
A Transformation System for Definite Programs
Based on Termination Analysis

J. Cook and J.P. Gallagher?

Department of Computer Science, University of Bristol, Bristol BS8 1TR, U.K.

Abstract. We present a goal replacement rule whose main applicability
condition is based on termination properties of the resulting transformed
program. The goal replacement rule together with a multi-step unfold-
ing rule forms a powerful and elegant transformation system for definite
programs. It also sheds new light on the relationship between folding
and goal replacement, and between different folding rules. Our explicit
termination condition contrasts with other transformation systems in
the literature, which contain conditions on folding and goal replacement,
often rather complex, in order to avoid “introducing a loop” into a pro-
gram. We prove that the goal replacement rule preserves the success set
of a definite program. We define an extended version of goal replacement
that also preserves the finite failure set. A powerful folding rule can be
constructed as a special case of goal replacement, allowing folding with
recursive rules, with no distinction between old and new predicates. A
proof that Seki’s transformation system preserves recurrence, an impor-
tant termination property, is outlined.

1 Introduction

In this paper we define a goal replacement rule (for definite programs) based on
termination analysis. Under the conditions of the rule, a replacement can only
be made if the resulting program terminates for all ground calls to the head of
the transformed clause. We show that application of this rule to a program will
preserve its success set. The finite failure set can also be preserved by adding a
similar termination condition on the program being transformed. We also give a
definition of a more general unfolding rule which is based on a partial evaluation
rule discussed in [LS91] and [GS91].

On reviewing the literature regarding folding and goal replacement, it was ap-
parent that the underlying issue (when considering the correctness of such rules)
was the termination of the resulting program. This was particularly evident in
[Sek89] and [BCE92].

In the first of these papers, Seki, discussing the unfold/fold transformations
of Tamaki and Sato [TS84], noted that a goal may not terminate in a program
resulting from a Tamaki-Sato folding rule, even though it finitely failed in the
original program. To combat this, Seki proposed a reformulated folding rule.

? Correspondence to jpg@compsci.bristol.ac.uk

Under the conditions of [BCE92], a goal replacement can be made provided that
‘a loop is not introduced’ into the program. This is clearly a reference to some
termination properties of the transformed program.

It should be noted that the original unfold/fold transformations for functional
programs [BD77] preserves only partial correctness. Total correctness, that is,
termination, has to be established separately. 2 In logic programming, starting
with the work of Tamaki and Sato [TS84], the tradition has been to devise
conditions on unfolding and folding that implicitly guarantee total correctness
results. Recently, conditions on goal replacement requiring ‘reversibility’ of goal
replacement have been proposed by Proietti and Pettorossi [PP93], stressing the
preservation of partial and total correctness as separate concerns. This work is
in the same spirit as ours though the approach differs. Our goal replacement is
not reversible, but still preserves total correctness (in the sense of the program’s
success set).

The link between transformation rules and termination analysis provided us
with the motivation for the system we present. The main difference of approach
between our work and the works just cited (and also [GS91], [Mah87], [Sek89]
and others) is that in our goal replacement rule termination of the transformed
program is a condition of application of the rule, and we leave open the means
by which termination is checked. Although the problem of checking goal re-
placement conditions is thereby shifted to checking termination properties, the
advantage gained is that the link between folding and goal replacement is clari-
fied. More flexible folding rules can be invented, as we show below. Also, research
on termination analysis can be brought to bear on the problem.

We note that Boulanger and Bruynooghe [BB93] also developed an approach
to goal replacement that is based on generation of replacement lemmata during
an abstract interpretation of the program. This approach also seems capable
of performing fold-like operations that are less restrictive than usual, allowing
folding with recursive rules, for instance. 3

There are two alternative strategies for implementing our transformation
rules. One possibility is to use termination analysis techniques, to check ter-
mination of a transformed program directly. Secondly, special cases of the goal
replacement can be derived, in which syntactic conditions ensuring termination
are checked. This suggest a reconstruction of ‘fold’ transformations. In general
the first approach seem the more promising, since it seems very difficult to find
syntactic conditions that guarantee useful termination properties (such as ac-
ceptability [AP90]).

