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It was known at an early date that numbers and numerical computation played
a major role in Babylonian social life and culture.1 It could hardly be
otherwise, given the importance of bureaucracy and bureaucratic control. None
the less it came as an immense surprise when it was discovered from the late
1920s onwards that the content of a number of tablets was mathematical in
the proper sense, that is, that they dealt with mathematical problems that went
beyond what could be anticipated as immediately necessary in accounting, area
determination, manpower calculations and (relevant only in the late period)
the description of planetary movements.2 That mathematics on this level of
virtuosity had been a Babylonian concern was indeed no historical necessity,
as eminently illustrated by the case of Ur III. Thanks to Eleanor Robson’s
doctoral work3 we now know how mathematics teaching looked in the context
of what was probably the most meticulous bureaucracy of world history: apart
from scratch pads with numerical computations, the only mathematical school
texts are model documents.4

* Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark.
1 An inclusive bibliography of publications which elucidate this aspect of Mesopotamian

civilization is Friberg, J., “A Survey of Publications on Sumero-Akkadian Mathematics,
Metrology and Related Matters (1854–1982),” Department of Mathematics, Chalmers University
of Technology and the University of Göteborg No. 1982–17

2 This discovery and its impact is described pp. 1–10 in Høyrup, J., “Changing Trends in the
Historiography of Mesopotamian Mathematics: An Insider’s View,” History of Science 34 (1996),
1–32.

3 Robson, E., “Old Babylonian Coefficient Lists and the Wider Context of Mathematics in
Ancient Mesopotamia, 2100–1600 BC,” (Dissertation, submitted for D.Phil in Oriental Studies,
Wolfson College, Oxford, 1995), 204–207.

4 That no autonomous interest in mathematics was present in Ur III could be suspected from
indirect evidence, and seems to fit the particular situation of intellectual activity in the Ur III
context – cf. Høyrup, J., In Measure, Number, and Weight. Studies in Mathematics and Culture,
(New York, 1994), 61–63, 77–79. The coherence of the resulting picture (and the absence of
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Historians of mathematics were particularly struck by the Babylonian solution
of second-degree equations (and, as discovered during the 1930s, certain higher-
degree equations). They had supposed algebra to be an invention of medieval
India and Islam, somehow anticipated in Diophantos’sArithmetic and the
“geometric algebra” ofElementsII. The new discoveries led Neugebauer to
formulate the thesis, soon accepted as unquestioned orthodoxy until c. 1970,
that the “geometric algebra” was a translation of the results of Babylonian
algebra into the language of geometry – a translation that had become
mandatory after the discovery of irrationality.5

To a general public, unburdened by prejudice about the origin of algebra –
not least thus the general public of Assyriologists – it was and remained more
striking that even the theorem of Pythagoras appeared to have been known
in the Old Babylonian period.6 After all, the theorem was linked to Greek
mathematics not only by its name but also by the familiar anecdote, according
to whichgeschlachtet und verbrannt, Einhundert Ochsenhad been the price
the famous philosopher paid to the gods for granting him the discovery.7

Since then, more than half a century has gone by, and the latest decades have
produced a new image of Mesopotamian mathematics. None the less – and
because this new picture has hardly reached the broader public – it may be
profitable to return to the question about the relation between the Greek
theorem and the knowledge of the Old Babylonian calculators.

The Greek theorem

Let us first look at the theorem and on the way it is proved in
ElementsI.47. The theorem tells that the sum of [the areas of] the two squares
erected on the shorter sides of a right triangle equals [the area of] the square
erected on the hypotenuse. The proof runs as follows in paraphrase (see

later traces of any Neosumerian terminology for the formulation ofproblems) suggests that
the absence of problem texts from the UR III record is not due to the bad luck of excavations.

5 See Neugebauer, O., “Zur geometrischen Algebra (Studien zur Geschichte der antiken Algebra
III),” Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung
B: Studien 3 (1934–36), 245–259; and the discussion in Høyrup, “Changing Trends ...” (note
2), 10, 16f.

