
EGYPTIAN MATHEMATICS
Contribution to

The Cambridge History of Science

The primary references of the term “Egyptian mathematics” are the computational
techniques and the underlying mathematical knowledge attested in Pharaonic written
sources. Secondary references are, on one hand, the corresponding techniques etc. as
known from Demotic sources; on the other, the geometrical procedures used in
Pharaonic and subsequent architecture and visual arts. Greek mathematics produced
in Hellenistic Egypt is thus not included. Accordingly, all dates in the following are
BC unless AD is indicated explicitly.

The sources

The most important written sources for Pharaonic mathematics are the Rhind
Mathematical Papyrus (henceforth RMP)1 and the Moscow Mathematical Papyrus (MMP).2

1 Two editions with ample discussion exist:
T. Eric Peet, The Rhind Mathematical Papyrus, British Museum 10057 and 10058.

Introduction, Transcription, Translation and Commentary (London: University Press
of Liverpool, 1923).

Arnold Buffum Chace, The Rhind Mathematical Papyrus. British Museum 10057 and
10058. Volume I (with the assistance of Henry Parker Manning). Free Translation and
Commentary. Bibliography of Egyptian Mathematics by R.C. Archibald. Volume II (with
Ludlow Bull & Henry Parker Manning). Photographs, Transcription, Transliteration,
Literal Translation. Bibliography of Egyptian and Babylonian Mathematics (Supplement),
by R. C. Archibald. The Mathematical Leather Roll in the British Museum, by S. R. K. Glan-
ville. Oberlin, Ohio: Mathematical Association of America, 1927–29. (the literal
translation is indeed very literal; it is used in all quotations below from RMP).

A recent facsimile edition with description and discussion and translation of large
extracts is Gay Robins & Charles Shute, The Rhind Mathematical Papyrus: An Ancient
Egyptian Text (London: British Museum Publications, 1987).

Valuable general accounts of Egyptian mathematics which (by necessity) deal
extensively with RMP are:

Kurt Vogel, Vorgriechische Mathematik. Volume I. Vorgeschichte und Ägypten.
(Mathematische Studienhefte, 1; Hannover: Hermann Schroedel / Paderborn: Ferdinand
Schöningh, 1958).

Richard J. Gillings, Mathematics in the Time of the Pharaohs (Cambridge, Mass.: M.I.T.
Press, 1972).

After the manuscript for the present article was finished, Marshall Clagett has
published Ancient Egyptian Science. A Source Book. Volume III: Ancient Egyptian
Mathematics (Memoirs of the American Philosophical Society, 232; Philadelphia:
American Philosophical Society, 1999). This volume reproduces the facsimile edition
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To this comes a few shorter papyri containing mathematical problems; a couple of
listings of equivalent fractions; and a larger number of accounting papyri which apply
the metrology and show how the basic arithmetical techniques are used. The RMP is
a copy from a Middle Kingdom original (Amenemhet III, c. 1800), made during the
Hyksos period; it is a teacher’s or calculator’s manual, containing several tables (on
which below) and some 80 problems with solution. The MMP seems to be a late Middle
Kingdom copy from an earlier Middle Kingdom original; it is a collection of student’s
answers to problems, provided with the teacher’s approval (at times refused for good
reasons). The other properly mathematical sources are from the Middle through New
Kingdom.3

A source of particular character is the New Kingdom fictional “satirical letter”
or Papyrus Anastasi I,4 in which a scribe chides a colleague for his professional
ignorance; it shows that a military scribe was supposed to be familiar with Palestinian
geography and with the determination of the manpower, rations and other requirements
of construction work. Accounting papyri show that other categories of scribes had
analogous tasks.

Some administrative records go back to the Old Kingdom (and a few documents

of Chace’s volume II and includes a translation kept close to that of the same volume
as well as an extensive analysis.
2 Edition with translation and extensive commentary W. W. Struve, Mathematischer
Papyrus des Staatlichen Museums der Schönen Künste in Moskau (Quellen und Studien
zur Geschichte der Mathematik. Abteilung A: Quellen, 1. Band; Berlin: Julius Springer,
1930). The edition is reproduced in Marshall Clagett, op. cit., which also contains an
English translation and a commentary.
3 Marshall Clagett gives the following approximate dates (Ancient Egyptian Science. A
Source Book. Volume I: Knowledge and Order, pp. 629–635. Memoirs of the American
Philosophical Society, 184 A+B; Philadelphia: American Philosophical Society, 1989):
Early dynastic period (dynasties 1–2): 3110–2665.
Old Kingdom (dynasties 3–8): 2664–2155.
First intermediate period (dynasties 9–10): 2154–2052.
Middle Kingdom (dynasties 11–13): 2040–1640.
Second intermediate period (Hyksos dynasties 15–16, Theban dynasty 17): 1640–1532.
New Kingdom (dynasties 18–20): 1550–1070.
Third intermediate period (dynasties 21–(initial) 25): 1070–712.
Late period (dynasties (final) 25–31, including the Assyrian hegemony during dynasty