Section 2 contains a review of logic program transformation systems. In Sec-
tion 3 we introduce our transformation rules and prove the correctness results.
In Section 4 termination analysis is reviewed. An example of our system is given
in Section 5. We show that our replacement rule allows ‘foldings’ to be based on

2 We are grateful to A. Pettorossi for this pertinent comment
3 We have been informed that folding using recursive rules was also considered in

unpublished technical reports by Tamaki and Sato (1986), and by Kanamori and
Fujita (1986).

equivalences that depend on recursive definitions of predicates. This is not al-
lowed in other unfold/fold transformation systems. An informal proof that Seki’s
transformation system preserves recurrence can be found in Section 6. Finally,
Section 7 is a short concluding section and some thoughts on future research
directions.

The terminology used throughout this paper is consistent with that of [Llo87].

2 Background

2.1 Unfold/Fold of Definite Programs

In [TS84] the notion of a transformation sequence for definite programs was
introduced.

Definition 1. An initial program, P0, is a definite program satisfying the fol-
lowing conditions:

– P0 is divided into two sets of clauses, Pnew and Pold. The predicates defined in
Pnew are called new predicates, those defined in Pold are called old predicates.

– Predicates defined in Pnew do not appear in Pold nor in the body of any
clause in Pnew.

The clauses defining new predicates are considered as new definitions; we note
that they cannot be recursive.

Definition 2. Let P0 be an initial program, and Pi+1 a program obtained from
Pi by applying either unfolding or folding for i ≥ 0. The sequence of programs
P0, . . . , Pn is called a transformation sequence starting from P0.

We do not repeat the definition of the unfold and fold rules from [TS84]
here, but note that folding depends on the distinction between old and new
predicates in the initial program. In a folding transformation applied in Pi in a
transformation sequence, the clause used for folding is one of the clauses defining
a new predicate. Thus folding in [TS84], and other systems derived from it, is
not defined as a transformation on a program, but rather as a transformation
on a sequence of programs.

Denoting the least Herbrand model of a program P by M [P], the main result
of [TS84] is the following.

Proposition 3. Let P0, . . . , Pn be a transformation sequence starting from P0

which uses Tamaki-Sato unfolding and folding. Then M [P0] = M [Pn].

Although the unfolding and folding rules of [TS84] preserve the success set of
a program, they do not preserve its finite failure set. Some queries that finitely
failed in an original program may not terminate after the transformation has
been applied. [Sek89] proposes a modified folding rule based on the notion of
an inherited atom. (Although Seki’s transformations are defined for normal pro-
grams, we restrict our attention to definite programs here).

The fold-unfold system using Seki’s fold rule preserves the finite failure set
of a program as well as its minimal model. Let FF [P] denote the finite failure
set of P .

Proposition 4. Let P0, . . . , Pn be a transformation sequence starting from P0

which uses unfolding as in [TS84], and the folding rule in [Sek89]. Then FF [P0] =
FF [Pn].

A property of Seki’s transformation system will be considered in Section 6. For
the rest of the paper we refer to the success set SS[P] rather than M [P] for a
program P , for symmetry with FF [P].

Transformation rules (for normal programs) are also considered by Gardner
and Shepherdson in [GS91]. The unfolding rule (restricted to definite programs)
is the same as that of [TS84]. The unfolding rule is used in conjunction with a
reversible folding rule, similar to that of [Mah87], in which the folding clause is
taken from the current program rather than from the initial program. Folding
can be reversed by unfolding using these rules, and thus the correctness of folding
follows from the correctness of unfolding. This elegant framework is independent
of any transformation sequence. However, as a consequence of this, the frame-
work appears to be less useful for practical purposes than the transformation
system proposed in [TS84], in which the equivalences on which the foldings are
based come from a set of clauses in the fixed initial program, and so are not
altered during a transformation sequence.