6 It was of course less astonishing that the theorem was used in texts from the Seleucid period.
For the same reason I shall leave the Seleucid texts aside in what follows.

7 “Vom pythagoreischen Lehrsatze,” in: Chamisso, Werke, (Berlin & Weimar,51988), 209.
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Figure 1):8 The tri-

Figure 1.

angle isABC, on whose
sides the squaresAD,
AI andBF are erected;
AG is drawn parallel to
CF. According to Pos-
tulate 4, all right angles
are equal, whence
∠ACD = ∠BCF. More-
over, if equal magni-
tudes be added to
equals, equal magni-
tudes result (Common
Notion 2). Therefore, if
∠ACB be added to
∠ACD and∠BCF, the
resulting angles∠BCD
and ∠FCA will be
equal. By the definition
of the square (Defini-
tion 22),AC = CD and
CF = CB. Therefore,
the trianglesACFandBCDare equal (Proposition I.4). Further, since a triangle
is half the parallellogram contained by the same parallels and having the same
base (Proposition I.41),ACF is half rectangleCG, andBCD is half the square
AD, BAE being a straight line by the definition of a right angle (Definition
10) and parallel toCD by the definition of the square. Thus squareAD equals
rectangleCG.

But AG is also parallel toBK, BK and CF being parallel. By similar
arguments we therefore get that squareAI is equal to rectangleBG. Taken
together, rectanglesBG and GC – which amount to nothing but the square
BF on the hypotenuse – thus equal the sum of the squaresAD andAI on the
shorter sides.

All this is far removed from anything we know from Old Babylonian
mathematics (and even Seleucid mathematics, for that matter). It is a theorem,
whereas the cuneiform texts contain nothing but paradigmatic examples,

8 See, e.g., The Thirteen Books of Euclid’s Elements, trans. E. Heath, 3 vols. (Cambridge
& New York, 21926), I, 349f.
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numerical determination of magnitudes, a few opaque attempts to formulate
a general computational rule, and a couple of didactical expositions of the
transformation of an equation. It deals with a triangle, whereas the basic
configuration of the Babylonians would be the rectangle. And it argues
explicitly about parallels, about the equality of angles and about other topics
for which nothing suggests that the Babylonians would possess as much as
a rudimentary terminology.

How is it then possible to claim that the Old Babylonian calculators (calling

Figure 2. The pole standing and leaned against the wall.

them “mathematicians” without further explanation is an anachronistic
misnomer) knew the “theorem of Pythagoras”?

The Old Babylonian
evidence

The claim is grounded
on eight texts, three of
which were known in the
1930s. The first of these is
the problem BM 85196,
obv. II.7–16.9 It deals
with a pole of length 30´
NINDAN,10 which at first
stands against a wall, and
whose upper end is then
lowered 6´ NINDAN (see
Figure 2). The distance
which the lower end
moves outwards is found
to be

= = 18´ NINDAN30́ 2–(30́ –6́ )2 30́ 2–24́ 2

– in agreement with what I shall henceforth speak of as the “Pythagorean rule,”
since this is how it occurs here and elsewhere in the material. Next, the text
finds how much the upper end will descend if the lower end moves 18´NINDAN

9 Ed., trans. O. Neugebauer, MKT II, 44, 47.

10 I use Thureau-Dangin’s transcription of the Babylonian sexagesimal place value numbers,
where ´, ´́ , etc. indicate decreasing and `, `̀ , etc. increasing sexagesimal orders of magnitude.
«°» (when needed) marks the order of simple integers – that is,n° = n. Orders of absolute
magnitude are my choice, when possible based on what seems reasonable: in the present case,
it seems more plausible that the length of the rod be 3 m than either 180 m or 5 cm.
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outwards, according to the same rule.

Figure 3. The circle of BM 85194 rev. I

33–43, with chord and descent.

