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Abstract

This report describes SP, a system for specialising logic programs. The report functions as
a user’s manual for SP, and also contains the algorithms employed and arguments for their
correctness. A number of examples of program specialisation are given in Appendix A.
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1 Program Specialisation

SP is a system for specialising logic programs. Before describing the system, it is worth
reviewing briefly the aims and interesting applications of program specialisation.

To specialise a program is to restrict its behaviour in some way. The purpose of specialisa-
tion is to exploit the restriction to gain efficiency. A specialised program is equivalent, within
the bounds of the restriction imposed, to the original unspecialised program, but should be
more efficient. The uses of specialisation arise because it is sometimes convenient or concise
to define a program as a special case, or restriction, of a given more general program.

1.1 The Specialisation Principle in Computing

Specialisation is a simple but important principle with applications in basic areas of com-
puting. The elegant reconstruction of the theory of compilation using specialisation is an
indication of its significance. Futamura, inspired by ideas of Lombardi [21] was apparently
the first explicitly to present compilation as specialisation, or “partial evaluation” of an in-
terpreter [5], and Ershov [4] later independently developed the related idea of “mixed com-
putation” of an interpreter. Both authors developed definitions of compiled code, compilers
and compiler-generators; these definitions are sometimes called the Futamura Projections.

The first Futamura projection, defining compilation, can be briefly explained as follows.
An interpreter for some language L is a meta program taking a program in L as input data;
the result of restricting the interpreter to a particular object program P0 is a specialised
interpreter that can interpret only one program, P0. This specialised interpreter may be
considered as a compiled version of P0; more specifically, it is the result of compiling P0 into
the language in which the interpreter is written. The definitions of compilers and compiler-
generators are based on self-application of a program specialiser. Such ideas have been put
into practice, most notably by Jones et al. [14].

Extending the idea of compilation, any program P1 in language L1 can be translated into
a program in language L2; this is done by giving operational semantics for L1 in the form of an
interpreter written in L2, and then specialising the interpreter for P1. The result “compiles”
P1 using the semantics specified by the interpreter. This translation could be from a higher
to a lower-level language, or vice versa, or be within the same language.

The translation could serve to compile programs using non-standard operational seman-
tics, by specialising an interpreter defining the required semantics. To name a few possibilities,
meta programs could be used to specify interpreters for virtual machines, abstract interpre-
tations [23], language extensions [24] and parallel or non-standard execution strategies [8]
[2].

1.2 Future Applications

More speculatively, a further range of applications is suggested by regarding proof procedures
for various formal logics as meta programs. Usually in such cases - take first order logic as an
example - one does not readily regard the proof procedure as a language interpreter. The fact
that this is only a psychological barrier was shown by the practicality of logic programming.
Here a proof procedure for a subset of first order logic is sufficiently efficient to be regarded
as a program interpreter. But a proof procedure for the whole of first order logic, written
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in a suitable meta language, has equal claim to be a language interpreter, albeit not very
practical, giving procedural semantics to any first order theory.

The specialisation of the proof procedure for a fixed theory T in first order logic may
provide a means to compile T into a more obviously computational form. This idea has a
superficial connection to the ideas of the school of program synthesis that regards programs
as proofs in a constructive logic. The program that is synthesised from a proof using that
method can perhaps be seen as a specialised version of the constructive proof procedure,
specialised to perform only one proof.

There is a possibility of using specialisation to compile very high-level languages such
as constraint logic programming languages. A number of other challenging problems and
applications for program specialisation in software development and artificial intelligence are
discussed in [13].

2 Transformations in SP

2.1 The Aims of the SP System

The SP system is designed to specialise declarative logic programs. It does not aim to handle
“full Prolog” as Mixtus [25], for example, does. However declarative logic programs may in-
clude many of the built-in predicates normally implemented in Prolog, such as those handling
arithmetic. Such predicates are declarative since they can in principle be given (possibly infi-
nite) definitions as logic programs. A list of the allowed Prolog built-ins is given in Appendix
B.

The SP system itself is not written completely declaratively, and hence SP is not self-
applicable. The main intention is for SP to be a general purpose specialiser rather than a
compiler production kit, hence self-application is not a primary goal. In any case, many of
the more interesting applications of specialisation do not involve self-application. However,
a longer term goal is to rewrite SP in a declarative language and experiment with self-
application.

2.2 Specialisation of Logic Programs

The aim of program specialisation in logic programming is to take a program P and a goal
G, and derive a program P ′ with the following properties:

1. Computations of P ∪ {G} and P ′ ∪ {G} give identical results (computed answers and
finite failures).

2. Computation of P ′ ∪ {G} is more efficient than P ∪ {G}.

Although specialisation by partial evaluation is conceptually a simple transformation, the
main problems of achieving effective program specialisation are:

• Control of unfolding: too little unfolding may not produce the required specialisation;
too much unfolding can cause exponential growth in program size; the wrong unfoldings
can actually decrease the efficiency of specialised programs [32].
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• Termination: partial evaluation of a program may give an infinite computation tree,
and the partial evaluation procedure may generate an infinite number of finite trees.

• Correctness: with one or two notable exceptions [20], [1], the correctness of previous
partial evaluation methods has not been formally justified.

The following techniques, incorporated in SP have been developed largely in response to
these problems.

• Control of unfolding: determinacy in the computation is the basis for the control of
unfolding. This gives better control than other methods. More specific clause transfor-
mations are introduced to obtain specialisation without unfolding.

• Termination: the flow analysis algorithm incorporates an abstraction operation that
can be used to ensure termination.

• Correctness: the correctness of each transformation is justified.

In the next section definitions are given of partial evaluation and other operations used
in SP. SP is called a specialisation system rather than a partial evaluation system, though
SP relies mostly on partial evaluation. Partial evaluation in logic programming has also been
called “partial deduction” in [16]; both terms are strongly operational and associated with
computation trees.

The terms “specialisation” and “partial evaluation/deduction” are sometimes used syn-
onymously, though specialisation includes partial evaluation as well as other transformations.
For instance the notion of a “more specific logic program” [22] is a kind of specialisation used
in SP, in which a logic program clause may be replaced by a more instantiated version, or
even eliminated from the program, without altering the program’s success or finite failure set.
Transformations such as folding and renaming may also be incorporated in the specialisation
process.

Furthermore the use of abstract interpretation and other safe approximations of program
behaviour can give specialisations that would require “infinite” partial evaluation.

2.3 Definitions

For logic programming, the terminology defined in [19] is used. The next four definitions
concerning partial evaluation are quoted from [20].

Definition 2.1 resultant
A resultant is a first order formula Q1 ← Q2 where Qi is either absent or a conjunction

of literals, and any variables in Q1 or Q2 are assumed to be universally quantified at the front
of the resultant.