By proving that their folding rule is the inverse of unfolding, Gardner and
Shepherdson are able to show that their system preserves procedural equivalence
based on SLDNF-resolution. For definite programs, therefore, both the minimal
model and the finite failure set are preserved.

2.2 Goal Replacement

The goal replacement operation was defined in [TS84] to increase the power of
the unfold/fold transformation system. In general, the rule is the replacement of
a clause in P of the form

C : A← A1, . . . , Ak, Ak+1, . . . , An

by the clause
C ′ : A← B1, . . . , Bm, Ak+1, . . . , An

to form the program P ′ = P − {C} ∪ {C ′}, where A1, . . . , Ak and B1, . . . , Bm

are in some sense equivalent in P and P ′. (We consider replacing only some left
conjunct of the body, without loss of generality).

Tamaki and Sato claimed that their goal replacement rule preserved the least
Herbrand model of P . However, [GS91] gives a counter-example to this claim and
defined a goal replacement rule with stronger applicability conditions. Gardner
and Shepherdson show that the least Herbrand model is preserved by their goal
replacement transformation.

One motivation of our work is to provide a goal replacement rule so that
folding is a special case, and more flexible folding rules can be derived.

This was also one of the aims of Bossi et al. [BCE92]. A replacement operation
(for normal programs) is defined in [BCE92]. Applicability conditions are given
in order to ensure the correctness of the operation with respect to Fitting’s
semantics for normal programs. These semantics are based on Kleene’s three-
valued logic, the truth values being true, false, and undefined.

The conditions for goal replacement there are based on the rather complex
notions of ‘semantic delay’ and ‘dependency degree’. It is explained in [BCE92]
that the applicability conditions are to ensure that there is ‘no room for introduc-
ing a loop’. When the program P is transformed to P ′, under the applicability
conditions:

– the dependency degree is an indication of how big a loop would be.
– the semantic delay is an indication of the space in which the loop would be

introduced.

The transformation rules in [BCE92], though complex, provided us with the
inspiration to search for more general conditions for goal replacement by inves-
tigating the problem of termination, since avoiding the ‘introduction of a loop’
seems to be the main intuition behind the work outlined above.

3 A Transformation System Based on Termination
Analysis

In this section, we apply some of the ideas from the survey in Section 2 to
develop a new transformation system. The main idea is that a goal replacement
operation should depend on the notion of termination. Furthermore, we claim
that this approach sheds light on other transformation systems.

We present two transformation rules for definite programs and prove that if
the program P ′ results from the transformation of P under these rules then P and
P ′ have the same least Herbrand model. The rules are, the unfold rule (Definition
5) based on partial evaluation, and the goal replacement rule (Definition 8) based
on termination analysis. We do not consider a rule to introduce new definitions
since we may consider all such definitions to have been introduced in the initial
program of a transformation sequence.

3.1 Unfolding

Definition 5. Let P be a definite program and C a clause in P of the form

A← Q

where Q is a conjunction of atoms (possibly empty).
Build an (incomplete) SLD-tree for P ∪ {← Q} via some computation rule.

Choose goals ← G1, . . . ,← Gr such that every non-failing branch of the
SLD-tree contains precisely one of them. Let θi be the computed answer for the
derivation from ← Q to ← Gi, (i = 1, . . . , r).

The result of unfolding C on B in P is the definite program P ′ formed from
P by replacing C by the set of clauses {C1, . . . , Cr}, where Ci = Aθi ← Gi.

Theorem 6. Let the definite program P ′ be obtained by applying an unfold trans-
formation to a clause in P . Then SS[P] = SS[P ′] and FF [P] = FF [P ′].