The problem BM 85194, rev.
I.33–4311 deals with a circle and a
chord – see Figure 3. The perimeter
of the circle is told to be 1̀NINDAN,
from which the diameterD is seen
without calculation to be 20NINDAN;
moreover, the arrow isd = 2
NINDAN. The chord is then found as

D 2–(D–2d)2

– or rather, if we express ourselves
in terms that correspond to the text,
as the “equalside” (ÍB.SI8, the side of
the area if laid out as a square) of

(D)– (D–2d).12 Once again the
calculation presupposes the Pytha-
gorean rule, but it is based on a more sophisticated consideration – see the
diagram. In lines 39-43, the arrow is determined instead from the diameter
and the chord.

VAT 6598, rev. I.19–II.4 (#6–7 in the enumeration of TMB)13 treats of
a door with heighth = 40´ NINDAN and widthw = 10´ NINDAN. Two approxi-
mate formulae for the length of the diagonal are given:

d = in #6, d = in #7.h (w)
2h

h 2h (w)

11 Ed., trans. O. Neugebauer, MKT I, 148, 159f, cf. TMB, 32.

12 The analysis of the texts that leads forward to this interpretation – in particular to the
interpretation ofšutakūlum(not šutākulum, the reference beingkullumand notakālum; in the
present text written with the logogramNIGIN) is presented in Høyrup, J., “Algebra and Naive
Geometry. An Investigation of Some Basic Aspects of Old Babylonian Mathematical Thought,”
AoF 17 (1990), 27–69, 262–354.

13 Ed., trans. O. Neugebauer, MKT I, 279f, 282, cf. TMB, 130. A new edition and translation
of the tablet, joined with the fragment BM 96957, is found in Robson,op. cit.(note 3), 269–280.
Since the published version of this dissertation is still in press, I shall abstain from discussing
the other problems of the text.
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The formula of #6 is a fair (and familiar)

Figure 4. The probable geometrical

reasoning behind VAT 6598 #6.

approximation to

d = h 2 w 2

if d >> w, and can be argued from Figure 4:
The area (w) is distributed along two
sides of (h), that is, as two rectangles

(h, ).(w)
2h

If we neglect that the small shaded square
is missing, (h)+ (w) can thus be iden-
tified with

( ) ,h (w)
2h

and its square root with

Figure 5. A possible geometrical pro-

cedure behind VAT 6598 #7.

.h (w)
2h

The formula of #7 is not only much less
precise than that of #614 but also absurd
as it stands, adding a length and a volume
(problemswere certainly constructed by
means of such operations, but in a formula
to be used in computations it makes no
sense). Neugebauer suggests15 that it is an
approximation to the formula

d = ,h 2w 2h

2h 2 w 2

in which the divisor 2h2+w2 is, firstly,
irregular and hence unhandy, and, secondly,
close to 1 (namely 55´). He suggests16 that
this formula will have been found as an approximation to the complementary
approximation

14 42´13´́ 20´́´ instead of 41́ 15´́ . The true value is 41́ 13´́ 51́´́ 48´́´́ ... .

15 MKT I, 286f.

16 Via a reference to Neugebauer, O., Vorgriechische Mathematik (Berlin, 1934), 35f.
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d1 = ,(h) (w)
d0

where

d0 = h (w)
2h

is the approximation given in #6. The choice of operations (a “doubling”/TAB

in #7, which inverts the “breaking”/hepûmof #6) makes it more likely,
however, that this second approximation builds on a further elaboration of the
geometric argument. If we look at Figure 5 we notice that the area (w) should
not be distributed along the edges of (h) alone but as two rectangles (h,δ)
and a square (δ), which can be put together as a single rectangle (2h h
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(r)– (40´–r) = (30´) .

Figure 6. Redrawing of the triangle with cir-

cumscribed circle from TMS I

Either by means of something like
Figure 7 (a “naive” version of
Elements II.7) or from a similar
configuration where the smaller
square is located concentrically with-
in the greater one this leads to

(2 40´)×(r–20´) = 15´ ,

from which r = 31́ 15´́ follows
without difficulty.

