
Regular Approximations of Logic
Programs and Their Uses1

J.P. Gallagher D.A. de Waal

March 1992

CSTR-92-06

Department of Computer Science
University of Bristol

Queen’s Building
University Walk
Bristol BS8 1TR

U.K.

e-mail: john@compsci.bristol.ac.uk, andre@compsci.bristol.ac.uk

1Work supported by ESPRIT Project PRINCE (5246)

1

Abstract

Regular approximations of logic programs have a variety of uses, including static analysis
for debugging, program specialisation, and machine learning. An algorithm for computing a
regular approximation of a normal program is given, and some applications are discussed. The
analysis of a “magic set” style of transformation of a program P can be used to derive more
precise approximations than can be obtained from P itself. The approximation algorithm
given here can also be applied to Prolog programs.

2

1 Regular Logic Programs

Regular structures can be used to approximate programs as shown, for example, in [11], [15],
[18]. Regular sets and regular languages have a number of decidable properties and associated
computable operations [1], so that approximations of program meanings expressed as regular
structures can conveniently be analysed and manipulated.

In this paper an algorithm is given, which takes a normal logic program and returns a
regular program. The regular program is a safe approximation of the original program, in a
sense to be defined shortly. Several uses of regular approximations are then discussed.

The class of Regular Unary Logic programs was defined by Yardeni and Shapiro [18]. A
slightly more restricted class is defined below; however it too will be referred to as the class
of Regular Unary Logic programs.

Definition 1.1 regular unary clause
A regular unary clause is of the form t0(f(x1, . . . , xn)) ← t1(x1), . . . , tn(xn), where

x1, . . . , xn are distinct variables.

Definition 1.2 regular unary logic program (RUL program)
A regular unary logic program is a finite set of regular unary clauses, in which there

are no two different clauses having the same predicate and function symbols in the heads.

In the definition in [18], the restriction on RUL programs is that the clause heads are
mutually non-unifiable, and every variable in a clause head appears exactly once in the clause
body. Thus for example the clauses {p(f(a)) ← true, p(f(b)) ← true} would be permitted
by [18], but not by Definition 1.2, since p/1 and f/1 occur in both clause heads. The more
restricted definition allows somewhat more convenient manipulation of RUL programs.

2 Approximation of Logic Programs

The aim of static analysis of a program is to derive a safe approximation of the meaning or
behaviour of the program. The field of abstract interpretation provides a framework defining
safe approximation and abstraction of program semantics, into which the present work could
be fitted. But for the present purposes, the notion of safe approximation is defined directly
with respect to the procedural semantics of logic programs, and much of the more general
framework of abstract interpretation is omitted.

The usual definitions of definite and normal programs and goals, and of SLD and SLDNF
derivations are used [13].

Definition 2.1 safe approximation
Let P ,P ′ be normal programs. Then P ′ is a safe approximation of P if for all ground

atoms A, P ∪{← A} has an SLDNF refutation implies P ′∪{← A} has an SLDNF refutation.

This definition states that the success set of a logic program is being approximated, that
is, P ′ has a greater success set than P . Therefore, any property that holds for of all elements
of the success set of P ′ holds also for all elements of the success set of P .

3

Definition 2.2 regular definition of predicates
Let P be a normal program containing predicates {p1/n1, . . . , pm/nm}. A regular defi-

nition of the predicates in P is a set of clauses R ∪ Q, where Q is a set of clauses of form
pi(x1, . . . , xni)← t1(x1), . . . , tni(xni), and R is an RUL program defining t1, . . . , tni. If R∪Q
is a safe approximation of P it is called a regular approximation of P .

For convenience, abusing notation, an RUL program can be obtained from a regular
definition of predicates by replacing each clause pi(x1, . . . , xni)← B by a clause

approx(pi(x1, . . . , xni))← B

where approx is a distinguished unary predicate not used elsewhere. Strictly, each predicate
pi/ni should be replaced by a corresponding function symbol. This transformed program will
also be referred to as a regular definition (or approximation), though strictly the original
form without the approx predicate is meant. This allows us for the remainder of the paper
to restrict attention to RUL programs.

3 Operations on RUL Programs

A number of properties of and operations on RUL programs are next defined.

Definition 3.1 successR(t)
Let R be a set of regular unary clauses containing a predicate t. The set of terms

successR(t) = {s | s a ground term, R ∪ {← t(s)} succeeds}

Definition 3.2 inclusion
Let R be an RUL program, and let t1 and t2 be unary predicates defined in R. Then we

write t1 ⊆ t2 if successR(t1) ⊆ successR(t2).
The property t1 ⊆ t2 is true if:

for every clause t1(f(x1, . . . , xn))← s1(x1), . . . , sn(xn) in R there is a clause
t2(f(x1, . . . , xn))← r1(x1), . . . , rn(xn) in R, and si ⊆ ri, 1 ≤ i ≤ n.