26 and the Persian dynasties 27 and 31): 712–332.
Greco-Roman period: 332 BC to 395 AD.
4 Full edition and translation in Alan H. Gardiner, Egyptian Hieratic Texts. Series I:
Literary Texts from the New Kingdom. Part I: The Papyrus Anastasi I and the Papyrus Koller,
together with Parallel Texts (Leipzig: J. C. Hinrichs’sche Buchhandlung, 1911).
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with numbers to the early dynastic period); even in this respect, however, the Middle
through New Kingdom is much richer.

The mathematical sources of the Pharaonic period are written in hieratic script
(evidently, some hieroglyphic documents contain numbers); part of the metrological
terminology seems to have been created in hieratic and to have acquired hieroglyphic
equivalents only at a later moment (when at all).

From the Demotic phase (late and Greco-Roman periods), several papyri containing
mathematical problems and tables survive5 – with the possible exception of one
uncertain fragment all of Greco-Roman date.

Numbers and metrology

The Egyptian number system was decadic. Already in early dynastic times,
individual signs for 1, 10, 100, 1000, 10000, 100000 and 1000000 existed.6 In hieroglyphic,
other numbers were constructed additively, by mere repetition of these signs; in hieratic,
individual signs for 1,2, ..., 9, 10, 20, ..., 90, 100, 200, etc. were used. From the Middle
Kingdom onwards, fractional numbers were expressed as sums of aliquot parts
(including two-thirds); in order to keep close to the Egyptian notation we may transcribe
them as follows: 3" (= 2/3 ), 2’ (= 1/2 ), 3’ (= 1/3 ), 4̄ (= 1/4 ), 5̄, etc. (3", 2’ and 3’ had special
signs, the others were denoted by the sign ro (“mouth”, here “part”) or by a dot above
the number (in hieroglyphic respectively hieratic writing), according to a canon that
did not allow repetition of the same aliquot part but expressed for instance 5̄ 5̄ as 3’ 15̄
(juxtaposition means addition). Essential metrologies, however, would operate with
subunits instead of these fractions.

Many of the problems in the mathematical texts deal with the difficulties to which
the non-decadic metrologies would give rise. Closest to decadic principles is the length
system. The basic length unit was the “royal cubit” (mh, c. 52 cm), subdivided into
7 “palms” of 4 “fingers” each (a “short cubit” of 6 palms was also in use). 100 royal
cubits was a “rope” (khet). Land might be measured in setat (that is, square khet), divided
by successive halvings into subunits with special names (down to 1/32 setat); in surveying
practice, the “cubit of land” (1 cubit versus 1 khet) and the “thousand of land” (1000
cubit versus 1 khet) were mostly preferred.

The central capacity unit was the hekat, divided according to one system into 10

5 Edition with translation and extensive commentary in Richard A. Parker (ed.), Demotic
Mathematical Papyri (Providence & London: Brown University Press, 1972).
6 The standard reference for Egyptian numerals and number words remains Kurt Sethe,
Von Zahlen und Zahlworten bei den Alten Ägyptern, und was für andere Völker und Sprachen
daraus zu lernen ist. (Schriften der Wissenschaftlichen Gesellschaft in Straßburg, 25;
Straßburg: Karl J. Trübner, 1916). In the second millennium, the sign for 1000000, and
afterwards that for 100000 went out of use; instead, multiplicative notations were used.
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henu or 320 ro (the “part” again, but in a different use), according to another by
successive halvings (down to 1/64 ).7 Also multiples of the hekat were expressed by special
signs or by non-standard use of the standard numerals. A special unit for bulky
substances is the khar, equal to 20 hekat and to 2/3 of a royal cubit (probably a secondary
normalization of originally distinct units).

Basic patterns and techniques

Egyptian arithmetical thinking may be interpreted as based on two key principles:
additivity and proportionality – the latter in the sense that any number might count
another number; to this comes the techniques of doubling and multiplying by 10. The
multiplication of 75 by 53 might be performed thus:

/1 75
/2 150

/10 750
20 1500

/40 3000
Total 3975

Some texts reveal the underlying thought: If 1 (of the entity we count) is 75, then 2
(of it) is 150, etc.. The multiplier 53, as we see, is split into components that can be
obtained by successive doublings and decuplings (mostly, only doublings would be
employed). Strokes mark addends that are actually used (53 = 1+2+10+40).