The other relevant Susa text is No
XIX, 18 which contains two prob-
lems about a rectangle with a dia-
gonal. In #1, the widthw is told to
be 1/4 less than the lengthl, and the
diagonald is given to be 40´. The solution follows from a “false position”
l = 1, which implies thatw = 45´ and hence, using the Pythagorean rule,d =
1°15´. The true values must therefore be reduced by a factor40´/1°15´ = 32´.

#2 is much more complex. The area (l,w) is given to be 20´; moreover,
we are told the area of another rectangle, one side of which isd, while the
other is (l), the cube on the length of the original triangle.19 The sophisti-
cated procedure that leads to the solution once again makes (implicit) use of
the transformation (d) = (l)+ (w).

The tablet Plimpton 32220 is a table, not directly of Pythagorean triples
a – b – c(that is, number triples fulfilling the conditiona2+b2 = c2) but of
???–̄c2–b–c, where ??? stands for one or (probably) more lost columns and
c̄ = c/a. All pairs

18 Edition and relatively adequate translation and commentary E. M. Bruins & M. Rutten, MDP
34, 101–105.

19 That (the volume of) a geometrical cube is meant follows from the distribution of the
operations.

20 Ed. Neugebauer & Sachs, MCT, 39–41.
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(b̄,c̄) = ( , )

Figure 7. Diagram from which follows

“proto-ElementsII.7,” (R–r) =

(R)–2 (R,r)+ (r).

t –t
2

t t
2

are listed for which√2–1<t<5/9 , t
being the ratio between two “reg-
ular” numbers no greater than 125,
t’ = 1/t. The heads of the columns
show that the numbers are under-
stood as having to do with the
[length,] width and diagonal of a
rectangle. For the rest, the purpose
of the table is an enigma, and none
of the explanations suggested so far
seem plausible.21 For our present
purpose it is sufficient to notice that
the text presupposes both knowledge
of the Pythagorean rule and of tech-
niques for creating Pythagorean
triples (directly or via some equivalent).

All texts referred to so far used the rule correctly; one, however, misapplies
it: YBC 8633. It deals with an isosceles triangle, whose legs (“both lengths”/UŠ)
are 1̀ 40, whereas the base (the “width”/SAG) is 2̀ 20; the area is to be found.
The tablet contains a drawing, which is redrawn in correct proportions in
Figure 8. The text takes the legs to be hypotenuses in (right) triangles with
sides 1̀ , 1̀ 20 and 1̀ 40 (obtained by blowing up the 3-4-5–triangle with a factor
20), and supposes erroneously that these are located within the original triangle
as shown in the figure. This procedure does not directly presuppose familiarity
with the Pythagorean rule, only the knowledge that the area of a 3-4-5–triangle
is (½ 3) 4 – or, equivalently, that a rectangle with sides 3 and 4 has diagonal
5; this knowledge could easily be transmitted with the standardIGI.GUB table
independently of the underlying principle.

21 See Friberg, J., “Methods and Traditions of Babylonian Mathematics. Plimpton 322,
Pythagorean Triples, and the Babylonian Triangle Parameter Equations,” Historia Mathematica
8 (1981), 277-318. Friberg’s own proposal – that the table be meant to provide parameters from
which second-degree equations can be constructed – does not fit the Old Babylonian habit
of constructing problems from known very simple solutions – mostly the rectangle 20×30 or
the square 30×30.
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The status of the rule

Figure 8. The tri-

angle of YBC 8633.

Neither in the latter misapplication nor in any of the
other texts do we find any trace of an explicittheorem,
nor an enunciation of the rule as an abstract principle.
However, several of the examples (in particular Plimpton
322 with its coupling to the construction of Pythagorean
triples) leave no doubt that both explicit knowledge of a
generalrule and of some kind of underlying principle was
present.

But whichrule, and which principle? Which is the figure
for which the rule was supposed to hold? All that can be
concluded from the texts is that it was used for configur-
ations (whether quadrangular or triangular) that are
sufficiently defined by one length and one width, the
product of which determines the area of the figure in question.