Definition 2.2 resultant of a derivation
Let P be a normal program and G0 = ← G be a normal goal. Let G0, . . . , Gn be

an SLDNF derivation of P ∪ {G0}, where Gn = ← Q and θ1, . . . , θn is the sequence of
substitutions associated with the derivation. Let θ = θ1θ2 . . . θn. Then the derivation has
length n, computed answer θ|G and resultant Gθ ← Q. Note that if G is an atom then the
resultant is a normal clause.
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Definition 2.3 partial evaluation
Let P be a normal program and A an atom. Let T be an SLDNF tree for P ∪ {← A},and

let ← G1, . . . ,← Gn be goals chosen from the non-root nodes of T such that there is exactly
one goal from each non-failing branch of T . Let θ1, . . . , θn be the computed answers of the
derivations from ← A to ← G1, . . . ,← Gn respectively. Then the set of resultants {Aθ1 ←
G1, . . . , Aθn ← Gn} is called a partial evaluation of A in P .

If A is a finite set of atoms, then a partial evaluation of A in P is the union of the partial
evaluations of the elements of A.

Definition 2.4 closed
Let S be a set of first order formulas and A a finite set of atoms. Then S is A-closed if

each atom in S containing a predicate symbol occurring in A is an instance of an atom in A.

Given an atom A and a program P , there exist in general infinitely many different partial
evaluations of A in P . Some fixed rule for generating resultants is used, called an unfolding
rule.

Definition 2.5 unfolding rule
An unfolding rule U is a function which given P and A, returns exactly one finite set

of resultants that is a partial evaluation of A in P . If A is a finite set of atoms and P a
program, then the set of resultants obtained by applying U to each atom in A is called a partial
evaluation of A in P using U .

Definition 2.6 An operation abstract(S) is any operation satisfying the following condition.
Let S be a set of atoms; then abstract(S) is a set of atoms A with the same predicates as
those in S, such that every atom in S is an instance of an atom in A.

A constructive definition of abstract can be given by defining an approximation function on
atoms, called α, such that if A is an atom, α(A) is an atom and A is an instance of α(A). The
atom α(A) is called the representative of A. abstract(S) is then defined as

{
α(A)

∣∣∣ A ∈ S }
.

Definition 2.7 renaming definition
Let A be an atom, and let x1, . . . , xn be the distinct variables in A, in order of their

first occurrence. Let p be a predicate symbol different from that in A. Then the clause
p(x1, . . . , xn)← A is called a renaming definition for A.

Let A be a set of atoms; then a set of renaming definitions for A is the set of renaming
definitions for the atoms in A, with a distinct predicate name chosen for each definition.

Example 1 Let A = {P (F (x), y), P ([], x)}. Then suitable renaming definitions for A are:

P1(x, y)← P (F (x), y)

P2(x)← P ([], x)
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Definition 2.8 unfold
Let P be a normal program and let C = A← Q be a clause in P . Then a clause Aθ ← R

is obtained by unfolding C in P if there is an SLDNF derivation of P ∪ {← Q} of the form
← Q, . . . ,← R, with computed answer θ, and the clause C is not used in the derivation (or
any sub-derivation) except possibly at the first step.

The program P ′ = P − {C} ∪ {C ′} is obtained from P by unfolding C in P .

Note. The restriction on the use of C in the derivation is for compatibility with the usual
definition of unfolding (e.g. [31], [28]), where unfolding is a single derivation step. Hence the
clause C is not available after the first derivation step.

Definition 2.9 (complete) renaming transformation
Let P be a normal program, and C = A ← Q1, Bθ,Q2 be a clause in P , where Bθ is a

literal, and Qi are conjunctions of literals. Let R be a set of renaming definitions whose head
predicates do not occur in P .

• Suppose B is an atom; let D = B′ ← B be in R. Then let clause C ′ = A← Q1, B
′θ,Q2.

• Suppose B is a literal ¬N ; let D = N ′ ← N be in R. Then let clause C ′ = A ←
Q1,¬N ′θ,Q2.

In both cases, C ′ is obtained from C by renaming Bθ with the renaming clause D.
A complete renaming of a clause (wrt to a set of renaming definitions) is obtained by

renaming every atom in the clause body for which a renaming definition exists. Note that the
result is not uniquely defined; an atom may be renamed by more than one definition.

Lemma 2.10 Let P be a program and let A be an atom. Let PA be a partial evaluation of
A in P . Let A′ ← A be a renaming definition for A, where the renaming predicate in the
head does not occur in P . Then for each resultant Aθ ← R in PA, a clause A′θ ← R can be
obtained by unfolding the clause A′ ← A in the program P ∪ {A′ ← A}.

Definition 2.11 most specific generalisation
Let T be a non-empty set of terms. A generalisation of T is a term t such that ∀s ∈

T . s is an instance of t. t is a most specific generalisation of T if for all t′ such that t′ is a
generalisation of T , t is an instance of t′. t is unique modulo variable renaming, so a most
specific generalisation of T is referred to as msg(T ).

The concept of more specific programs was introduced in [22]. The same ideas are con-
structed below in a somewhat different way.

Definition 2.12 more specific goal
Let P be a normal program and G a goal. Define Dk, k = 1, 2, · · · to be the set of resultants

of SLDNF derivations of length k of P ∪ {← G} with some fixed safe computation rule. If
Dk 6= ∅, define G′ as:
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G′ = msg
{
Gθ

∣∣∣ Gθ ← R ∈ Dk

}
Assuming G′ is chosen so that it has no variable in common with G, an mgu of G and G′

exists, say φk. Gφk is called a more specific version of G.

Definition 2.13 more specific clause
Let P be a normal program and C = H ← B a clause in P . Let k > 0 and let ← Bφk

be a more specific version of ← B (if it exists). Define Ck to be Hφk ← Bφk. Ck is called a
more specific version of C.

Definition 2.14 more specific program
Let P be a normal program, and let k > 0. Let P ′ be obtained by replacing some clause C

in P by a more specific version Ck, if it exists, or deleting C if Ck does not exist. Then P ′ is
called a more specific version of P .

Lemma 2.15 Let P be a normal program, and let P ′ be a more specific version of P . Then
for all goals G, P ∪ {G} succeeds with computed answer θ (resp. fails finitely) iff P ′ ∪ {G}
succeeds with computed answer θ (resp. fails finitely).

Proof. Omitted. 2

The definition of more specific program transformations is designed to preserve SLDNF
procedural semantics. Note that in some circumstances even more specific programs can be
found by detecting and eliminating infinite failed derivations (e.g. by abstract interpretation).
Such transformation could of course change the SLDNF procedural semantics of the program
(by turning infinite loops into finite failures) but it could be useful in some cases [3]. Such
transformations are not used in SP, but will be incorporated in later versions. For the moment
a modified definition of Definition 2.13 is as follows.