The corresponding division of 3975 by 75 would go by the same procedure,
emptying 3975 by multiples of 75:

/1 75
/10 750

20 1500
/40 3000
/2 150

total 3975

A separate phrase would state the result as 53 (=1+10+40+2); strokes will of course
have been inserted a posteriori in the scheme.

This only seems simple until fractions are introduced. An actual multiplication
(of 8 3" 6̄ 18̄ = 8 8/9 by itself) would run as follows (RMP 42):

7 The hieroglyphic writings for the successive halves of the hekat can be put together
to the standard representation of the healing sacred eye of Horus; as pointed out by
Peet (op. cit., p. 26), however, the hieroglyphic writings do not antedate the 18th dynasty,
whereas the hieratic forms go back to the third millennium; the mythological
connotations of the system are thus a late construction, notwithstanding their popularity
in standard histories.
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1 8 3" 6̄ 18̄
2 17 3" 9̄
4 35 2’ 18̄

/8 71 9̄
/3" 5 3" 6̄ 18̄ 27̄

3’ 2 3" 6̄ 12̄ 36̄ 54̄
/6̄ 1 3’ 12̄ 24̄ 72̄ 108̄

/18̄ 3’ 9̄ 27̄ 108̄ 324̄
Total 79 108̄ 324̄

It is no accident that 3" of 8 3" 6̄ 18̄ is found before 3’. Even when only 3’ of the
multiplicand is needed, 3" is found first and 3’ then by halving. 3" and 2’ were the basic
fractions of the Middle Kingdom calculators; if at all possible, further divisions would
be produced from these by successive halvings (the presence of 18̄ shows that it was
not always possible).

Beyond this, the calculation displays the main difficulties to which multiplication
of fractions gives rise. The first doubling is obvious, since 3" doubled is 1 3’; in the
next, however, 9̄ has to be doubled, and the scribe has to know that this yields 6̄ 18̄
(after which 3’ 6̄ is contracted to 2’). Finally, 9̄ 3" 6̄ 18̄ 27̄ 3’ 12̄ 24̄ 72̄ 108̄ 3’ 9̄ 27̄ 108̄
324̄ has to be converted into 2 108̄ 324̄.

For the former purpose, RMP contains a tabulation of 2÷n, for all odd values of
n from 5 to 101. For the latter, a technique referred to as “red auxiliary numbers” was
used. The fractions might be expressed as fractions of an adequate “reference
magnitude” – in the present case probably 108 – in a scheme (red is rendered by italics):

9̄ 3" 6̄ 18̄ 27̄ 3’ 12̄ 24̄ 72̄ 108̄ 3’ 9̄ 27̄ 108̄ 324̄
12 72 18 6 4 36 9 4 2̄ 1 2̄ 1 36 12 4 1 3’

Since the sum of the red (i.e., italicized) numbers is 217 3̄ = 2 108+1+3’, the sum of
the fractions is 2+108̄+324̄. Structurally, this is equivalent to the use of a common
denominator 108, and there are some hints that a notion of the fraction p/q understood
as p copies of q̄ was not as strange to Egyptian calculators as the stylistic canon might
make us believe – in RMP 81, the scribe erroneously writes 5̄ and 3 instead of 2̄ 8̄ (=5/8)
and 4̄ 8̄ (= 3/8 ).8 None the less, an interpretation of the underlying thought in terms
of the reference magnitude9 agrees so well with the global pattern of the texts that it
is likely to be the primary explanation of the red auxiliaries.

Most everyday practical computation above the level of counting is based on
proportionality in one or the other way – since the Middle Ages often in the shape

8 This was first pointed out by Kurt Vogel in Die Grundlagen der ägyptischen Arithmetik,
p. 43 (München 1929, reprint Wiesbaden: Martin Sändig, 1970).
9 First proposed in Léon Rodet, “Les prétendus problèmes d’algèbre du manuel du
calculateur égyptien (Papyrus Rhind),” Journal asiatique, septième série 18 (1881),
184–232, 390–559.
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of the Rule of Three. The Egyptian conceptualization may be illustrated by RMP 24,

one of the problems treating of an abstract “quantity” or “heap” ( h ) – the problem
type by which the technique was trained: “A quantity, 7̄ of it added to it, becomes it:
19”.
The computation looks as follows