From our point of view, such figures must be rectangles if quadrangular,
and right if triangular. However, the definition of these figures seems to
presuppose the notion of the right angle, and thus confronts us with a claim
advanced by F. Thureau-Dangin, Solomon Gandz and Evert Bruins,viz that
the Babylonians did not possess the concept of the angle.22 Only Gandz
explains precisely which of many versions of the concept is intended when
theconcept is spoken of – namely the “angle as a measurable quantity in the
modern or Greek sense of the word” (p. 416). Thureau-Dangin’s tacit
understanding may have been similar, but Bruins, when quoting it, takes it
to imply that,a fortiori, the notion of triangles having the same angles was
unknown to the Babylonians – neglecting that similarity (“having the same
shape,” corresponding to the Euclidean notion of being “given in shape”) may
be a primitive and not a derived notion (as it has become in Euclid’sData,
Def. 3).

If Bruins was right, the Babylonians would have had to believe that the
Pythagorean rule held true for any trapezium and for any triangle (and that
the area of all such figures was determined from length and width alone). This
seems absurd, and already architectural evidence shows the affirmation to be
nonsensical that the Babylonians had no understanding of angles. We should
distinguish the absence of a notion of theangle as a measurable quantityfrom

22 See, for instance, F. Thureau-Dangin, TMB, xvii; Gandz, S., “Studies in Babylonian
Mathematics II. Conflicting Interpretations of Babylonian Mathematics,” Isis 31 (1939), 405–425;
and E. M. Bruins, MDP 34, 4.
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inability to perceive a difference between different angles.
For the present purpose all we need to notice is that the Babylonians

distinguished what we would call the “right” from what we may designate a
“wrong” angle – that is, between corners whose legs when multiplied determine
an area and such corners which do not serve this purpose. This distinction is
evident in field plans, in which right angles are rendered as right angles, while
no care is taken to render the irrelevant “wrong” angles with quantitative
precision. Similar evidence is offered by the “geometric” text BM 15285.23

The Greek contribution was not to discover that corners may be different, and
that some of them can be singled out as “right,” but to introduce an explicit
definition: “When a straight line set up on a straight line makes the adjacent
angles equal to one another, each of the equal angles is right,”24 and to
discover in the second instance that this definition is useless unless supported
by the postulate that “all right angles are equal to one another.”25

We notice that all occurrences of the Pythagorean rule discussed above
concern precisely angles that are right in the sense of being “non-wrong,” with
the exception of the misapplication not ofthe rule as suchbut of the 3-4-
5–triangle in YBC 8633; this leaves little doubt that this was the situation
where it was supposed to hold true.

Geographical distribution

In 1945, Goetze attempted to determine the geographical origin of the Old
Babylonian mathematical texts published in MKT and MCT;26 since almost
all of them had been bought on the antiquities market, he based the classifica-
tion on orthography and, to some extent, on vocabulary. He found six text
groups, of which Nos 1–4 could be assigned to “the South,” that is, the former
Sumerian heartland (group 1 and perhaps group 2 probably coming from Larsa,
groups 3 and 4 from Uruk), and 5–6 to “the North” (group 6 coming in all
likelihood from Sippar27). Since then, a fair number of texts with known
provenience have been published, some from Eshnunna (“group 7”) and some

23 The most complete edition to date is in Robson,op. cit. (note 3), 248–256.

24 ElementsI, Def. 10, trans. Heath (note 8) I, 153.

25 ElementsI, Postulate 4, trans. Heath (note 8), 154.

26 “The Akkadian Dialects of the Old-Babylonian Mathematical Texts,” in: MCT, 146-151.

27 See, beyond Goetze’s evidence, Robson,op. cit. (note 3), 278 n. 516.
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from Susa (“group 8”);28 chronologically, group 7 belongs in the early
eighteenth century, while groups 6 and 8 seem to be late Old Babylonian.