Definition 2.16 non-failing more specific programs
A derivation of length k is non-failing if it is the prefix of at least one successful derivation.
Let P be a normal program and C = H ← B a clause in P . Define Dk, k = 1, 2, · · ·

to be the set of resultants of non-failing SLDNF derivations of length k of P ∪ {← B} with
some fixed safe computation rule. If Dk 6= ∅, define B′ as:

B′ = msg
{
Bθ

∣∣∣ Bθ ← R ∈ Dk

}
An mgu of B and B′ exists, say φk. Define Ck to be Hφk ← Bφk. Ck is called a non-failing
more specific version of C.

A non-failing more specific version of a program P is defined similarly as in Definition
2.14.

It is undecidable whether a derivation is non-failing, so in practice only a superset of Dk can
be computed, by using sufficient conditions for detecting failing derivations.
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Definition 2.17 imported
When specialising a program, certain predicates are designated imported. These are pred-

icates defined in another program module. Literals containing these predicates cannot be
selected during any SLDNF derivation in the specialisation procedures.

Definition 2.18 built-in predicates
Certain Prolog built-in predicates may appear in programs to be specialised. The built-ins

that are allowed are predicates that in principle are declarative and could be defined with a
set of normal clauses. (Others such as assert, retract, var, etc., have no such definitions.)
For each acceptable built-in predicate p, there are conditions which must be satisfied before
literals containing p are evaluated. The acceptable built-ins, and their evaluation conditions,
are given as a Prolog program in Appendix B.

SLDNF derivations may include the execution of built-ins whose evaluation conditions are
satisfied.

3 Unfolding Rules

Most partial evaluation systems treat the control of unfolding as primarily a loop prevention
problem (e.g. [25]). In other words, it is seen as desirable to unfold as much as possible
without risking unfolding an infinite branch of the computation tree.

In fact, loop prevention can be a rather poor basis to control partial evaluation. It is
certainly not the case that it is a good idea to do as much unfolding as possible during partial
evaluation. Good control decisions are as critical in partial evaluation as they are at run
time. The main factors affecting unfolding in SP are determinacy and choice points in the
computation tree. This approach tends to yield somewhat more conservative unfoldings than
with loop prevention schemes, but in conjunction with more specific goal transformations gives
better quality specialised program. The termination problem is seen as a problem in static
analysis, not a control problem, and SP uses methods drawn from abstract interpretation
(Section 4).

In this section, several variations of an unfolding rule are given. The basic rule uses
determinacy to control the unfolding.

3.1 Determinate Unfolding

Definition 3.1 Let G be a normal goal and P a program. G is called dead if there is some
atom (not having an imported predicate) in G that unifies with no clause head in P , or there
is an evaluable built-in in G that fails. A goal is live if it is not dead.

Definition 3.2 Let G be a goal and P a program. G is called determinate if G is live and
either:

• there is an atom A in G such that there is exactly one live resolvent G′ obtainable by
resolving G on A with a clause in P ; or,

• G contains a ground negative literal whose solution yields the resolvent G′; or
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• there is an evaluable built-in literal whose execution gives exactly one live resolvent G′.

The derivation of G′ from G is called a determinate resolution.

Example 2 Let P be the program:

P(A) <-
P(B) <-
Q(B) <-
Q(C) <-
Q(D) <-

Let G be the goal <- P(x),Q(x). G is determinate; by selecting P(x), the resolvents <- Q(A)
and <- Q(B) are obtained. Exactly one of these (the second) is live. Note that each of the
atoms in G matches more than one clause head.

The basic unfolding rule in SP (called the determinate rule) is as follows.

Definition 3.3 determinate unfolding rule
Let A be an atom and P a program. Then the partial evaluation of A in P is the set of

resultants Aθ ← Q, where:

1. there is an SLDNF derivation ← A, . . . ,← Q and each goal in the derivation apart from
(possibly) ← A and ← Q is determinate;

2. ← Q is live and not determinate;

3. each derivation step apart from the first is a determinate resolution.

In other words this strategy unfolds at least one step, and then continues as far as the
first goal that is not determinate. The only possible non-determinate step is the first.

3.2 Determinate Unfolding With Depth Bound

Determinate unfolding could lead to infinite unfolding in the unlikely case that there was
a determinate computation of unbounded length, so a depth bound can be imposed. The
solution of negative ground literals could also be infinite. To ensure termination in all cases,
the unfolding rule determinate unfolding with depth bound is defined as follows:

Definition 3.4 determinate unfolding with depth bound
Let A be an atom and P a program. Let k > 1 be a positive integer (the depth bound).

Then the partial evaluation of A in P is the set of resultants Aθ ← Q, where:

1. there is an SLDNF derivation ← A, . . . ,← Q and each goal in the derivation apart from
(possibly) ← A and ← Q is determinate; and
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2. ← Q is live; and

3. ← Q is not determinate, or the length of the derivation up to ← Q is k, or ← Q is
determinate and the SLDNF tree for a selected negative ground literal in← Q has height
greater than k; and

4. each derivation step apart from the first is a a determinate resolution, where successful
solutions of ground negative literals in the derivations have finitely failed SLDNF trees
at most k in height.

This is just a modification of the determinate rule which stops unfolding as soon as the
depth bound is reached - in other words the final goal ← Q may also be determinate.

3.3 Determinacy With More Specific Transformations

More determinacy can sometimes be squeezed from a computation by interspersing more
specific clause transformations with unfolding.

Example 3 Let P be:

c1: P(F(A)) <-
c2: P(F(B)) <-

c3: Q(x) <- S(x)
c4: Q(x) <- R(x)

c5: S(F(A)) <-
c6: R(G(C)) <-

c7: T(x) <- P(x),Q(x)

The atom T(z) has the single resultant T(z) <- P(z),Q(z) using determinate unfolding.
However, this resultant has a more specific version T(F(w)) <- P(F(w)),Q(F(w)) obtained
by constructing derivations of length 1 and selecting P(z). Now the body is determinate since
resolving with c4 gives a dead goal, and so further determinate unfolding can be performed to
give the resultant T(F(A)) <- true.

Definition 3.5 more specific resolution
Let P be a program and G a goal. Given any goal H, assume that there is some algorithm

for computing a more specific version of H wrt P . Let G′ be obtained from G by resolving
with a program clause. Let G′φ be a more specific version of G′. Then G′φ is obtained from
G by more specific resolution.

This idea can be incorporated in an unfolding rule as follows.
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Definition 3.6 determinate unfolding with more specific transformations
The rules for determinate unfolding (both with and without depth bounds) are modified by

performing more specific resolution steps in place of resolution steps.

Note that the implementation of this unfolding rule in SP does not follow the definition
directly; more specific versions are not computed on each derivation step, but only when a
non-determinate derivation step is reached.

3.4 Executable Goals

Some further control may be exercised over unfolding by designating certain atomic goals
as executable even when they are not determinate. Such atomic goals should have a finite
number of solutions.

Examples of atoms that are executable by default are member(x,l) where l is a list of
known length, append(x,y,l), where l is a list of known length, and the built-in clause(x,y)
where x is non-variable. In all these cases there is a finite number of solutions. The user may
declare other atoms executable; this is explained in Chapter 6.