/1 7
/7̄ 1

1 8
/2 16
2’ 4

/4̄ 2
/8̄ 1

/1 2 4̄ 8̄
/2 4 2’ 4̄
/4 9 2’

The doing as it occurs.
The quantity 16 2’ 8̄

7̄ 2 4̄ 8̄
Total 19

This may be explained as a “single false position”: As a preliminary value for the heap
we take 7, then the quantity together with its seventh part become 8. This is seen to
be contained 2 4̄ 8̄ times in 19 (an ordinary division); therefore the true value of the
quantity is 2 4̄ 8̄ times 7 – or, which is more convenient for the final proof, 7 times
2 4̄ 8̄ = 16 2’ 8̄. The Egyptians, indeed, made ample use of the commutativity of
multiplication, despite the obvious asymmetry of their algorithm; the frequent claim
that their mathematical thought was purely additive is thus blatantly mistaken.

The principles of this computation were applied with flexibility: at times the
preliminary value might be set to 1 (e.g., RMP 32); in combination with the commutati-
vity of operations this might lead to something very close to the Babylonian division
through multiplication by the reciprocal (e.g., RMP 63). The formulations, however,
show that the Egyptian method is based on the usual principles and no borrowing from
abroad.

The 2÷n table of RMP is the largest extant piece of systematic Egyptian mathemat-
ics and may be considered its theoretical high point. Many efforts have hence been
dedicated to finding the principle(s) which underlie its construction – the same fraction
may indeed be split in many ways into aliquot parts ( 2/15 thus into 8̄ 120̄, 9̄ 45̄, 10̄ 30̄,
12̄ 20̄, 11̄ 30̄ 110̄, 13̄ 20̄ 156̄, 14̄ 30̄ 35̄, etc.). So much is certain that a standard existed
in the later Middle Kingdom – the deviations from the RMP-norm are rare enough
to count as aberrations. Kurt Vogel points to three principles (at times in mutual conflict)
that seem to intervene:10

(i) The members of the sum should be few.
(ii) The first member should be as large as possible.

10 Vorgriechische Mathematik, vol. I (n. 1), p. 42.
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(iii) If more than two members are present, the largest denominator should be
kept small.

(ii) might seem to suggest a search for a good first approximation – but (iii) shows that
a good second approximation was not aimed at. The principles seem rather to have
been of an aesthetic kind.

The technique that is used consists in dividing 2 into two parts p+r, where p is
an aliquot part of n ( p/n = 1/m ) and the remainder r is an aliquot part of 1 or the sum
of such parts, r = 1/s + 1/t +..., whence r/n = 1/(sn) +

1/(tn) +.... This much is shown explicitly
in the text, which lists p and the constituents of r and tells which part ( 1/m , 1/(sn) , etc.)
each one is of n. The essential trick, however, is of course to find an adequate splitting
of 2. Here several ways were followed, probably reflecting the steps of the historical
process that had engendered the table. If n is a multiple of 3 (n = 3m), the division is
into 1 2’ and 2’, whence 2÷n = 1/2m + 1/6m . In many other cases, an adequate p was
probably found by subdivision of 3" of n or 2’ of n, as illustrated by the way the text
explains 2÷13:

1 13
2’ 6 2’
4̄ 3 4̄

/8̄ 1 2’ 8̄
/4 52̄ 4̄
/8 108̄ 8̄

8̄ 1 2’ 8̄ 52̄ 4̄ 104̄ 8̄

At first, 13 is subdivided by successive halvings until we get below 2; then 1 2’ 4̄ (=
8̄ of 13) is chosen as p, and the remainder is seen to consist of 4̄ (= s̄) and 8̄ (= t̄). n =
13 (considered as a “weak sign”, i.e., as the representative of an aliquot part11) is then
multiplied by 4 and 8, and we see that the numbers 4̄ and 8̄ are 52̄ and 104̄ of 13. The
summary in the right column tells that 2 is 8̄ 52̄ 104̄ of 13.

In other cases m is stated directly, often as one of the abundant numbers 30 and
60. It cannot be excluded that these choices resulted from mere trial and error – values
of m with a profusion of divisors are most likely to permit a nice splitting of the
remainder r – but it seems more plausible that the Egyptians had discovered that 30
and 60 are often convenient choices and took this as their first guess; however that
is, the procedure makes use of a reference magnitude or of splitting into smaller parts.
We may look at 2÷73:

73 60̄ 1 6̄ 20̄ 219̄ 3’ 292̄ 4̄ 365̄ 5̄

Find \60̄ 1 6̄ 20̄
\3 219̄ 3’
\4 292̄ 4̄
\5 365̄ 5̄

11 This terminology is used in RMP 61B, cf. Peet, op. cit. (n. 1), p. 104.
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This can be understood as follows (structurally equivalent interpretations are possible):
2 is split into 120 parts, each of which is then 60̄. 73 of these divided by 73 make 60̄;
since 73 = 60+10+3, 73÷60 = 1 6̄ 20̄ = p. The right-hand column tells that the remainder
until 2 after the removal of p is 3’ 4̄ 5̄ (namely 47 of the 120 small parts of 2, grouped
as 20+15+12; possible alternatives are 30+15+2 and 30+12+5 – the actual choice illustrates
Vogel’s rule (iii)); multiplication of 73 (considered “weak”) by 3, 4 and 5 (left-hand
column), respectively, shows that the remainder is 219̄ 292̄ 365̄ of 73 (middle column);
all is summarized in the first line.

Applied arithmetic

Beyond the abstract h -problems, both RMP and MMP contain many arithmetical
problems of practical or sham-practical character. Most important are distribution
problems and the so-called pesu-problems.

Many of the distribution problems deal with equal partition – e.g., the distribution
of n loaves among 10 persons, n = 1, 2, 6, 7, 8, 9 (RMP, 1–6); they illustrate why Plutarch
and other Greek authors would link social equality to “arithmetical justice” (and hence
reject the latter as morally unsound). Others follow the principle that the foreman and
other officials get double share (RMP 65), or that the ratio between shares is given (RMP
63). Such problems are true to real life as revealed in administrative texts. RMP 40,
on the contrary, is wholly artificial: loaves are distributed in five shares (say, a, b, c,
d, and e) in arithmetical proportion in such a way that

(i) 1/7 of the sum of the three major shares equals the sum of the two minor
ones;

(ii) a+b+c+d+e = 100.
The solution makes use of a simple false position: at first an arithmetical progression
α, β, γ, δ, ε is constructed, starting with α = 1 and fulfilling (i); its sum is found to be
60, whence all members are multiplied by 1 3". The first step is not explained, but since
RMP 64 refers explicitly to and makes adequate use of the average share and the excess
of one share over the other when determining the single members of an arithmetical
progression from the sum and the difference, a simple algebraic solution (whether
represented by words or by pebbles or other material tokens) will not have exceeded
the conceptual capabilities of the Egyptian calculator though apparently his standard
discourse: If α is 1 and τ the difference, β = 1+τ, γ = 1+2τ, etc; the sum of the three major
shares is thus 3+(2+3+4)τ, which is 7 times α+β = 2+τ; thus 3+9τ = 14+7τ, 2τ = 11, τ =
5 2’.

Endowed with particular status – obviously because of the importance of bread
and beer as staple food – are the pesu problems. pfśw is derived from pśj, “cooking”,
and may be understood as “baking ratio”. The pesu of a loaf is the number of similar
loaves that may be made from one hekat of grain; similarly, the pesu of beer counts
the number of jugs that are produced from one hekat of grain. In both cases, the baking
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ratio thus indicates the reciprocal grain content of the unit of consumption. Pesu
problems may ask for the pesu, given the number of units produced and the total
amount of grain; for the exchange of loaves with different pesu or of bread with beer;
more complex problems deal with the dilution of beer, or with special brews made
from several grain sorts or fruits.12

Together, these and other problems of applied arithmetic cover more or less the
standard types of late medieval and early modern commercial arithmetic – proportional
partition, exchange, alloying (only composite interest has no Egyptian counterpart);
often the methods are familiar, although no technique similar to the double false
position is ever applied; at times, however, unexpected steps demonstrate that ad hoc
reasoning was no less important than automatic routines.

Among higher arithmetical problems, one recreational problem in RMP deals with
the geometrical progression 7, 72, 73, 74, 75, and finds the sum as 7 2801; nothing in
the text tells whether the underlying reasoning is simply that 7+...+75 = 7 (1+...+74) =
7 2801, or a formula for the sum of a geometrical progression was known.13

Geometrical computation

Geometrical problems deal with slopes, areas and volumes. The batter (śkd) of
pyramids is expressed as the retrocession in palms per cubit height, whereas that of
a different (unidentified) structure is given as a pure-number ratio in RMP 60.

Already the metrology (cf. above) shows that rectangular areas were found as
length times breadth. The area of a triangle was determined as half the base multiplied
by “the edge”, whose identity has been discussed; however, since RMP 51 takes the
half of the base “for the giving of the rectangle of it”, there can be little doubt that the
edge between the two parts into which an isosceles triangle is cut is meant – that is,
the height.14 The area of the trapezium was found correspondingly.