The proof is drawn from a special case of partial evaluation which is discussed
in [LS91] and [GS91]. Note that the extension of the usual ‘one-step’ unfold rule
to the ‘multi-step’ rule above is more than just convenience; there are unfoldings
using Definition 5 that cannot be reproduced by a series of one-step unfoldings,
since a clause being used for unfolding may itself be modified as the result of a
single unfolding step.

3.2 Goal Replacement

Let Q1 ≡V Q2 in P denote a notion of computational equivalence of formulas,
in the following sense.

Definition 7. Let Q1 and Q2 be conjunctions of atoms and V a set of variables.
We write Q1 ≡V Q2 in P if

– ∃σ such that P ∪ {← Q1} has an SLD-refutation with computed answer σ,
where σ|V = θ ⇔
∃ρ such that P ∪ {← Q2} has an SLD-refutation with computed answer ρ,
where ρ|V = θ

In other words the computed answers for goals ← Q1 and ← Q2 agree on the
variables in V .

Definition 8. goal replacement
Let P be a definite program and C a (non-unit) clause in P of the form

A← Q1, Q

where A is an atom and Q1,Q conjunctions of atoms. Let R be a computation
rule, and let vars(A,Q) denote the set of variables occurring in either A or Q.
Form P ′ from P by replacing C by the clause

A← Q2, Q

where both of the following conditions are satisfied:

– Q1 ≡vars(A,Q) Q2 in P .
– For all ground instances A′ of A, the SLD-tree for P ′ ∪ {← A′} via R is

finite.

Note that the definition refers to termination (finiteness of an SLD-tree)
via a particular computation rule. One can use whatever computation rule one
chooses in order to check termination. In practice one is probably interested in
‘standard’ computation rules such as the Prolog leftmost selection rule. The or-
der of atoms in clause bodies and the computation rule are interdependent. For
simplicity in the definition we have assumed that goal replacement takes place
on the left part of the body, but with a fixed computation rule such as Prolog’s
this restriction needs to be relaxed. The definition is also asymmetric, in that
we check the termination property in P ′ only. This reflects the directed nature
of the transformation sequence, and the concern not to introduce loops during
transformations. The second condition could also be weakened by checking ter-
mination of derivations starting with the transformed clause only (rather than
all derivations of atomic goals unifying with its head).

The main correctness result for the goal replacement transformation is the
preservation of the success set (Theorem 10). We shall see later that a symmetric
version of the goal replacement rule, with an extended notion of goal equivalence,
preserves the finite failure set as well (Theorem 15).

We start by proving a lemma stating that goals which succeed in P do not
finitely fail in P ′. Note that this lemma does not require the termination condi-
tion in the goal replacement rule, but simply uses the properties of goal equiv-
alence. In a sense this lemma establishes a “partial correctness” result, and the
termination condition will be used to establish total correctness.

Lemma 9. Let the definite program P ′ be obtained by applying a goal replace-
ment transformation to a clause in P . Then for all definite goals ← B,

P ′ ∪ {← B} has a finitely failed SLD-tree implies that P ∪ {← B} has no
SLD-refutation.

The proof of this lemma is in the appendix.

Theorem 10. Let the definite program P ′ be obtained by applying a goal re-
placement transformation to a clause in P . Then SS[P] = SS[P ′].

Proof. The proof is in two stages. We show that:

1. SS[P ′] ⊆ SS[P]
2. SS[P] ⊆ SS[P ′]

Stage 1: let A′ ∈ SS[P ′]; show by induction on the length of the shortest
SLD-refutation of P ′ ∪ {← A′}, that there is an SLD-refutation of P ∪ {← A′}.
Let SSk[P ′] be the set of atoms A such that P ′ ∪ {← A} has an SLD-refutation
of length at most k.

For the base case, suppose A′ ∈ SS1[P ′]. This means that A′ is a ground
instance of the head of a unit clause D in P ′. Goal replacement does not affect
unit clauses, so D is also in P . Therefore P ∪ {← A′} has an SLD-refutation of
depth 1.