Executable atoms can be executed if they appear at the left of the resolvent after all
determinate choices have been made. An extension to the determinate unfolding rule is as
follows:

Definition 3.7 determinate unfolding with executables
Let A be an atom and P a program. Let Aθ ← B,Q be a resultant in the partial evaluation

of A in P using the determinate unfolding rule (possibly using more specific resolvents).
Suppose B is an executable atom, whose solutions are {φ1, . . . , φn}. Then using determinate
unfolding with executables, the resultants {Aθφ1 ← Qφ1, . . . , Aθφ1 ← Qφn} replace Aθ ←
B,Q in the partial evaluation of A in P .

The user has responsibility to check whether an atom designated as executable has a finite
number of solutions.

3.5 No Unfolding

For some programs, useful optimisations can be performed with no unfolding at all (see [10]).
Such optimisations can be performed by the SP system. In this case, the unfolding rule is as
follows:

Definition 3.8 Let A be an atom and P a program. Let k > 1 be a positive integer (the
depth bound). Then the partial evaluation of A in P is the set of resultants Aθ ← Qθ, where
there is a clause A′ ← Q in P and an mgu of A and A′ is θ.

4 Approximation

The operation abstract in the flow analysis algorithm is critical for the quality of specialisation.
Crude methods such as depth-k abstractions on atoms [31] could be used to enforce termination
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but the results are not generally satisfactory. In [11] the notion of characteristic path was
introduced and used to construct an abstract interpretation. The method used in the SP
system is based on the same ideas.

A characteristic path (or tree) can be thought of as giving the structure of an SLDNF
derivation (tree). It records the clauses selected in the derivation (or tree), and the position
of the literals resolved upon, abstracting the information about the resolvents. The intuitive
idea behind the abstraction in SP is that if two atoms A and B have the same characteristic
tree, then they are regarded as equivalent from the point of view of partial evaluation, and
represented by a single atom.

Example 4 Let P be the usual program for append(x,y,z).
Let G1 be <- append([1,2,3],[4,5],z) and G2 be <- append([A,B,C],[D,E],z). The
successful derivations of G1 and G2 have the same characteristic paths. The constants
1,2,A,B,... and so on play no part in the derivations. The goals G1 and G2 are equiv-
alent as regards their unfoldings.

Definition 4.1 characteristic path
Let P be a normal program and let G be a goal. Assume that the clauses in P are

numbered. Let G,G1, . . . , Gn be an SLDNF derivation of P ∪ {G}. The characteristic path
of the derivation is defined as the sequence (l1, c1), . . . , (ln, cn), where li is the position of the
selected literal in Gi, and ci is defined as:

• if the selected literal is an atom, then ci is number of the clause chosen to resolve with
Gi;

• if the selected literal is ¬p(t), ci is the atom p.

Definition 4.2 characteristic tree
Let A be an atom and P a program. Let U be an unfolding rule. Then the characteristic

tree of the partial evaluation of A in P using U is the set of characteristic paths of the
derivations used to form the partial evaluation.

Given two atoms with the same characteristic tree, which atom should then be chosen
to represent them? The obvious idea would be to take their msg, but unfortunately the
characteristic tree of the msg of atoms A and B is not in general the same as that of A and
B, in particular using the determinate unfolding rule.

Example 5 Let P be:

1: Eqlist([],[]) <-
2: Eqlist([x|xs],[y|ys] ) <- Eqlist(xs,ys).

Let A be Eqlist([1,2],w) and B be Eqlist(w,[3,4]). A and B have the respective
partial evaluations, using the determinate unfolding rule:
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Eqlist([1,2],[1,2]) <-

and

Eqlist([3,4],[3,4]) <-

The characteristic tree for both A and B is {((1, 2), (1, 2), (1, 1))}. But msg({A,B}) =
Eqlist(x,x), which does not have the same partial evaluation as A and B, since the goal <-
Eqlist(x,x) is not determinate.

The cause of this problem is that different arguments of an atom may independently force
the same determinate choice during a derivation. The way around the problem is to take the
msg of the msg of the heads of the clauses in the partial evaluations of the atoms. For the
example, this is msg({Eqlist([1, 2], [1, 2]), Eqlist([3, 4], [3, 4])}) = Eqlist([x, y], [x, y]). This
has the same partial evaluation as A and B using the determinate unfolding rule. Note that
neither A nor B is an instance of Eqlist([x, y], [x, y]).

The abstraction operation can now be stated precisely.

Definition 4.3 abstraction using characteristic trees
Let S be a set of atoms, and define Sc as the subset of S having characteristic tree c.
For each atom A in S, let RA be the partial evaluation of A in P . Define head(A) as

head(A) = msg
{
Aθ
∣∣∣ Aθ ← Q ∈ RA

}
.

Define S′ as

S′ =
{
head(A)

∣∣∣ A ∈ S }
.

Now define abstract(S) as

• abstract(S) =

{
msg(S′

c)

∣∣∣∣∣ c is the characteristic tree
of some A ∈ S′

}

4.1 Other Abstraction Mechanisms

The use of characteristic trees is a useful heuristic, but the development of other means of
abstraction is one area in which SP is being improved.

The main shortcoming of partial evaluation, which has only partly been tackled in the
SP system, is that contextual information in the computation tree is lost during partial
evaluation. That is, assume that an atom A has a partial evaluation that includes a resultant
Aθ ← B1, B2. The literals B1 and B2 are then themselves partially evaluated, but any
dependence (shared variables) between the two is lost. One way of viewing the problem is to
incorporate “bottom-up” computation into the partial evaluation, getting information about

15



the possible solutions to B1 and B2. The use of more specific clause transformations is a step
in this direction but better results can be achieved.

Incorporation of abstract substitutions into the specialisation process along the lines dis-
cussed in [9] is one possibility. Roughly, in the above example, an abstract answer β could be
computed for the goal ← B1, B2, and then the atoms B1β and B2β would be partially eval-
uated using some abstract partial evaluation procedure. In this way every atom is evaluated
in its (abstract) context.

Ideas for incorporating abstract substitutions into partial evaluation are discussed in [3].

5 The Specialisation Algorithm

The SP system takes as input a normal program P and a goal G. The output is a specialised
program, which may be written to a file for later execution. The algorithm is in three parts:

1. Flow analysis.

2. Construction of the Specialised Program.

3. Cleaning up operations.

5.1 Flow Analysis

The flow analysis algorithm bears a superficial resemblance to the partial evaluation algorithm
in [1], but the aim is to produce a set of atoms and not a partial evaluated program as in [1].

Let P be a normal program, and G a goal. Let U be an unfolding rule. The following
algorithm returns a set of atoms.

begin
A[0] := the set of atoms in G
i := 0
repeat

P’ := a partial evaluation
of A[i] in P using U.