Area computation serves in a few cases as the basis for homogeneous second-
degree problems. Thus in MMP 6, 7 and 17, the area of a right triangle and the ratio
between the sides is given; doubling of the area and multiplication by the ratio yield
the area of a corresponding square, whose square root (“corner”) is then one side of
the triangle; similar considerations are used to solve problems about two squares, whose
sides have a given ratio.

The volume of right parallelepipeds was found by multiplication of the three
dimensions measured in cubits, followed by a multiplication by 1 2’ in order to express

12 See Peet, op. cit. (n. 1), pp. 112–121 and Struve, op. cit. (n. 2), pp. 44–101.
13 A third, somehow intermediate possibility is suggested by Robins & Shute, op. cit.
(n. 1), pp. 56f.
14 This was already argued by Peet, op. cit. (n. 1), pp. 91–93.
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it in khar. MMP 14 finds the volume of a truncated square pyramid (with height h and
sides a and b of base and top, respectively) correctly as h/3 (a2+ab+b2). No cues are given
as to how the formula was derived. It cannot be excluded that it is the result of a lucky
generalization of the formula for the area of a triangle; nor is a heuristic argument based
on dissection into simpler volumes to be excluded, however.15

The area of the circle was found as that of the square on
8/9 of the diameter – 1.006... times the true value. A diagram
in RMP 48 suggests that this may be a computational approxi-
mation to the area of a geometrically approximating octagon,
whose area is 63/81 of the square in question (see diagram).
Volumes of circular cylinders were determined accordingly.

MMP 10 calculates the surface of a “basket” with “mouth”
4 2’ as 4 1/2 ( 8/9 [ 8/9 9]), with the argument that the “basket”
is the half of an “egg” (Struve’s reading of a damaged word).
The double factor 8/9 leaves no doubt that explicit use is made of the formula for the
circular area – no empirical measurement would be able to distinguish ( 8/9 [ 8/9 9]) =
7 9̄ from 7 – and the conjectured “egg” seems to suggest that a hemisphere with
diameter 4 2’ is intended, whose surface (in modern terms) is then found correctly as
2πr2. This formula seems much more sophisticated that anything else found in the
sources, for which reason the alternative interpretation of the “basket” as the curved
surface of a semicylinder (with height = diameter = 4 2’) has been suggested. This does
not fit an “egg” too well, but has the advantage to presuppose only that the Egyptians
knew the relation between circular area and circumference – which agrees well with
their explicit transformation of a triangle into a corresponding rectangle.16

Geometrical techniques

Rules for geometrical computation evidently depend on techniques for mensura-
tion. These will have been the responsibility of those “rope stretchers” (harpedonaptai)
which the Greeks refer to.17 Rope constructions were also used when the ground plans
of prestige buildings were laid out. Architectural designs as well as pictorial art were
constructed within square grids, following a strict canon (the “canonical system”,
coupled to metrology and already used in Early Dynastic iconography) for how many

15 See, e.g., Robins & Shute, op. cit. (n. 1), p. 49.
16 The two interpretations (due, respectively, to Struve and Peet) are confronted in
grammatical detail in O. Neugebauer, Vorgriechische Mathematik, pp. 129–137 (Berlin:
Julius Springer, 1934).
17 See Peet, op. cit. (n. 1), p. 32, and Vogel, Vorgriechische Mathematik. vol. I (n. 1), p. 59f.
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grids each part of a human body should occupy in the picture.18

Fables

Two remarks should be added concerning what we have no reason to ascribe to
Pharaonic Egyptian geometry.

Firstly, ever since Moritz Cantor proposed that the rope stretchers might have used
the 3-4-5-triangle to construct right triangles it has been a recurrent claim that they
actually did so.19 It has also been presumed that since several pyramids have the batter
3:4, the Egyptians will have known the properties of this triangle.20 It must be
emphasized that the sources do not contain the slightest hint pointing in this direction,
and that the batter in question would be expressed as 5 4̄ palms [per cubit height],
which is not liable to have furthered any “Pythagorean” speculations.