This can be checked finitely.

Definition 3.3 intersection of unary predicates
Let R be an RUL program, and let t1 and t2 be unary predicates defined in R. Then the

intersection t1∩t2 is defined as a predicate t3 with definition R′, such that successR∪R′(t3) =
successR(t1) ∩ successR(t2).

A definition for the intersection of two unary predicates can be computed as follows. Given
t1 and t2, the intersection is:

• t1 if t1 ⊆ t2, or

• t2 if t2 ⊆ t1, or

4

• a predicate t3 otherwise, where t3 is defined as follows:

– If t1(f(x1, . . . , xn))← s1(x1), . . . , sn(xn) is in R
and t2(f(x1, . . . , xn))← r1(x1), . . . , rn(xn) is in R
then there is a clause t3(f(x1, . . . , xn))← q1(x1), . . . , qn(xn), where qi is defined as
the intersection of si and ri.

Definition 3.4 upper bound
Let R be an RUL program, and let t1 and t2 be unary predicates defined in R. Then an

upper bound t1 t t2 is defined as a predicate t3 with definition R′, where successR(t1) ∪
successR(t2) ⊆ successR∪R′(t3).

A definition for an upper bound of two unary predicates can be computed as follows. Given
t1 and t2, an upper bound is:

• t2 if t1 ⊆ t2, or

• t1 if t2 ⊆ t1, or

• a predicate t3 otherwise, where t3 is defined as follows:

– If t1(f(x1, . . . , xn))← s1(x1), . . . , sn(xn) is in R
and t2(f(x1, . . . , xn))← r1(x1), . . . , rn(xn) is in R
then there is a clause t3(f(x1, . . . , xn))← q1(x1), . . . , qn(xn), where qi = si t ri;

– If t1(f(x1, . . . , xn))← s1(x1), . . . , sn(xn) is in R
and there is no clause t2(f(x1, . . . , xn))← B in R, then there is a clause
t3(f(x1, . . . , xn))← s1(x1), . . . , sn(xn).

– If t2(f(x1, . . . , xn))← r1(x1), . . . , rn(xn) is in R
and there is no clause t1(f(x1, . . . , xn))← B in R, then there is a clause
t3(f(x1, . . . , xn))← r1(x1), . . . , rn(xn).

Note that t3 as computed above does not necessarily give the union of the results of t1
and t2, but in general includes the union. Although unions of regular sets are regular and
can be computed, they cannot be expressed always as RUL programs. (They could be if we
used the less restricted definition of RUL programs given in [18]).

Next, an operation on regular predicate definitions is defined, which is designed to derive
programs of a certain standard form. The idea is to limit the number of predicates depending
on a given predicate.

Definition 3.5 D(t, s)
Let R be an RUL program containing predicates t and s (t 6= s). Then the relation D(t, s)

is true if t depends on s and the set of function symbols appearing in the heads of clauses in
the procedure for t is a subset of the set of function symbols appearing in the heads of clauses
in the procedure for s.

Definition 3.6 normalisation
Let R be an RUL program, and let t and s be unary predicates defined in R such that

D(t, s) holds. Then a program N(R) is obtained from R as follows:

5

• If s ⊆ t and t ⊆ s then replace by t all occurrences of s in clause bodies in R, and delete
the procedure for s from R, yielding N(R).

• Otherwise, if s ⊆ t then replace by t all occurrences of s in clause bodies in R that
depend on t and do not depend on s. If after the replacement no occurrences of s are
present, then delete the clauses for s from R, yielding N(R).

• If s 6⊆ t then compute r = stt, with definition Rr. Replace all occurrences of t in clause
bodies in R by r, and delete the procedure for t, yielding R′. Then N(R) = R′ ∪Rr.

Example 1 Let R =

{t(a)← true,
t(f(x))← r(x),
r(a)← true,
r(f(x))← s(x),
s(b)← true}

D(t, r) holds, and r 6⊆ t, so the upper bound of t and r is computed. This is the predicate
q defined as:

{q(a)← true,
q(f(x))← q1(x),
q1(a)← true,
q1(b)← true,
q1(f(x))← s(x),
s(b)← true}

So N(R) =

{q(a)← true,
q(f(x))← q1(x),
q1(a)← true,
q1(b)← true,
q1(f(x))← s(x),
s(b)← true,
r(a)← true,
r(f(x))← s(x)}

Definition 3.7 normalised RUL program
A normalised program R is one in which there are no two predicates t and s such that

D(t, s) holds.