S := A[i] U
{ p(t) | B <- Q,p(t),Q’ in P’

OR
B <- Q,not(p(t)),Q’ in P’,
where p is not a built-in or
imported predicate}

A[i+1] := abstract(S)
i := i+1

until A[i] = A[i-1] (modulo variable renaming)
end
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The set of atoms A[i] on termination is taken as the output of the algorithm.
In the version of the algorithm implemented in SP, the procedure is optimised, so that

only the newly computed atoms are processed on each iteration. The termination condition is
that no new atoms are computed on an iteration. Further details of this kind of optimisation
are found in [11].

5.2 Termination of the Flow Analysis

The termination of the flow analysis depends on two things:

• the computation rule U , which should produce a finite set of resultants for each atom;

• the operation abstract(S), which should ensure that a finite set of atoms is returned by
the algorithm.

Regarding U , depth bounds on unfolding can be used to ensure termination, but the
determinate unfolding rule (possibly with more specific resolvents) can be used safely for
“reasonable” programs. A large value for the depth bound seems a good compromise: in
practice it is hardly ever needed.

If the user declares atoms to be executable, care should be taken that the number of
solutions of executable atoms is finite.

Successive iterations of the algorithm produce sets A[i], A[i + 1], where A[i + 1] differs
from A[i] either by adding an atom with a new characteristic tree, or by replacing an atom
in A[i] by some more general atom with the same characteristic tree (see Definition 4.3). An
unfolding rule with a fixed depth bound ensures that there is a finite number of possible
characteristic trees. Termination follows from the fact that the number of generalisations of
an atom (modulo variable renaming) is finite.

5.3 Construction of Specialised Programs

Lemma 5.1 Let the input of the algorithm be a program P , a goal G and an unfolding rule
U . Assume the algorithm terminates with atoms A[i] = A; let P ′ be a partial evaluation of
A in P using U . Then P ′ ∪ {G} is A-closed.

Proof. A = abstract(S) where S consists of atoms occurring in the bodies of clauses in a
partial evaluation of A in P using U (since A = A[i] = A[i− 1] at termination).

Lemma follows from the definition of abstract and the fact that the head of every clause
in P ′ is an instance of an atom in A. 2

Let P be a program, G a goal and U an unfolding rule. Assume the flow analysis algorithm
yields a finite set of atoms A. Then the following algorithm constructs a specialised program
for G.

begin

P1 := a partial evaluation of A in P using U.
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R := a set of renaming definitions for A.
R1 := { A’.theta <- Q | A’ <- A in R,

A.theta <- Q in P1 }
R2 := R1 U {Ans(x1...xn) <- G}

where x1...xn is the tuple of
distinct variables in G.

R3 := { H <- Q’ | H <- Q in R2,
Q’ is a complete renaming
(using R) of Q}.

end

The output is the program R3.

Proposition 5.2 P ∪ {G} has an SLDNF refutation with computed answer θ (resp. has a
finitely failed SLDNF tree) iff R3 ∪ {← Ans(x̄)} has an SLDNF refutation with computed
answer θ (resp. has a finitely failed SLDNF tree).

Proof. (Outline)

• P ∪ {G} has an SLDNF refutation with computed answer θ (resp. has a finitely failed
SLDNF tree) iff P ∪R ∪ {Ans(x̄)← G} ∪ {← Ans(x̄)} has an SLDNF refutation with
computed answer θ (resp. has a finitely failed SLDNF tree).

• Let H be any goal. P ∪ R ∪ {Ans(x̄) ← G} ∪ {H} has an SLDNF refutation with
computed answer θ (resp. has a finitely failed SLDNF tree) iff P ∪ R3 ∪ {H} has an
SLDNF refutation with computed answer θ (resp. has a finitely failed SLDNF tree).
(Use correctness of unfolding, more specific program transformation, and renaming).

• Computation of {← Ans(x̄)} calls only clauses in R3, built-in predicates or imported
predicates (using Lemma 5.1). Hence the clauses in P are not used and can be dropped.

2

The use of the Ans(x̄) predicate is not always satisfactory, since the specialised program
should really preserve the computations of G. The Ans(x̄) predicate was introduced primarily
to simplify the presentation and correctness proof.

The following procedure can be applied to remove the Ans clause. A set of atoms is
independent if no two atoms in the set have a common instance [20]. Let AG be the set of
atoms in G. The following procedure can be applied only if abstract(AG) is independent.

Let Aθ be an atom in G and let A′ ← A be the renaming definition that was used to
perform renaming of Aθ in the above procedure.

1. Undo all renamings that used A′;
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2. Replace clauses of the form A′ρ← Q, by clauses of the form Aρ← Q;

3. Omit the clause Ans(x̄)← G′ from R̄.

(A statement and proof of the correctness of this transformation is omitted for the time
being.)

Example 6 Let P be the program;

Member(x,[x|y]) <-
Member(x,[y|z]) <- Member(x,z)

Let G be <- Member(u,[1|w]). A possible set of atoms returned by flow analysis is

{Member(u,[1|w]), Member(u,[v|w])}

(Note the second atom is a more specific version of Member(x,y) derived during flow analysis).
The specialised program produced by the procedure is:

Ans(u,w) <- M1(u,w)

M1(1,y) <-
M1(x,[y|z]) <- M2(x,y,z)

M2(x,x,y) <-
M2(x,w,[y|z]) <- M2(x,y,z)

After removing the Ans clause, the program becomes:

Member(1,[1|y]) <-
Member(x,[1,y|z]) <- M2(x,y,z)

M2(x,x,y) <-
M2(x,w,[y|z]) <- M2(x,y,z)

5.4 Cleaning Up

After the construction of the specialised program, some further transformations may be car-
ried out in order to improve the look and efficiency of the result. These operations include:

• Unfolding calls to procedures defined by only one clause.
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• Factoring out common structure. Although the renaming procedure tends to flatten out
structure in the specialised program, it may sometimes happen that a variable in a clause
body becomes instantiated, causing extra run time structure to be used. For example,
given the clause P(F(x)) <- Q(F(x),R(F(x)), the two occurrences of F(x) in the body
will be created as separate structures in most Prolog implementations. Transformation
of the clause into P(F(x)) <- y = F(x),Q(y),R(y) could improve performance, in
spite of the extra unification, since y is stored only once. In SP, common structures at
the argument level are factored out in this way, if desired.

• Duplicate goals in the body of a clause may be removed.

6 How to Use SP

6.1 Starting Up

After starting Prolog, the specialisation programs are read in.

| ?- [sp].
...

yes
| ?-

The specialisation tools are started by the query:

| ?- sp.

The following menu appears:

1. Read program to be specialised.
2. Specialisation.
3. Select unfolding strategy.

Choice (0 to exit):

6.2 Reading Program to be Specialised

Read in the program to be specialised by selecting 1 and then, when prompted, the name of
the file containing the program. The default file name extension .pl can be omitted. For
example:
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Choice (0 to exit): 1

File Name: ’../Exs/trans’.

.......
Finished reading ../Exs/trans.pl

The main menu then appears again.