Similarly, the attempts to find π (or the Golden Section) in the great pyramids
founder on the observation that the approximate occurrence of such ratios in the
construction are automatic consequences of the simple value for the batter; we should
also remember that the Egyptians did not make use of π, that is, of the ratio between

circular circumference and diameter, but of (the ratio between the side of the

π
4

squared circle and the diameter), which they approximated as 8/9 .21

Origins and development

The canonical system of proportions goes back to Dynasty 1; recordings of the
Nile height in cubits, palms and fingers (which probably served to fix the taxation level
for the year) are roughly contemporary; biennial “countings” of the resources of the
country begin with Dynasty 2; “chord stretching” at the foundation of prestige buildings

18 See Erik Iversen, Canon and Proportion in Egyptian Art (2Warminster, England: Aris
& Phillips, 1975; 11955), and (on the influence of the system in later art) idem, “The
Canonical Tradition”, pp. 55–82 in J. R. Harris (ed.), The Legacy of Egypt, second edition
(Oxford: Oxford University Press, 1971).
19 Thus, e.g., Alexander Badawy, Ancient Egyptian Architectural Design. A Study of the
Harmonic System, pp. 3f and passim (Berkeley & Los Angeles: University of California
Press, 1965).
20 See Gay Robins & Charles C. D. Shute, “Mathematical Bases of Ancient Egyptian
Architecture and Graphic Art,” Historia Mathematica 12 (1985), 107–122.
21 For further references regarding the fables and their lack of foundation, see Gillings,
op. cit. (n. 1), pp. 237–39. A recent very careful treatment is Roger Herz-Fischler, The
Shape of the Great Pyramid (Waterloo, Ontario: Wilfrid Laurier University Press, 2000).
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is recorded during Dynasty 1.22 Though nothing comparable to the bureaucratic precision
of early Mesopotamian state formation was aimed at – the legitimization of the
Pharaonic state rested on conquest and perhaps on the affirmation of cosmological
stability, not on redistribution – practical mathematics proper was thus certainly present
throughout the third millennium.

This, however, is not yet the mathematics of RMP and MMP. Until Dynasty 5
only metrological sub-units and the fractions 3", 2’ and 3’ (and a particular sign × for
1/4



where everything until no 34 is abstract and expressed in pure numbers and
aliquot parts);

– their use permits (and asks for) the display of virtuosity.
If we compare Middle Kingdom mathematics with Old Babylonian mathematics (see
MESOPOTAMIAN MATHEMATICS), we shall find no systematic, openly supra-
utilitarian pursuits similar to Babylonian second-degree algebra. Analogues of the
“humanism” of the Old Babylonian scribe school are also absent from the Egyptian
school texts that served to inculcate professional norms and pride in future scribes.
As we see, however, the difference is not absolute, and even in Egypt the scribe school
transmuted the knowledge and skills it had to impart. In one respect the impact of
schooling was even stronger in Egypt than in Babylonia: The fundamental practical
techniques created during Ur III (admittedly within the school) were only affected
superficially by the new climate of the Old Babylonian scribe school; instead,
“humanism” expressed itself in the grafting of an additional, supra-utilitarian discipline
on the curriculum. In Egypt, the systematic use of aliquot parts (more supra-utilitarian
than normally recognized) transformed even ordinary mathematical practice.

Links?

These similarities are evidently to be explained as parallel developments due to similar
conditions, not as borrowings. On the general level, second millennium Egyptian and
Babylonian mathematics are wholly independent from each other. On the level of
particulars, the occasional multiplication with a reciprocal in RMP has sometimes been
seen as a borrowing, but the context where it occurs speaks against that assumption
(cf. above). Only a single problem in RMP (viz no 37) is certainly related to a Babylonian
text:

“Go down I [a jug of unknown capacity] times 3 into the hekat-measure, ’3 of me is added
to me, 3’ of 3’ of me is added to me, 9̄ of me is added to me; return I, filled am I”.

This can be compared with a problem from Old Babylonian Ešnunna:26

To 2/3 of my 2/3 I have joined 100 sìla and my 2/3 , 1 gur was completed. The tallum-vessel
of my grain corresponds to what?

The Egyptian solution is quite regular, fully based on aliquot parts and grain metrology;
the Babylonian solution is no solution at all but a trick which presupposes that the
solution be already known. The problem is obviously one of those riddles which the
early Akkadian scribe school borrowed around 1800 BC (see MESOPOTAMIAN
MATHEMATICS). On the other hand, the idiom of “ascending continued fractions”

26 IM 53 957, ed. p. 37 in Taha Baqir, “Some More Mathematical Texts from Tell Harmal,”
Sumer 7 (1951), 28–45, corrections and interpretation p. 52 in W. von Soden, “Zu den
mathematischen Aufgabentexten vom Tell Harmal”. Sumer 8 (1952), 49–56.
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(“a, and b of a”, where a and b are simple fractions) is typically Semitic, and alien to
the Egyptian context.27 Both a Babylonian borrowing from Egypt and an Egyptian
adoption of a Babylonian school problem are thus excluded; both must build on a
common source, probably a traders’ environment in contact with both regions. In
contrast to what happened in Babylonia, however, such borrowings are not likely to
have had any deeper influence on Egyptian Middle Kingdom mathematics, which
instead develops material and ideas already present in third-millennium scribal
computation.