A normalised program can be obtained from R by performing a finite number of appli-
cations of N to R, i.e. computing Nn(R) for some finite n. This is shown by the following
lemma. First, a chain of dependent predicates is defined.

6

Definition 3.8 Let R be an RUL program. Then a sequence of distinct predicates t1, t2, . . . , tn
is called a maximal dependency path if ti depends on ti+1, (1 ≤ i < n), and tn depends
only on zero or more predicates in t1, t2, . . . , tn.

Lemma 3.9 Let R be an RUL program. Then for some n ≥ 0, Nn(R) is a normalised
program.

Proof. (outline)
Let t1, t2, . . . , tn be a maximal dependency path in R. Suppose D(ti, tj) holds for some

i < j.

• If ti ⊆ tj , then in N(R) the above maximal dependency path is replaced by a shorter
maximal dependency path t1, t2, . . . , tj−1 (since tj was replaced by ti).

• If ti 6⊆ tj then N(R) contains a definition of ti t tj . It can be shown that in N(R)
t1, t2, . . . , tn is replaced by a corresponding maximal dependency path of length n, which
contains predicates whose procedure definitions contain more functions in their clause
heads than the predicates definitions in t1, t2, . . . , tn.

Since the number of function symbols in procedures has a finite upper bound and the length
of maximal dependency chains has a finite lower bound, the number of possible applications
of normalisation is finite.

2

Definition 3.10 Let R be an RUL program. Then norm(R) = Nn(R) such that Nn(R) is
normalised.

The next lemma shows that normalisation increases the size of the success set of any
predicate that occurs in both R and N(R).

Lemma 3.11 Let R be an RUL program containing a predicate t such that t occurs both in
R and N(R). Then successR(t) ⊆ successN(R)(t).

Proof. (outline)
During normalisation, whenever an occurrence of a predicate s is replaced by another

predicate q, it is the case that successR(s) ⊆ successN(R)(q), since either s ⊆ q or q = s t r.
Hence any answers obtained for s are also obtained for q. t either depends on s or it does
not: in either case the property holds.

2

The next lemma shows that normalised RUL programs containing a fixed finite set of
function symbols can express only a finite number of distinct sets of terms. This property is
later used to show the termination of the algorithm for deriving a regular approximation of a
program.

7

Lemma 3.12 Let F = {f1/n1, . . . , fm/nm} be a finite number of function symbols. Then
there is a finite number of different sets of the form successR(t), where R contains only
function symbols from F .

Proof.
Let m be the number of distinct functions in F . Then there are 2m−1 different non-empty

sets of functions that can appear in the head of a procedure in R. Since R is normalised,
there are no t and s such that D(t, s). Hence the maximum length of maximal dependency
paths is 2m − 1.

The proof is then by induction on the length d of maximal dependency paths in R.

Basis: d = 0. In this case the procedures in R consist either of unit clauses of the form
t(a) ← true or clauses of the form t(f(x)) ← t(x). There is a finite number of sets
successR(t) obtainable from definitions of t of this form.

Assume that the result holds for maximal dependency paths of length at most d. Then
we show it holds for maximal dependency paths of length d + 1. Suppose t is at the
start of a maximal dependency paths of length d + 1. Then the procedure for t consists
of clauses of the form t(f(x1, . . . , xk)) ← t1(x1), . . . , tk(xk). Each tj starts a maximal
dependency paths of length at most d. Hence by the induction hypothesis there is
a finite number of different possible sets successR(tj), (1 ≤ j ≤ k). By permuting
all these different versions there is a finite number of possible versions of the clause
t(f(x1, . . . , xk)) ← t1(x1), . . . , tk(xk). Hence there is a finite number of distinct sets
successR(t).

Thus for any finite upper bound on maximal dependency chains in R, there is a finite
number of distinct definable sets successR(t).

2

Let Q be a set of regular clauses, where Q is not an RUL program. That is, there are two
clauses which have the same predicate and function symbol in their heads. An RUL program
can be derived from Q by the following operation.

Definition 3.13 Let Q be a set of regular unary clauses and let there be two clauses

• t(f(x1, . . . , xn))← s1(x1), . . . , sn(xn) and

• t(f(x1, . . . , xn))← r1(x1), . . . , rn(xn)

such that s1, . . . , sn, r1, . . . , rn are defined by a subset of Q that is an RUL program. Then
replace the two clauses by

• t(f(x1, . . . , xn))← q1(x1), . . . , qn(xn)

where qi = ri t si, (i ≤ i ≤ n), and add the definitions of qi to Q.
Repeat this operation until it cannot be applied any more. The final result is called reg(Q).