6.3 Specialising With Respect to a Goal

The program read in may be specialised with respect to a query by selecting 2 from the main
menu, and then, when prompted, an atomic goal. The flow analysis, program construction
and cleaning up phases are indicated, and then finally, a prompt appears for a file to which
the specialised program should be written. The default (carriage return) causes the result
to be written to the screen. Otherwise, give the name of a file in which the result is to be
written. Example:

Choice (0 to exit): 2

Atomic goal: transpose([_,_],_).

flow analysis...*
constructing specialised program...

transpose([A1,A2],A3)

cleaning up...
Enter filename: <CR>

Specialised Program:

transpose([[],[]],[]) :-
true.

transpose([[X0|X1],[X2|X3]],[[X0,X2]|X4]) :-
transpose([X1,X3],X4).

6.4 Selection of the Unfold Rule

The default unfold rule is the determinate unfolding rule with more specific clause transfor-
mations, as defined in Definition 3.6. Other unfold rules may be substituted instead. Select
3 from the main menu. At present three choices are available.
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Choice (0 to exit): 3

1. Determinate with more specific transformation.
2. Determinate unfolding.
3. No unfolding.

Choice (0 for previous level):

The simpler determinate unfolding rule (Definition 3.3) can be used by selecting 2. By
selecting 3, the empty unfolding rule (Definition 3.8) is read in. (Note that some program
definitions are overwritten when consulting the new definitions - simply answer p to all Sicstus
prompts). When empty unfolding is selected, the transformations are those described in [10].

6.5 Imported and Executable Atoms

As discussed in Section 2, certain predicates are regarded as imported and not available for
selection during derivations. If a predicate p(x1,...,xn) is defined in another module, it
can be declared imported. Add the clause

imported(p(x1,...,xn)).

to the file containing the program to be specialised.
An atom that is executable (see Section 3.4) can be declared by adding a clause

evaluable(p(x1,...,xn)) <- conditions(x1,...,xn).

to the file containing the program to be specialised, where conditions(x1,...,xn) define
the circumstances under which atoms with predicate p may be executed.

6.6 Direct Calls to the Specialiser

The menu interface described above is for convenience. Sometimes it is useful to call the
specialisation procedure directly from the Prolog user level. First the menu should be started
in order to read in the program to be specialised, as above. Then quit the menu system. The
call

?- sp(Goal).

causes the program to be specialised for the atomic goal Goal. The usefulness of this is that
sp(Goal) can be called as part of a longer goal. For example:

?- foo(X),sp(p(X,Y)).

Examples of such usage can be found in the Appendix A.
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7 Discussion

The SP system can be compared with program specialisation systems both for logic pro-
grams and for other languages. Since Komorowski introduced partial evaluation in logic
programming [15], several systems for partial evaluation of Prolog have been reported. Lam
[18] compares the results of some of these. Some aspects of SP are contained in other sys-
tems. The main points of comparison are the handling of termination, the unfolding strategy,
renaming and various minor transformations.

7.1 The Role of Flow Analysis

SP is basically a two-phase specialiser, as is the Mix program [14]. The first phase performs
analysis which is then fed into the partial evaluation phase. But in Mix and related systems,
analysis is primarily intended to provide control information, whereas in SP it is to handle
termination by obtaining a set of atoms whose partial evaluation contains only instances of
those atoms.

In SP specialisation is seen as an application of a global analysis, similar to applications
of abstract interpretation. The flow analysis of SP is intended to provide a set of atoms that
“represent” the set of all calls that occur in the computation. This set is in general infinite, so
a safe approximation and a fixpoint computation are used to get a safe approximation. The
second phase is then a relatively trivial process that creates a renaming and a procedure for
each distinct call. It is not surprising that the closedness property given in [20] expresses a
similar requirement as the requirement of safety of an abstract interpretation. The presenta-
tion in this paper suggests that more precise representations of the set of calls (using abstract
substitutions) could in principle be used instead of a set of atoms.

7.2 Control and Determinacy

In SP termination is a global problem requiring analysis, while control is a local problem
whose solution depends mainly on determinacy. In some partial evaluation systems, the aim
of the unfolding strategy is to unfold as much as possible while still ensuring termination.
This strategy is based on the understandable assumption that any unfolding step done at
compile time is one less to be done at run time. In one sense this is true, since unfolding
never lengthens the successful branches of a computation tree. However the computation
rule to be used at run time has to be taken into account; any unfolding performed during
partial evaluation essentially “compiles in” a control choice. Thus the choices made during
partial evaluation are as crucial to performance as those made at run time. It has been shown
[32] that unfolding may increase backtracking and create extra choice points. Introducing
disjunctions to handle choices is also a bad idea when applied blindly, since typical Prolog
implementations lose indexing information in the process.

The unfolding strategy of SP is based on determinacy. Unfolding determinate sections of
the computation is never wrong, no matter what run time control is used. In fact, in SP it is
assumed that the Prolog left-to-right computation rule will be applied at run time, so choices
at the left of a goal may also safely be unfolded. But here the issue of program size is taken
into account; unfolding choice points may increase the size of the program dramatically. While
this is not necessarily bad, SP makes the conservative choice not to unfold choices unless the
user specifically designates an atom as executable.
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Although the importance of determinacy in logic programs seems clear enough, it can be
argued that it is equally important in functional and other languages, with more fundamental
importance than the static-dynamic distinction widely used for control. The usefulness of
unfolding static parts of the computation is precisely because in functional programs, static
usually corresponds to determinate.

7.3 Renaming

The specialisation in SP includes renaming as an essential part. This is because the removal
of redundant structures from the specialised program often gives significant optimisation,
especially of space usage. Secondly, a theoretical advantage is that the concept of independence
is not needed (as defined in [20] and incorporated in the algorithm in [1]).

Other partial evaluation systems have included similar renaming methods (e.g. [6], [24],
[1]); the use of renaming definitions in SP clarifies and standardises the various notions of
renaming.

7.4 Results

SP has been applied to a number of examples discussed in the literature. A selection of results
appears in Appendix A. It appears to perform at least as well on most programs as other
logic program specialisation systems that operate on declarative programs. One exception is
the contains example discussed by [18], [17] and [26]. SP’s strategy here is too conservative
and does not unfold enough to give the required specialisation. The strategy of unfolding
only determinate parts of the computation performs well on a wide range of examples but
apparently choice points must be expanded in some cases.

Furthermore, SP’s results are obtained without departing from the SLDNF framework.
The well-known example of the Knuth-Morris-Pratt string matching transformation is han-
dled, for instance, although other researchers have used constraints to process this example
[30], [6].

SP makes no attempt to handle cuts, side effects and other non-declarative aspects of
Prolog, as is done by Mixtus [25].

SP is not yet self-applicable, since the SP system is not written declaratively. This remains
an important goal; an effort will shortly be made to rewrite SP in a declarative subset of
Prolog. This will entail handling a ground representation of the object program.
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A Examples of Specialisation

The following examples are taken from the literature and the results shown are exactly as
produced by SP. For each example the source program is shown, followed by the results of
specialising one or more queries on the program.