For the induction step, assume that P ∪ {← A′} has an SLD-refutation for
all A ∈ SSk[P ′]. Suppose that A′ ∈ SSk+1[P ′] and let T ′ be an SLD-refutation
of P ′ ∪ {← A′} of length k + 1. Suppose the first clause (variant) used in T ′ is
Cr : H ← S.

If Cr is not the result of the goal replacement, then Cr is also in P . Let
mgu(A′, H) = ρ; then P ′ ∪ {← Sρ} has an SLD-refutation of length k with
computed answer σ, say. Let Sρσγ be any ground instance of Sρσ. Then for
each ground atom Ā in Sρσγ, P ′ ∪ {← Ā} has an SLD-refutation of length at
most k and so by the induction hypothesis, P ∪{← Ā} has an SLD-refutation. It
follows that P ∪{← Sρσγ} has an SLD-refutation and hence so has P ∪{← Sρ}.
Therefore P ∪ {← A′} has an SLD-refutation using Cr on the first step.

If Cr is the clause produced by goal replacement we have

Cr : A← Q2, Q in P ′

which replaced
C : A← Q1, Q in P

where A′ is unifiable with A with mgu θ. Then P ′ ∪ {← (Q2, Q)θ} has an SLD-
refutation and hence P ′∪{← Q2θ} has an SLD-refutation with computed answer
α, say, and P ′ ∪ {← Qθα} has a refutation with computed answer σ, say.

Using the inductive hypothesis applied to the atoms in any ground instance
of Q2θα we can show that P ∪ {← Q2θ} also has an SLD-refutation with com-
puted answer α. Since Q1 ≡vars(A,Q) Q2 in P , and since θ acts on variables in A,
P ∪ {← Q1θ} has an SLD-refutation with computed answer α̂, where α agrees
with α̂ in variables of Aθ and Qθ. Also by the inductive hypothesis applied to
any ground instance of Qθασ it follows that P ∪ {← Qθα} has a refutation
with computed answer σ. Hence P ∪ {← Qθα̂} has a refutation with computed
answer σ. Putting the goals together it follows that P ∪ {← (Q1, Q)θ} has an
SLD-refutation. Therefore, P ∪ {← A′} has an SLD-refutation using clause C
on the first step.

Stage 2: let A′ ∈ SS[P] and show that A ∈ SS[P ′]. Proof is by induction on
the length of an SLD-refutation of P ∪ {← A′}.

The base case is similar to the base case in Stage 1. For the inductive step,
consider an SLD-refutation of P ∪ {← A′} of length k + 1, using Cr on the first
step. If Cr is not the clause used in goal replacement the argument is identical
to the corresponding step in Stage 1.

If Cr is the clause used in goal replacement, then A′ is a ground instance of
the head of Cr, and thus also of the head of the clause that replaces Cr. By the
termination condition on goal replacement, P ′ ∪ {← A′} has a finite SLD-tree,
so it is either a finitely-failed tree, or contains a refutation. Suppose P ′∪{← A′}
has a finitely-failed SLD-tree. Then by Lemma 9 P ∪ {← A′} has no SLD-
refutation. But this contradicts the inductive hypothesis. Hence P ′ ∪ {← A′}
has an SLD-refutation. 2

We conjecture that the set of computed answers is also preserved, since goal
equivalence is based on equivalence of computed answers.

There is an obvious corollary to Theorems 6 and 10, which is the basis for
reconstructing folding as a special case of goal replacement.

Corollary 11. Let P0, . . . , Pk be a transformation sequence using unfold and
goal replacement rules. Let Q1 ≡V Q2 in Pi for some 0 ≤ i < k. Then Q1 ≡V Q2

in Pj, 0 ≤ j ≤ k.