As defined, reg(Q) is not an RUL program for all Q, but for the purposes of this paper
reg(Q) is an RUL program since it is applied only to regularise the procedure approx.

8

4 Deriving a Regular Approximation of a Normal Program

In this section an algorithm is developed for computing a regular approximation of a given
logic program. One of the central ideas is to solve a definite goal with respect to a set of
regular definitions of predicates.

Let ← A1, . . . , An be a definite goal. The solution of this goal with respect to a set of
regular definitions is next defined.

Let D∪R be regular definitions of the predicates in A1, . . . , An where D consists of clauses
approx(pi(x1, . . . , xni))← B. When the resolution of a goal with a clause in D is mentioned,
the clause pi(x1, . . . , xni) ← B is used. Then the solution (if it exists) for ← A1, . . . , An in
D ∪R is obtained in two stages:

1. Resolve the goal ← A1, . . . , An with clauses in D ∪R until the resolvent is of the form
← t1(y1), . . . , tk(ym). That is, the resolvent contains only unary predicates, whose
arguments are variables.

2. If some variable y occurs more than once in the resolvent, say as an argument to tr and
ts, then compute t = tr ∩ ts, delete tr(y) and ts(y) from the resolvent, and add t(y)
instead. Repeat this operation until each variable occurs exactly once in the resolvent.

Note that this procedure could fail either because resolution fails, or because some inter-
section is empty. If it does not fail, the procedure yields a unique result.

The solution of the goal ← A1, . . . , An is then the final resolvent, with associated RUL
program R ∪R′, where R′ is the collection of definitions of intersected predicates.

4.1 Regular Solution of a Definite Clause

Let A ← B be a definite clause. Let D ∪ R be a regular definition of the predicates in
B. Obtain the solution of B as described above, namely, a resolvent ← s1(y1), . . . , sm(ym),
where y1, . . . , ym are distinct variables, where the predicates s1, . . . , sm are defined by an RUL
program R ∪R′.

The solution of the clause at this stage is A ← s1(y1), . . . , sm(ym). Transform it to
approx(A) ← s1(y1), . . . , sm(ym). The arguments of A can now be transformed to a regular
representation in the following steps. Let A = p(u1, . . . , uk).

1. For each variable z in A that does not occur in B add an atom any(z) to the body
s1(y1), . . . , sm(ym).

2. For each variable z that occurs more than once in A, where t(z) occurs in the body,
replace one occurrence of z in A by a fresh variable w and add t(w) to the body. Repeat
until each variable occurs once only.

3. For each argument uj of A, perform the following:

(a) If uj is a variable, do nothing.

9

(b) If uj is a non-variable f(v1, . . . , vq), introduce a new unary predicate t and a
new variable z, add t(z) to the body and remove r(y) from the body for every
y in uj . Let the conjunction of the atoms r(y) removed be Q. Form a clause
t(f(v1, . . . , vq))← Q. Apply step (3) to this clause.

At the end of the procedure a regular definition for p/k, the predicate of A, is obtained,
along with a set of RUL clauses defining the subsidiary clauses that were introduced.

Definition 4.1 solve(A← B, R)
Let A ← B be a definite clause, and R be a regular definition of predicates in B. The

operation solve(A← B, R) is defined to be R∪Q, where Q is the set of all the regular clauses
introduced by the solution of A← B in R described above.

Note that solve(A← B, R) is not necessarily an RUL program, since it may contain two
clauses with heads approx(p(x1, . . . , xk)), one from R and one derived in the solution process.

Example 2 Let the clause be

append([x|xs], ys, [x|zs])← append(xs, ys, zs)

and let R = {approx(append(x, y, z))← t1(x), any(y), any(z), t1([])← true}.
The solution of the body yields append([x|xs], ys, [x|zs]) ← t1(xs), any(ys), any(zs). The

transformation of the head yields approx(append(x, y, z)) ← t2(x), any(y), t3(z), with addi-
tional RUL clauses {t2([x|xs])← any(x), t1(xs), t3([z|zs])← any(z), any(zs)}.

So solve(append([x|xs], ys, [x|zs])← append(xs, ys, zs), R) yields the following program.