A.1 Transposing a Matrix

The example first appeared in [7] and was also discussed in [8] and other papers.

/* Transpose a matrix */

transpose(Xs,[]) :-
nullrows(Xs).

transpose(Xs,[Y|Ys]) :-
makerow(Xs,Y,Zs),
transpose(Zs,Ys).

makerow([[X|Xs]],[X],[Xs]).
makerow([[X|Xs]|Ys],[X|Xs1],[Xs|Zs]):-

makerow(Ys,Xs1,Zs).

nullrows([]).
nullrows([[]|Ns]) :-

nullrows(Ns).

Atomic goal: transpose([_,_],_).

Specialised Program:

transpose([[],[]],[]) :-
true.

transpose([[X0|X1],[X2|X3]],[[X0,X2]|X4]) :-
transpose([X1,X3],X4).

Atomic goal: transpose([[_,_]|_],_).

Specialised Program:

transpose([[X0,X1]|X2],[[X0|X3],[X1|X4]]) :-
makerow_1(X0,[X1],X2,X3,X5),
makerow_1(X1,[],X5,X4,X6),
nullrows_1(X6).

makerow_1(X0,X1,[],[],[]) :-
true.
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makerow_1(X0,X1,[[X2|X3]|X4],[X2|X5],[X3|X6]) :-
makerow_1(X2,X3,X4,X5,X6).

nullrows_1([]) :-
true.

nullrows_1([[]|X0]) :-
nullrows_1(X0).

Atomic goal: transpose([[_,_],_],_).

Specialised Program:

transpose([[X0,X1],[X2,X3]],[[X0,X2],[X1,X3]]) :-
true.

A.2 Flatten a List

Example taken from [1].

flatten([],[]).
flatten([X|Y],Z) :-

flatten(X,Z1),
flatten(Y,Z2),
append(Z1,Z2,Z).

flatten(X,[X]) :-
number(X).

append([],Xs,Xs).
append([X|Xs],Ys,[X|Zs]) :-

append(Xs,Ys,Zs).

Atomic goal: flatten([[1,2],[[3,4|_]]|_],_).

Specialised Program:

flatten([[1,2],[[3,4|X0]]|X1],[1,2,3,4|X2]) :-
flatten_1(X0,X3),
append_1(X3,[],X4),
flatten_1(X1,X5),
append_1(X4,X5,X2).

flatten_1([],[]) :-
true.

flatten_1([X0|X1],X2) :-
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flatten_1(X0,X3),
flatten_1(X1,X4),
append_1(X3,X4,X2).

flatten_1(X0,[X0]) :-
number(X0).

append_1([],X0,X0) :-
true.

append_1([X0|X1],X2,[X0|X3]) :-
append_1(X1,X2,X3).

A.3 String Matching

Example discussed by [6], [18] and others. This shows how an efficient matcher implementing
the Knuth-Morris-Pratt algorithm can be derived for a given ground pattern, from a naive
string matching program. Note that the other authors cited have assumed that to produce
the result below, some notion of constraints is needed. As is shown below, this is not the
case; the result is obtainable using SLDNF computation only. Negative literals can safely be
selected when ground; the predicate

A \== B

may be selected when ground and this is sufficient to obtain the required result. (It could
alternatively be treated as the negation of A = B in this example).

match(P,T) :-
match1(P,T,P,T).

match1([],_,_,_).
match1([A|Ps],[A|Ts],P,T) :-

match1(Ps,Ts,P,T).
match1([A|_Ps],[B|_Ts],P,[_|T]) :-

A \== B,
match1(P,T,P,T).

Atomic goal: match([a,a,b],_).

Specialised Program:

match([a,a,b],[X0|X1]) :-
match1_1(X0,X1).

match1_1(a,[X0|X1]) :-
match1_2(X0,X1).

match1_1(X0,[X1|X2]) :-
a\==X0,
match1_1(X1,X2).
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match1_2(a,[X0|X1]) :-
match1_3(X0,X1).

match1_2(X0,[X1|X2]) :-
a\==X0,
a\==X0,
match1_1(X1,X2).

match1_3(b,X0) :-
true.

match1_3(X0,X1) :-
b\==X0,
match1_2(X0,X1).

A.4 An Interpreter for a Ground Representation

This example (from [12]) shows how specialisation of an interpreter for a ground representa-
tion of object programs can result in the elimination of practically all operations concerning
the representation. In the program below, an object program atom p(f(X), Y ) would be
represented in the meta program by a term such as p(f(var(0)), var(1)).

/* instantiate(X,Y):
X in ground representation,
Y a ground instance of X */

instantiate(X,Y) :-
inst(X,Y,[],_).

inst(var(N),X,[],[(N/X)]) :-
anyterm(X).

inst(var(N),X,[(N/X)|S],[(N/X)|S]).
inst(var(N),X,[(M/Y)|S],[(M/Y)|S1]) :-

N \== M,
inst(var(N),X,S,S1).

inst(T,T1,S,S1) :-
T =.. [F|Xs],
F \== var,

functor(T,F,N),
functor(T1,F,N),

T1 =.. [F|Ys],
inst_args(Xs,Ys,S,S1).

inst_args([],[],S,S).
inst_args([X|Xs],[Y|Ys],S,S2) :-

inst(X,Y,S,S1),
inst_args(Xs,Ys,S1,S2).
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/* anyterm(X) */

imported(anyterm(_)). /* control for partial evaluation */
/* anyterm(_) is not unfolded */

anyterm(X) :-
atomic(X).

anyterm(T) :-
T =.. [_|Xs],
anyargs(Xs).

anyargs([]).
anyargs([X|Xs]) :-

anyterm(X),
anyargs(Xs).

statement_instance(S,P) :-
member(C,P),
instantiate(C,S).

member(X,[X|_]).
member(X,[_|Y]) :-

member(X,Y).

demo(G,G1,P) :-
instantiate(G,G1),
demo1(G1,P).

demo1(true,_).
demo1((G,Gs),P) :-

demo1(G,P),
demo1(Gs,P).

demo1(G,P) :-
statement_instance(statement((G :- B)),P),
demo1(B,P).

/* Example program */

memberprog(
[
statement( (member(var(1),[var(1)|var(2)]) :- true)),
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statement( (member(var(1),[var(2)|var(3)]) :-
member(var(1),var(3))))
] ).

Atomic goal: instantiate(p(var(0),var(1),var(0)),_).

Specialised Program:

instantiate(p(var(0),var(1),var(0)),p(X0,X1,X0)) :-
anyterm(X0),
anyterm(X1).

| ?- memberprog(P),sp(demo(_,_,P)).

