “The Library of Robert Grosseteste”, pp. 121–145 in Daniel A. Callus,
O.P. (ed.), Robert Grosseteste, Scholar and Bishop. Essays in Commemoration of the Seventh
Centenary of his Death. Oxford: Clarendon Press.

Imhausen, Annette, 2003. Ägyptische Algorithmen. Eine Untersuchung zu den mittelägyptischen
mathematischen Aufgabentexten. (Ägyptologische Abhandlungen, 65). Wiesbaden: Harrassowitz.

Juschkewitsch, A. P., 1964. Geschichte der Mathematik im Mittelalter. Leipzig: Teubner.
Knuth, Donald, 1972. “Ancient Babylonian Algorithms”. Communications of the Association of Computing

Machinery 15, 671–677, with correction of an erratum in 19 (1976), 108.
Lefèvre d’Étaples, Jacques (ed.), 1496. In hoc opere contenta. Arithmetica decem libris demonstrata. Musica

libris demonstrata quatuor. Epitome in libros Arithmeticos divi Severini Boetii. Rithmimachie ludus
qui et pugna numerorum appellatur. Paris: Higmanus & Hopilius.

Mahoney, Michael S., 1971. “Babylonian Algebra: Form vs. Content”. [Essay Review af O. Neugebauer
1934, i anledning af reprint-udgaven 1969]. Studies in History and Philosophy of Science 1 (1970–71),
369–380.

Marre, Aristide (ed.), 1881. “Appendice au Triparty en la science des nombres de Nicolas Chuquet
parisien”. Bullettino di Bibliografia e di Storia delle Scienze matematiche e fisiche 14, 413–435.

Moss, Barbara, 1988. “Chuquet’s Mathematical Executor: Could Estienne de la Roche have Changed
the History of Algebra?”, pp. 117–126 in Cynthia Hay (ed.), Mathematics from Manuscript to Print,
1300-1600. (Oxford Scientific Publications). New York: Oxford University Press.

Nesselmann, G. H. F., 1842. Versuch einer kritischen Geschichte der Algebra. Nach den Quellen bearbeitet.
Erster Theil, Die Algebra der Griechen. Berlin: G. Reimer.

- 21 -



Rodet, Léon, 1881. “Les prétendus problèmes d’algèbre du manuel du calculateur égyptien (Papyrus
Rhind)”. Journal asiatique, septième série 18, 184–232, 390–559.

Schmeidler, Felix (ed.), 1972. Joannis Regiomontani Opera collectanea. Faksimiledrucke von neun
Schriften Regiomontans und einer von ihm gedruckten Schrift seines Lehrers Purbach.
Zusammengestellt und mit einer Einleitung herausgegeben. (Milliaria X,2). Osnabrück: Otto
Zeller.

Spiesser, Maryvonne (ed.), 2003. Une arithmétique commerciale du XVe siècle. Le Compendy de la praticque
des nombres de Barthélemy de Romans. (De Diversis artibus, 70) Turnhout: Brepols.

Steele, Robert (ed.), 1940. Communia mathematica fratris Rogeri partes prima et secunda. (Opera
hactenus inedita Rogeri Baconi, 16). Oxford: The Clarendon Press.

- 22 -