{approx(append(x, y, z))← t1(x), any(y), any(z),
approx(append(x, y, z))← t2(x), any(y), t3(z),
t1([])← true,
t2([x|xs])← any(x), t1(xs),
t3([z|zs])← any(z), any(zs)}

4.2 Approximation of a Definite Program

Let P be a definite program. Given a set of regular definitions of the predicates in P , a
solution for each clause in P can be computed, as shown above. For each clause defining p/n
in P , one regular definition is derived.

A function TR
P is now defined for a definite program P . The name of the function is

derived from the TP function for computing the minimal model of a definite program [13].

Definition 4.2 the function TR
P

Let P be a definite program. Let D be a regular definition of predicates in P .
A function TR

P (D) is defined as follows:

TR
P (D) = norm(reg(

⋃{
solve(A← B, D)

∣∣∣ A← B ∈ P
}

))

10

If we restrict attention to sets of regular unary clauses that are either empty or contain
a predicate approx, and the only other predicates are those that approx depends on, then a
partial order v is defined on such RUL programs D by D1 v D2 iff successD1(approx) ⊆
successD2(approx).
Claim. The operations reg, norm, ∪ and solve are monotonic with respect to this partial
order on D.

Hence TR
P is monotonic, and thus it has a least fixed point F in which successF (approx) =

successT R
P (F)(approx).

Lemma 4.3 Let P be a definite program and let F be a fixed point of TR
P . Then F is a

regular approximation of P .

Proof. (outline)
The proof first shows that TR

P approximates the usual semantic function TP , in the fol-
lowing sense. Let D be a regular definition of predicates in P . Then successD(approx) is a
Herbrand interpretation of P . It can be shown that TP (successF (approx)) ⊆ TR

P (F).
By induction on the number of iterations of TP and TR

P it can be shown that Tn
P (∅) ⊆

TR
P

n(∅) and hence this holds at the fixed point of both operators. The lemma follows imme-
diately. 2

The fixed point of TR
P is found in a finite number of iterations, because of the property

proved in Lemma 3.12.

4.3 Regular Approximation of Normal Programs

The approximation procedure can be applied to normal programs as follows:

1. Let P be a normal program. Let P ′ be the program obtained by deleting all negative
literals from P . P ′ is clearly a definite program that is a safe approximation of P .

2. Compute a regular approximation of P ′.

4.4 Regular Approximation of Prolog Programs

Prolog built-in predicates can be approximated by assigning any to each argument. More
precise approximation, such as integer could be defined.

The procedure can safely be applied to any program that does not use assert and retract
and related predicates, which can obviously dynamically alter the success set of a program.

5 Implementation and Applications

A procedure to compute the least fixed point of TR
P has been implemented in a straightforward

naive way, using the algorithm below (where T represents TR
P):

11

BEGIN
i := 0;
F[0] := {};
S[0] := {};
REPEAT

F[i+1] := T(F[i]);
S[i+1] := success[F[i+1]](approx);
i := i+1

UNTIL S[i] = S[i-1]
END

The value of F[i] at the end is the safe approximation program. There are well-known ways
to improve the efficiency of fixed point computations. A method is discussed in [10]. We have
so far implemented only the above naive algorithm. The remainder of this section contains
discussion of applications of safe approximations.

5.1 Relation to Type Inference

A regular approximation of a program bears a superficial resemblance to type information
about the program, and indeed most of the previous work on regular structures in logic
programming has been done in connection with type systems for logic programs [18], [8], [15].

However regular approximations should not be confused with types from the semantic
point of view, although some connections between types and RUL programs could be made.
The intention of providing types is not to describe a superset of the program’s success set;
it is rather to prescribe the set of well-typed programs, which is in general not a superset
of the success set (of the corresponding untyped program). RUL programs could also be
used in a prescriptive fashion, as in [18], but they do not provide the equivalent of a typed
interpretation of a program.

5.2 Static Analysis for Debugging

From the practical standpoint, regular approximations serve some of the same purposes as
types, namely, pinning down the intended interpretation of a program.

Given a program P , a regular approximation F can be computed and used to do static
debugging. The following points indicate the kinds of analysis that can be done.

• The operator solve(A ← B, F) can be evaluated for each clause A ← B in P . If for
some clause the result is empty, the clause is redundant, and indicates a bug.

• The regular definitions in F can be examined to see whether they give supersets of the
intended success sets for each program predicate.

• If an RUL program D is used to prescribe the structure of the success set of a program
(as in [18]) then D can be compared with F . Also, the operator solve(C, D) can be
computed for each clause C. If any clause in P has an empty solution in D, then that

12

clause is redundant with respect to the prescribed interpretation. If TR
P (D) ⊆ D, then

it indicates that a more precise prescription of D could be given. If D ⊆ TR
P (D) then

D may not cover all the results obtainable from P , so either D or P may be faulty.