In particular, if there is a clause A← Q in some Pi, where A has no common
instance with any other clause head in Pi, then A ≡vars(A) Q holds in Pi. There-
fore it holds in subsequent programs in the sequence and the clause can be used
for goal replacement in subsequent programs. In other words, if a clause of form
H ← Qθ,R occurs in some Pj , where j > i. it may be replaced by H ← Aθ,R
in Pj+1 provided that

1. Variables in vars(Q)/ vars(A) are mapped by θ into distinct variables not
occurring in H, Aθ or R. (This is sufficient to establish the first goal re-
placement condition that Qθ ≡vars(H,R) Aθ).

2. Pj+1 ∪ {← H ′} has a finite SLD-tree (via some computation rule) for all
ground instances H ′ of H.

This avoids the restrictions on folding present in [TS84], [Sek89], [GS91] and so
on, that folding clauses define “new” predicates and are non-recursive. In Section
5 there is an example of a “fold” transformation using a recursive definition,
which would not be possible with other fold rule based on [TS84]. Our goal
replacement condition also avoids the rather complex syntactic conditions that
are typical of folding rules.

In the literature there are two distinct flavours of folding. In [TS84] and
related systems, folding is defined on a transformation sequence, and the clause
used for folding might not be in the program to which folding is applied. By
contrast, [GS91] and [Mah87] give a more elegant folding rule in which the
folding clause comes from the program being transformed. These two folding
rules are quite different in power. Both of them can be viewed as special cases
of our goal replacement rule.

3.3 Preserving the Finite Failure Set

The goal replacement rule does not preserve the finite failure set. Preserving
finite failure is desirable in some contexts, and so we strengthen the definition of
goal equivalence in Definition 7, by insisting that the equivalent goals have the
same failing behaviour as well as computed answers.

Definition 12. Let Q1 and Q2 be conjunctions of atoms and V a set of variables.
We write Q1 ≡V Q2 in P if

– ∃σ such that P ∪ {← Q1} has an SLD-refutation with computed answer σ,
where σ|V = θ ⇔
∃ρ such that P ∪ {← Q2} has an SLD-refutation with computed answer ρ,
where ρ|V = θ, and

– for all substitutions θ acting only on variables in V ,
P ∪ {← Q1θ} has a finitely failed SLD-tree ⇔
P ∪ {← Q2θ} has a finitely failed SLD-tree.

Assume now that the goal replacement transformation (Definition 8) refers to
equivalence in the sense of Definition 12. We can then prove a stronger version
of Lemma 9.

Lemma 13. Let the definite program P ′ be obtained by applying a goal replace-
ment transformation to a clause in P (using Definition 12 and Definition 8).
Then for all definite goals ← B,

P ′ ∪ {← B} has a finitely failed SLD-tree
⇒ P ∪ {← B} has a finitely failed SLD-tree.

Proof. (outline)
The proof is similar in structure to the proof of Lemma 9, and does not use

the termination condition on goal replacement. The key step is the construction
of a finitely-failed SLD tree for a computation of form P ∪ {← (Q1, R)θ} given
a finitely-failed SLD tree for P ∪ {← (Q2, R)θ}, where Q1 ≡V Q2, θ acts only
on V , and R is some conjunction. 2

Note that the converse of Lemma 13 does not hold. A goal may fail finitely in
P but loop in P ′, as the following example shows.

Example 1. Let P = {p ← q(X), q(f(X)) ← r(X)}. Then q(X) ≡{X} r(X)
and we can replace r(X) by q(X) in the second clause, since the termination
condition is satisfied. We obtain P ′ = {p← q(X), q(f(X))← q(X)}. P∪{← p}
has a finitely failed SLD tree but P ′ ∪ {← p} loops.

As noted above, the goal replacement rule is asymmetric in that termination
is checked only in the program after transformation. Clearly by virtue of Lemma
13 a symmetric version preserves the finite failure set as well as the success set.

Definition 14. (symmetric goal replacement) Let P be transformed to P ′ by
goal replacement as defined in Definition 8 with Definition 12. If P can also be
obtained from P ′ by goal replacement, then we say P ′ is obtained from P by
symmetric goal replacement.