If the texts making use of the Pythagorean rule are located within this grid,
a striking picture emerges: BM 85194, BM 85196 and VAT 6598 all belong
to group 6; TMS I and XIX evidently belong to group 8; Plimpton 322, which
Goetze ascribes to group 1 on the basis of very little syllabic writing, might
just as well belong to group 6, where all its spellings recur. The only text
which with some certainty comes from the former Sumerian South is YBC
8633, the text that does not use the rule but misapplies the 3-4-5–triangle, the
author either not understanding what he is doing or not caring. All the others
come from what had once constituted the periphery of Ur III, and all are late
Old Babylonian (except perhaps the indeterminable Plimpton 322).

As told above, 8 texts are relevant for our discussion. So far only 7 were

Figure 9, The initial steps of the

procedure of Db2-146.

mentioned. The last is Db2-146, which is from Eshnunna, dated to the reign
of Ibalpiel II, year 8 or 9 – still periphery, we notice, but one of the earliest
Old Babylonian mathematical texts. It deals with a rectangle whose diagonal
is told to be 1°15´ and whose area is 45´, and thus presupposes the knowledge
that the diagonal of a rectangle with sides 1 and 45´ is 1°15´. The solution
begins as shown in Figure 9: first the square on the diagonal is constructed;
removal of twice the area (represented by four times the half-area) then leaves
the square on the excess of the length over the
width. Taking the “equalside” of this square
thus reduces the problem to that of a rectangle
where the area and the difference between the
sides is given, which is solved in the customary
way.

In the solution, the text thus makes no use of
the Pythagorean rule. The statement only pre-
supposes familiarity with the standard rectangle
with expressible diagonal. The procedure pre-
scription, however, is followed by a proof, in
which the diagonal is found as the equalside of
the sum of the squares constructed upon the

28 These numbers refer to my extension of Goetze’s analysis, see Høyrup, J., “The Finer
Structure of the Old Babylonian Mathematical Corpus. Elements of Classification, with some
Results,” to appear in: Marzahn, J. & Neumann, H. (eds.), Assyriologica et Semitica. Festschrift
für Joachim Oelsner. (AOAT, Band 252; Kevelaer & Neukirchen-Vluyn, 1999), 117–177. In
print.
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length and the width. There is thus no doubt that the rule was known in full
form in Eshnunna around 1775BC.

Transmission and transformation

As I have argued elsewhere,29 this last problem belongs to a small stock
of riddles that circulated among (probably) Akkadian-speaking, non-scribal
surveyors in the centuries around 2000BC. Other riddles asked for the side
of a square if the sum of (the measuring numbers of) either “the side” or “the
four sides” and the area be given, etc. They were adopted into the new
Akkadian scribe school, where they became the starting point for the develop-
ment of a whole mathematical discipline (known as Old Babylonian “algebra”).
When the scribe school disappeared after 1600BC, this discipline was forgotten,
but the lay tradition with its riddles survived and left its traces in Late
Babylonian, Greek and Arabic mathematics. Precisely the text groups 6 and
8, however, can be seen to have been in continuous interaction with the lay
tradition. There is thus no doubt that the Greek geometers encountered the
Pythagorean rule when they started their investigation of what the Near Eastern
practical surveyors knew (to some extent perhaps as this knowledge had been
brought to Egypt by Assyrian and Persian administrators – there is clear
evidence in Demotic mathematical papyri that such borrowings took place).
The Greek geometers did not restrict themselves to adoption and digestion;
one of their primary aims became to understandwhy and under which
conditionsthe “metrical geometry” of the surveyors worked – a process of
quasi-Kantian “critique” whose results are summarized inElementsII.1-10.
WhatElementsI.47 presents us with is a similar critique of the Pythagorean
rule. This critique transforms the rule into a theorem and shows how it can