These uses are similar to those presented in [18].

5.3 Regular Approximations of Call-Answer Programs

The oddly-named “magic set” and “Alexander” transformations were introduced as recursive
query evaluation techniques [2], [3] and [16]. They have since been adapted for use in program
analysis [5], [7], [12], [14] and [17].

The motivation for using the transformations is the following: we want to examine par-
ticular computations rather than the model of the program. If we analyse a program (as it
is) we get the success set of the program, which is in general larger than the information
we want for a particular call to the program. By transforming the program with the magic
set transformation, we can restrict attention to certain calls to predicates rather than their
general models. This analysis information will in general be more precise and therefore more
useful. This may be the case even when the supplied call to a predicate is unrestricted, since
calls from within clause bodies may be instantiated.

The intuitive idea behind the method will be explained with the following simple program:

p(x)← q(x), r(x).
q(a).
q(b).
r(a).

Let us for the sake of this example assume that we want information about the arguments
with which p is called.

We now reason as follows: in the first clause, assuming a left-to-right computation rule,
for r(x) to be called, q(x) must succeed and p(x) must be called. For q(x) to succeed, q(x)
must be called , and for q(x) to be called, p(x) must be called. This information about the
calls and answers of atoms in the program can be expressed in the following transformed
program:

answer(p(x))←
call(p(x)),
answer(q(x)),
answer(r(x)).

answer(q(a))←
call(q(a)).

answer(q(b))←
call(q(b)).

answer(r(a))←
call(r(a)).

call(r(x))←
call(p(x)),

13

answer(q(x)).
call(q(x))←

call(p(x)).

We also add the information that p(x) can be called (the top level query) to the above
program by adding the clause:

call(p(x)).

We assume that this is the only call to the program. The general form of the above transfor-
mation can be described by the following meta-interpreter.

call(bj)←clause(h← bs),
conj(bs1, (bj ,−), bs),
answer(bs1),
call(h).

answer(true).
answer((b, bs))← answer(b),

answer(bs).
answer(b)← b 6= (−,−), b 6= true,

clause(b← c),
call(b),
answer(c).

where conj(p, q, r) is true if the conjunction of p and q is r.
Note that the calls and answers produced are not in general identical to those arising in

SLD computations, since some spurious instances of calls and answers may be produced. But
since we are interested in safe approximation of the ground success set this does not matter.

5.3.1 Analysis of Call-Answer Approximations

The use of a “magic set” style transformation can give more precise approximations, when
computing regular approximations. The approximation of the answer predicate can often be
used in place of the approximation of the program itself, in static analysis for debugging, as
discussed in Section 5.2.

As an illustration, consider the naive reverse program

Example 3 Let P be the program:

reverse([], [])← true,
reverse([x|xs], ys)← reverse(xs, zs), append(zs, [x], ys),

append([], ys, ys)← true,
append([x|xs], ys, [x|zs])← append(xs, ys, zs)

By using the procedure for regular approximation, the following program was obtained by
our implementation:

14

reverse(x1, x2)← t53(x1), any(x2)

t53([])← true
t53([x1|x2])← any(x1), t53(x2)

append(x1, x2, x3)← t61(x1), any(x2), any(x3)

t61([])← true
t61([x1|x2])← any(x1), t61(x2)

As can be seen, the approximation loses all information about the second argument of reverse.
The reason is that since the base case of append allows any term for the second two arguments
of append, this propagates into the second argument of reverse.

When reverse(x, y) is computed, the only calls to append that arise have the second
argument instantiated as a singleton list. This restricts the possible answers to append and
hence to reverse. This can be captured using a call-answer transformation of the program,
with the call to reverse(x, y). The transformed program is as follows.

answer(reverse([], []))←
call(reverse([], [])).

answer(reverse([x|xs], ys))←
call(reverse([x|xs], ys)),
answer(reverse(xs, zs)),
answer(append(zs, [x], ys)).

answer(append([], ys, ys))←
call(append([], ys, ys)).

answer(append([x|xs], ys, [x|zs]))←
call(append([x|xs], ys, [x|zs])),
answer(append(xs, ys, zs)).

call(reverse(x, y)).
call(reverse(xs,)←

call(reverse([|xs],).
call(append(zs, [x], ys))←

call(reverse([x|xs], ys)),
answer(reverse(xs, zs)).

call(append(xs, ys, zs))←
call(append([x|xs], ys, [x|zs])).