Theorem 15. Let P ′ be obtained from P by symmetric goal replacement. Then
SS[P] = SS[P ′] and FF [P] = FF [P ′].

Proof. Using Theorem 10 and Lemma 13.2

Corollary 11 holds with respect to the symmetric goal replacement transfor-
mation and the extended definition of goal equivalence. Thus folding transforma-
tions that preserve the finite failure set can be constructed as goal replacements.

4 Termination of Definite Programs

We now turn our attention to the topic of termination analysis, which is needed
in order to verify the conditions for our goal replacement rule. There has been
a great deal of research effort addressing many aspects of termination analysis.
This research has branched into many different directions because of the variety
of definitions that exist for termination. The question of what is meant by a
terminating program depends principally on such matters as the procedural
semantics employed, the different modes of use of a program, and the fact that
logic programs can be nondeterministic. This summary relies to a great extent
on the survey in [DV92].

We may wish to consider either existential or universal termination, the for-
mer being termination because of finite failure, or because at least one solution is
found (even though the program could have entered an infinite computation after
finding such a solution), the latter being termination of the entire computation
(all solutions having been found).

There are two different approaches in the research. The approach taken in,
for example, [UV88] and [Plü92] looks to the provision of sufficient conditions for
the termination of a logic program with respect to certain classes of queries that
can be automatically verified. An alternative approach is taken in such papers
as [VP86], [Bez89], [AP90] and [DVB92], where theoretical frameworks to solve
questions about termination are offered.

Both [UV88] and [Plü92] use reasoning with linear predicate inequalities
to generate termination proofs. The termination dealt with in [Plü92] is left-
termination (i.e. termination under the left-to-right computation rule) of pure
Prolog programs with respect to goals with input terms of known mode.

The concept of a level mapping is introduced by Bezem in [Bez89]. Denoting
the Herbrand base of a program P by BP :

Definition 16. A level mapping for a definite program P is a mapping
|.| : BP → N .

The necessary decrease in measure for establishing termination through recursive
clauses is ensured by the restriction of Bezem’s work to a particular class of
programs - those which are recurrent.

Definition 17. A definite program P is recurrent if there is a level mapping |.|
such that for each ground instance A← B1, . . . , Bn of a clause in P, we have
|A| > |Bi| for each i = 1, . . . , n. A program is recurrent if it is recurrent with
respect to some level mapping.

Note that, in the above definition, there is a decrease in measure between the
head and body of every clause of the program. The main result of [Bez89] is that
a logic program is terminating (with respect to ground goals and an arbitrary
computation rule) if and only if it is recurrent.

Recurrency with respect to |.| can be used to infer termination of non-ground
goals whose ground instances have a maximum value with respect to |.|.

The ideas of [Bez89] are addressed with respect to termination in the left-to-
right computation rule by Apt and Pedreschi in [AP90]. Many practical programs
terminate under the Prolog selection rule (when given the correct class of inputs)
even though they are not recurrent. As a result, in [AP90] the notion of a recur-
rent program is replaced by that of an acceptable one. Apt and Pedreschi prove
that the notions of left-termination and acceptability coincide.

Some limitations of these approaches, with respect to automating the analysis
of termination, are discussed by De Schreye et al. in [DVB92]. where extended
notions of level mappings and recurrency are introduced. They introduce the
notion of recurrency with respect to a set of atoms S. The key results in [DVB92]
are that: P is recurrent with respect to S if and only if it is terminating with
respect to S, and that P is recurrent if and only if it is recurrent with respect
to BP .

5 Example

This section contains an example of a program transformation under our rules
in which the goal replacement stages cannot be made under the folding rule of
[TS84], [Sek89] or [GS91]. This suggests that our system could be used to achieve
more flexible folding rules, using, say, recursive definitions of new predicates. The
example also illustrates the use of both recurrence and acceptability to establish
applicability of goal replacements.