29 The argument is complex and cannot be recapitulated in the present context. See, for various
aspects, Høyrup, J., “‘The Four Sides and the Area’. Oblique Light on the Prehistory of Algebra,”
in: Calinger, R. (ed.), Vita mathematica. Historical Research and Integration with Teaching.
(Washington, DC, 1996), 45–65 (marred by printing errors, due to the publisher’s omission
of a proof reading stage);idem, “«Les quatre côtés et l’aire» – sur une tradition anonyme et
oubliée qui a engendré ou influencé trois grandes traditions mathématiques savantes,” in: Gallo,
E., Giacardi, L., & Roero, C. S., (eds.), Associazione Subalpina Mathesis. Seminario di Storia
delle Matematiche “Tullio Viola.” Conferenze e Seminari 1995–1996 (Torino, 1996), 192–224;
andidem, “Hero, Ps.-Hero, and Near Eastern Practical Geometry. An Investigation ofMetrica,
Geometrica, and other Treatises,” in: Döring, K., Herzhoff, B., & Wöhrle, G., (eds.), Antike
Naturwissenschaft und ihre Rezeption, Band 7 (Trier, 1997), 67–93 (for obscure reasons, the
publisher has changed into ~ and into ¤§ on p. 83 after having supplied correct proof
sheets).
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be established independently of the metrical geometry ofElementsII. In order
to do that is has to make use not only of thedefinitionof the right angle and
of the appurtenant postulate, but also of the congruence theorems and thus
of that notion of the quantified angle which the Greek geometers had created.
Whereas most of the proofs ofElementsII are easily stripped of their “critical”
dress and reduced to the underlying “naive” procedures as these are described
in the Babylonian texts, that of I.47 is therefore fundamentally Greek and
wholly incompatible with Old Babylonian mathematical procedures and thought.

Whence?

The preceding section regards the glorious afterlife of the Old Babylonian
rule. The origin of the idea cannot be established with the same certainty, but
a plausible hypothesis may still be formulated.

The first observation to be made is that Figure 9 can easily be transformed
into a familiar heuristic cut-and-paste proof of the rule; all we need is to
prolong two of the internal lines and then to show by counting that the total
area can either be described as the square on the diagonal plus twice the area
of the rectangle, or as the sum of the squares onl and w and twice the
rectangular area.

Next we should observe that no single source from earlier ages suggests
familiarity with the rule – in particular not the Old Akkadian rectangle
problems discussed by Robert Whiting.30 In contrast, an Old Akkadian text
shows that the rule for bisecting a trapeziumwasknown.31 The Old Babylon-
ian terminology in which this rule is formulated shows that is was based on
similar considerations (probably a configuration of concentric squares).To
judge from this evidence aloneit is therefore likely that the Pythagorean rule
was discovered within the lay surveyors’ environment, possibly as a spin-off
from the problem treated in Db2-146, somewhere between 2300 and 1825BC.
On one hand, indeed, the numerical parameters of Db2-146 are already those
of the scribe school, adapted to the sexagesimal system, and thus evidence
that the adoption was not quite recent by 1775BC; on the other, a discovery
which were significantly older than 2300BC would probably have left
discernable traces in an Old Akkadian school that already had adopted other
characteristic rectangle problems.

30 Whiting, R. M., “More Evidence for Sexagesimal Calculations in the Third Millennium
B.C.,” ZA 74 (1984), 59–66.

31 IM 58045, see Friberg, J., “Mathematik,” in: RlA 7 (1987–1990), 531–585, here 541.
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On similar though much more substantial grounds, the trick of the quadratic
completion appears to have been invented in the same lay environment within
the same time limits. The second-degree algebra that dumbfounded the
historians of mathematics seems to be the sister of that Pythagorean rule which
impressed the broader scholarly public. Since second-degree algebra penetrated
the mathematics of the Old Babylonian South through and through, whereas
the Pythagorean rule never impressed it perceptibly, the Pythagorean rule will
have been the younger of the two, discovered somewhere in the periphery at
a moment when the South was already engaged in – and perhaps had already
completed – the adoption process. All in all, the discovery should thus rather
be dated between 2025 (when the periphery detached itself from the Ur III
empire) and 1825BC than between 2300 and 2025.
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