Specialised Program:

demo(X0,X1,[
statement( (member(var(1),[var(1)|var(2)]) :- true)),
statement( (member(var(1),[var(2)|var(3)]) :-
member(var(1),var(3))))
]) :-

inst_1(X0,X1,X2),
demo1_1(X1).

inst_1(var(X0),X1,[X0/X1]) :-
anyterm(X1).

inst_1(X0,X1,X2) :-
X0=..[X3|X4],
X3\==var,
functor(X0,X3,X5),
functor(X1,X3,X5),
X1=..[X3|X6],
inst_args_1(X4,X6,X2).

demo1_1(true) :-
true.

demo1_1((X0,X1)) :-
demo1_1(X0),
demo1_1(X1).

demo1_1(member(X0,[X0|X1])) :-
anyterm(X0),
anyterm(X1),
demo1_1(true).

33



demo1_1(member(X0,[X1|X2])) :-
anyterm(X0),
anyterm(X1),
anyterm(X2),
demo1_1(member(X0,X2)).

inst_args_1([],[],[]) :-
true.

inst_args_1([X0|X1],[X2|X3],X4) :-
inst_1(X0,X2,X5),
inst_args_2(X1,X3,X5,X4).

inst_args_2([],[],X0,X0) :-
true.

inst_args_2([X0|X1],[X2|X3],X4,X5) :-
inst_4(X0,X2,X4,X6),
inst_args_2(X1,X3,X6,X5).

inst_4(var(X0),X1,[],[X0/X1]) :-
anyterm(X1).

inst_4(var(X0),X1,[X0/X1|X2],[X0/X1|X2]) :-
true.

inst_4(var(X0),X1,[X2/X3|X4],[X2/X3|X5]) :-
X0\==X2,
inst_4(var(X0),X1,X4,X5).

inst_4(X0,X1,X2,X3) :-
X0=..[X4|X5],
X4\==var,
functor(X0,X4,X6),
functor(X1,X4,X6),
X1=..[X4|X7],
inst_args_2(X5,X7,X2,X3).

A.5 Compiling An Expression Interpreter

An evaluator for arithmetic expressions, with an argument simulating memory giving the
bindings of variables, is specialised with respect to a given expression. This could be regarded
as part of the compilation of an imperative language. (See [27]).

eval(X + Y, Env,Z ) :-
eval(X,Env,Z1),
eval(Y,Env,Z2),
Z is Z1+Z2 .

eval(X * Y, Env,Z ) :-
eval(X,Env,Z1),
eval(Y,Env,Z2),
Z is Z1*Z2 .
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eval(X / Y, Env,Z ) :-
eval(X,Env,Z1),
eval(Y,Env,Z2),
Z is Z1/Z2 .

eval(X - Y, Env,Z ) :-
eval(X,Env,Z1),
eval(Y,Env,Z2),
Z is Z1-Z2 .

eval(- Y, Env,Z ) :-
eval(Y,Env,Z2),
Z is -Z2 .

eval(+ Y, Env,Z ) :-
eval(Y,Env,Z).

eval(int(X),_,X).
eval(X,Env,Z) :-

atom(X),
lookup(X,Env,Z).

lookup(X,[val(X,Y)|_],Y).
lookup(X,[_|Xs],Y) :-

lookup(X,Xs,Y).

Atomic Goal: eval(x+y*int(3)/z,_,_).

Specialised Program:

eval(x+y*int(3)/z,[X0|X1],X2) :-
lookup_1(x,X0,X1,X3),
lookup_1(y,X0,X1,X4),
X5 is X4*3,
lookup_1(z,X0,X1,X6),
X7 is X5/X6,
X2 is X3+X7.

lookup_1(X0,val(X0,X1),X2,X1) :-
true.

lookup_1(X0,X1,[X2|X3],X4) :-
lookup_1(X0,X2,X3,X4).
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B Unfoldability Conditions for Built-ins

This appendix contains the definition of the procedure in SP that determines whether a call
to a built-in predicate is evaluable.

/* unfoldability conditions for Sicstus builtins */

unfoldable(clause(X,_)) :-
nonvar(X).

unfoldable(predicate_property(X,_)) :-
nonvar(X).

unfoldable(_ is Y) :-
arithexpr(Y).

unfoldable(_ = _).
unfoldable(’C’(_,_,_)).
unfoldable(true).
unfoldable(X =.. _) :-

nonvar(X).
unfoldable(_ =.. [F|Args]) :-

atom(F),
completeList(Args).

unfoldable(X < Y) :-
arithexpr(X),
arithexpr(Y).

unfoldable(X > Y) :-
arithexpr(X),
arithexpr(Y).

unfoldable(X =< Y) :-
arithexpr(X),
arithexpr(Y).

unfoldable(X >= Y) :-
arithexpr(X),
arithexpr(Y).

unfoldable(X @< Y) :-
ground(X),
ground(Y).

unfoldable(X @> Y) :-
ground(X),
ground(Y).

unfoldable(X @=< Y) :-
ground(X),
ground(Y).

unfoldable(X @>= Y) :-
ground(X),
ground(Y).

unfoldable(X == Y) :-
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nonvar(X),
nonvar(Y),
X =.. [F|_],
Y =.. [G|_],
F \== G,
!.

unfoldable(X == Y) :-
ground(X),
ground(Y).

unfoldable(X \== Y) :-
X == Y,
!.

unfoldable(X \== Y) :-
ground(X),
ground(Y),
!.

unfoldable(real(X)) :-
nonvar(X).

unfoldable(integer(X)) :-
nonvar(X).

unfoldable(number(X)) :-
nonvar(X).

unfoldable(atomic(X)) :-
nonvar(X).

unfoldable(atom(X)) :-
nonvar(X).

unfoldable(ground(X)) :-
ground(X).

unfoldable(not(X)) :-
ground(X).

unfoldable(\+(X)) :-
ground(X).

unfoldable(fail).
unfoldable(functor(X,_,_)) :-

nonvar(X).
unfoldable(functor(_,Y,Z)) :-

integer(Z),
atom(Y).

unfoldable(arg(X,Y,_)) :-
integer(X),
nonvar(Y).

unfoldable(call(X)) :-
unfoldable(X).

completeList(X) :-
X == [].
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completeList(Xs) :-
nonvar(Xs),
Xs = [_|Xs1],
completeList(Xs1).

ground(T) :-
nonvar(T),
atomic(T),
!.

ground(T) :-
nonvar(T),
T =.. [_|Args],
groundlist(Args).

groundlist([]).
groundlist([T|Ts]) :-

ground(T),
groundlist(Ts).

arithexpr(T) :-
nonvar(T),
number(T),
!.

arithexpr(T) :-
nonvar(T),
T =.. [Op|Args],
memb1(Op,[’+’,’-’,’*’,’/’,’//’,’mod’,’/\’,’\/’,

’integer’,’float’,
’^’,’>>’,’<<’]),

arithexprlist(Args).

arithexprlist([]).
arithexprlist([T|Ts]) :-

arithexpr(T),
arithexprlist(Ts).

memb1(X,[X|_]) :-
!.

memb1(X,[_|Xs]) :-
memb1(X,Xs).
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