The regular approximation of this program returned by our procedure is:

answer(reverse(x1, x2)) : −t172(x1), t165(x2)

t172([]) : −true
t172([x1|x2]) : −any(x1), t172(x2)

15

t165([x1|x2]) : −any(x1), t165(x2)
t165([]) : −true

answer(append(x1, x2, x3)) : −t180(x1), t139(x2), t188(x3)

t180([]) : −true
t180([x1|x2]) : −any(x1), t180(x2)
t139([x1|x2]) : −any(x1), t140(x2)
t188([x1|x2]) : −any(x1), t188(x2)
t188([]) : −true
t140([]) : −true

call(reverse(x1, x2)) : −any(x1), any(x2)

call(append(x1, x2, x3)) : −t96(x1), t139(x2), any(x3)

t96([x1|x2]) : −any(x1), t96(x2)
t96([]) : −true
t139([x1|x2]) : −any(x1), t140(x2)
t140([]) : −true

As can be seen, the approximations for the answers of reverse(x, y) are now more precise,
since both arguments consist of lists. Also, the answers for append show that the third
argument is a list and that the second argument is a singleton list.

5.4 Specialisation Using Regular Approximation

A more interesting use of the transformations is to analyse particular computations of pro-
grams, rather than the success set of the whole program. Given a program P and atomic
goal ← A, the magic transformation of P , along with the clause call(A)← true can be anal-
ysed. This gives information about the calls and answers generated during the computation
of P ∪ {← A}. From this information, an optimised version of P can be derived (e.g. some
clauses in P may not be needed to compute answers for A). Our current research is to inte-
grate regular approximations in an algorithm for program specialisation [9], and analyse the
behaviour of constraint interpreters. The method of integration is described in [6].

5.5 Machine Learning

Regular approximation of a program can be regarded as an example of inductive learning, in
which the regular definitions are generalisations of the information given in the program.

The literature on machine learning includes procedures for inferring regular grammars
from given examples of strings of a language. Biermann [4] surveys some of these methods
and gives an algorithm for performing this kind of learning.

We performed some small experiments to see whether such methods could be reproduced
using our regular approximation derivation. In fact we were able to achieve very similar
results to those given in [4]. The following example is given by Biermann.

16

Given a set of sample strings {a, aa, ba, aaa, aba, abb, baa, bba} the problem is to derive
a grammar for a language including these strings. First a corresponding logic program is
written.

l(a)← true
l(a(a))← true
l(b(a))← true
l(b(b))← true
l(a(a(a)))← true
l(a(b(a)))← true
l(a(b(b)))← true
l(b(a(a)))← true
l(b(b(a)))← true

In this representation the predicate l(x) states that x is in the language, and the functors
a/0 and b/0 denote singleton strings a and b, and the functors a/1 and b/1 denote strings
starting with a and b respectively.

Applying our procedure on this program, we obtained this approximation. Since the
program contains only unit clauses, the first iteration gives the fixed point.

l(x1) : −t157(x1)

t157(b(x1)) : −t157(x1)
t157(a(x1)) : −t143(x1)
t157(a) : −true
t157(b) : −true

t143(b(x1)) : −t145(x1)
t143(a) : −true
t143(a(x1)) : −t98(x1)

t145(a) : −true
t145(b) : −true

t98(a) : −true

This is not quite identical to Biermann’s result. The difference amounts to a different
normalisation procedure than the one described in this paper. However, Biermann discusses
the use of different methods of constructing grammars, corresponding to variations on the
normalisation.

The following alternative definition of D(t, s), for instance, leads to a different normalisa-
tion and hence a different approximation.

Definition 5.1 D′(t, s)

17

Let R be an RUL program containing predicates t and s (t 6= s). Then the relation D′(t, s)
is true if t depends on s and s ⊆ t.

D′(t, s) would not be suitable for the general case since it does not give a monotonic
operator norm as required in Section 4. However it is fine for unit clause programs and its
use on the the above example gives something equivalent to Biermann’s result, namely:

l(x1) : −t152(x1)

t152(b(x1)) : −t154(x1)
t152(a(x1)) : −t152(x1)
t152(a) : −true

t154(b(x1)) : −t152(x1)
t154(a(x1)) : −t152(x1)
t154(a) : −true
t154(b) : −true

Several other learning algorithms produce a finite automaton as a result, and since regular
languages and deterministic finite automata define the same class of languages, it suggests
that our method of regular approximation could be applied to other learning problems. We
are currently attempting to reproduce Biermann’s algorithm for learning Turing machines
from program traces. Again, the method would represent the traces as clauses in a logic
program, and then compute an approximation that could generate the traces.