Demotic creativity and borrowings

Autochthonous (but after the Middle Kingdom maturation very slow) development
remains a characteristic of the Egyptian mathematical tradition into the Demotic period –
and even in the early Byzantine epoch, as revealed by the Akhmı̄m-papyrus (written
in Greek).28 Development does take place: one undated Demotic papyrus29 tabulates
p q̄, 1≤p≤10, q = 90 and q = 150 (similar tables are found in the Akhmı̄m papyrus; a
modest beginning in RMP lists p q̄, 1≤p≤10, q = 10, but the context here suggests that
other q-values would not be considered); the Demotic papyri also transform the old
technique of the reference quantity so as to express occasionally proper fractions,
treating (e.g.) 5 11 (“5 seen as part of 11”) as a legitimate final result and not as a
problem whose solution is 3’ 11̄ 33̄; what happens can be characterized as a process
of “creative dissolution” of the old canon which does not bring about any new
coherence – a close parallel to the changes in the character of the visual arts in
Hellenistic Egypt.

In this phase, however, influence from Western Asia is strong – no wonder, given
that Egypt had been regularly controlled by Assyrian, Achaemenid and Greek armies
and tax-officials since the seventh century. These contacts (and perhaps trading
connections) are likely to explain the use of a variety of formulae which have no
Egyptian antecedents but coincide precisely or almost with formulae that were in
constant use in Mesopotamia since the third or even fourth millennium: the determina-
tion of the circular area as 3/4 of the squared diameter; computation of the volume of

27 See in general Høyrup, op. cit. (n. 23); since I had not noticed the Ešnunna parallel
at the time, this publication contains some speculations about a possible common
Hamito-Semitic language structure; they may now be happily dismissed.
28 Edition with translation and commentary in J. Baillet, Le Papyrus mathématique
d’Akhmîm. (Mission Archéologique Française au Caire, Mémoires 9, 1; Paris: Leroux,
1892).
29 P. British Museum 10794, ed. Parker, op. cit. (n. 5), pp. 72f.
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a truncated cone as the height times the mid-cross-section;30 and the use of the
“surveyors formula” (average length times average width) to calculate the areas of
approximately rectangular quadrangles. They are certainly the reason that 8 of 40
problems in P. Cairo J. E. 89127–30, 89137–43 belong to a characteristic Babylonian type
(a reed first standing vertically against a wall and then moved to a slanted position),
which always involves the Pythagorean theorem, often in a sophisticated way (asking,
e.g., for the legs of a right triangle when the hypotenuse and the difference between
the hypotenuse and one leg are given).

Influence on Greek geometry?

From Herodotus onward, common Greek lore asserted that geometry was invented
by the Egyptians (either, in agreement with etymology, for surveying and taxation
purposes, or by the priests who had sufficient leisure for such concerns). Since Egyptian
and Babylonian mathematics became known directly, historians of mathematics have
been puzzled by this claim. There is no doubt that the Greek took their way to deal
with fractions from Egypt; the canonical system for pictorial representation certainly
influenced sixth-century Greek sculptors; and similar architectural rules may be reflected
in Vitruvius; but none of these have anything to do with Greek (theoretical) geometry.
At least one strain in Greek geometry (the “metric geometry” of Elements II etc.), on
the other hand, has striking structural similarities with Babylonian algebra (see
MESOPOTAMIAN MATHEMATICS). Before we dismiss the Greek account as pure
legend we should take note that the Greeks would only encounter Egyptian geometric
practice well after the arrival of Assyrian and Achaemenid surveyors, and that all the
borrowings into Demotic mathematics concern geometry, in particular metrical
geometry. It is not to be excluded that early Greek geometry was inspired by what
the Greeks encountered in Egypt; if so, the Greeks will have had little chance to know
that what they encountered was a fairly recent import.

Jens Høyrup
19 May, 2001

30 The details are of some interest: the surface of the mid-cross-section is not found as
in the corresponding Old Babylonian text, but as 1/4 of the product of diameter and
arc, the arc being 3 diameters – see Clagett, Ancient Egyptian Science. Volume II:
Calendars, Clocks and Astronomy, p. 75 (Memoirs of the American Philosophical Society,
214; Philadelphia: American Philosophical Society, 1989). The latter formula belongs
to the lay tradition, is found in one Old Babylonian school tablet (dealing with a
semicircle), and recurs in the pseudo-Heronic material.
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