6 Related Work and Conclusion

The procedure in this paper can be compared to methods for inferring regular descriptions
or “types” for the predicates of logic programs [19], [15], [8]. Our method differs in that
it is a bottom-up fixed point computation. This makes it more precise for some programs,
such as looping definitions. For instance, the program {p(x) ← p(x)} would get an empty
approximation using the procedure in this paper, whereas apparently other methods would
give an approximation {p(x)← any(x)}.

Similarly, a program such as {p(f(f(a))) ← true, p(x) ← p(f(x))} would be assigned an
approximation {p(x) ← any(x)} by other methods, whereas ours gives {p(x) ← t(x), t(a) ←
true, t(f(x)) ← t(x)}. Such differences are important when applying the approximation to
call-answer programs (Section 5.3) since the base case of a call predicate may contain structure
which is successively broken down during the computation.

Although [18] contains a definition of an abstraction of the TP operator in order to define
a type, similar in spirit to TR

P in this paper, it could not used as a means of constructing an
approximation.

Other methods such as those in [15] and [19] include polymorphism, which our method
does not. This gives extra precision where we would obtain any(x) in some cases, since

18

polymorphism captures structure sharing information that cannot be represented in regular
structures.

The fixed point computation can be expensive for larger programs, and further study on
the complexity is needed. Our preliminary naive implementation is written in Prolog and
runs on a SPARCstation-2. On a call-answer transformed version of a unification algorithm
for a ground representation, which contains approximately 80 clauses, the procedure takes
several minutes to reach a fixed point.

Further research will be aimed at incorporating the regular approximation procedure into
a program specialisation system [9]. By getting more precise descriptions of call and answer
patterns during partial evaluation, more specialised programs can be obtained.

Acknowledgements

Thanks to Ian Holyer, Bristol University, for useful discussions about regular programs.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Adddison-Wesley, 1974.

[2] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to
implement logic programs. In Proceedings of the 5th ACM SIGMOD-SIGACT Symposium
on Principles of Database Systems, 1986.

[3] C. Beeri and R. Ramakrishnan. On the power of magic. In Proceedings of the 6th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San Diego,
California, 1987.

[4] A. Biermann. Fundamental mechanisms in machine learning and inductive inference. In
W. Bibel and Ph. Jorrand, editors, Fundamentals of Artificial Intelligence: An Advanced
Course. Springer-Verlag, 1987.

[5] M. Codish. Abstract Interpretation of Sequential and Concurrent Logic Programs. PhD
thesis, The Weizmann Institute of Science, 1991.

[6] D.A. de Waal and J. Gallagher. Specialisation of a unification algorithm. Technical
Report TR-91-14, University of Bristol, July 1991. (To appear in proceedings of LOP-
STR’91).

[7] S. Debray and R. Ramakrishnan. Canonical computations of logic programs. Technical
report, University of Arizona-Tucson, July 1990.

[8] T. Frühwirth. Type inference by program transformation and partial evaluation. In
H. Abramson and M.H. Rogers, editors, Meta-Programming in Logic Programming, 1988.

[9] J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,
University of Bristol, November 1991.

19

[10] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program speciali-
sation. New Generation Computing, 6(2), 1988.

[11] N. Jones. Flow analysis of lazy higher order functional programs. In S. Abramsky
and C. Hankin, editors, Abstract Interpretation of Declarative Languages. Ellis-Horwood,
1987.

[12] T. Kanamori. Abstract interpretation based on Alexander templates. Technical Report
TR-549, ICOT, March 1990.

[13] J.W. Lloyd. Foundations of Logic Programming: 2nd Edition. Springer-Verlag, 1987.

[14] C.S. Mellish. Using specialisation to reconstruct two mode inference systems. Technical
report, University of Edinburgh, March 1990.

[15] P. Mishra. Towards a theory of types in prolog. In Proceedings of the IEEE International
Symposium on Logic Programming, 1984.

[16] J. Rohmer, R. Lescœr, and J.-M. Kerisit. The Alexander method, a technique for the
processing of recursive axioms in deductive databases. New Generation Computing, 4,
1986.

[17] H. Seki. On the power of Alexander templates. In Proceedings of the 8th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Philadelphia, Penn-
sylvania, 1989.

[18] E. Yardeni and E.Y. Shapiro. A type system for logic programs. In E. Shapiro, editor,
Concurrent Prolog: Collected Papers. MIT Press, 1978.

[19] J. Zobel. Derivation of polymorphic types for prolog programs. In Proceedings of the 5th
International Conference and Symposium on Logic Programming. MIT Press, 1988.

20