Example 2. Let P 0 = {C1, . . . , C4}, where

C1 : append([], xs, xs).
C2 : append([x|xs], ys, [x|zs])← append(xs, ys, zs).
C3 : leaves(leaf(x), [x]).
C4 : leaves(tree(x, y), zs)←

leaves(x, xs), leaves(y, ys), append(xs, ys, zs).

Unfold C4 on the first atom to obtain P 1 = (P 0/{C4}) ∪ {C5, C6}, where

C5 : leaves(tree(leaf(x′), y), [x′|zs])← leaves(y, zs),
C6 : leaves(tree(tree(x′, y′), y), zs)←

leaves(x′, xs′), leaves(y′, ys′), append(xs′, ys′, zs′),
leaves(y, ys), append(zs′, ys, zs).

Goal Replacement 1
Replacement of append(xs′, ys′, zs′), append(zs′, ys, zs) by
append(ys′, ys, vs), append(xs′, vs, zs) in C6 to give P 2 :

C1 : append([], xs, xs).
C2 : append([x|xs], ys, [x|zs])← append(xs, ys, zs).
C3 : leaves(leaf(x), [x]).
C5 : leaves(tree(leaf(x′), y), [x′|zs])← leaves(y, zs),
C7 : leaves(tree(tree(x′, y′), y), zs)←

leaves(x′, xs′), leaves(y′, ys′), leaves(y, ys),
append(ys′, ys, vs), append(xs′, vs, zs).

Goal Replacement 2
Goal replace leaves(y′, ys′), leaves(y, ys), append(ys′, ys, vs) by
leaves(tree(y′, y), vs) in C7 to obtain P 3 :

C1 : append([], xs, xs).
C2 : append([x|xs], ys, [x|zs])← append(xs, ys, zs).
C3 : leaves(leaf(x), [x]).
C5 : leaves(tree(leaf(x′), y), [x′|zs])← leaves(y, zs),
C8 : leaves(tree(tree(x′, y′), y), zs)←

leaves(x′, xs′), leaves(tree(y′, y), vs), append(xs′, vs, zs).

Goal Replacement 3
Replace leaves(x′, xs′), leaves(tree(y′, y), vs), append(xs′, vs, zs) by
leaves(tree(x′, tree(y′, y)), zs) in C8 to obtain the final program P 4 :

C1 : append([], xs, xs).
C2 : append([x|xs], ys, [x|zs])← append(xs, ys, zs).
C3 : leaves(leaf(x), [x]).
C5 : leaves(tree(leaf(x′), y), [x′|zs])← leaves(y, zs),
C9 : leaves(tree(tree(x′, y′), y), zs)← leaves(tree(x′, tree(y′, y)), zs).

We must show that the conditions of goal replacement (Definition 8) are
satisfied for the three replacements steps in this transformation sequence. The
recurrence of P 4 can easily be shown, which establishes the condition for the
third goal replacement. For the first and second goal replacements, P 2 and P 3 are
not recurrent, so we need a more refined notion of termination than recurrency.
The notion of acceptability from [DVB92] is appropriate for these cases, since
then we can prove termination for ground goals via a left-to-right computation
rule. In [Coo92] the detailed demonstrations of the acceptability properties are
given.

The applicability of the transformations does not actually require the notions
of recurrence or applicability, which concern termination of all ground atoms,
not just instances of the head of the transformed clause. There is clearly scope
for using still more limited notions of termination (such as those in [DV92]) in
cases where neither applicability nor recurrence can be shown.

6 Termination Preservation

It is interesting to examine current logic program transformation systems with
regard to termination properties, since our work is based on the premise that
termination properties are an essential ingredient in correct transformation sys-
tems. In this section we consider termination properties of the Seki transfor-
mation system [Sek89] (restricted to definite programs). We show that Seki’s
transformation system preserves recurrence. This shows that, given a recurrent
initial program, a Seki transformation sequence is a special case of our transfor-
mations, since the Seki folding conditions are sufficient to establish recurrence
and hence termination of the folded program.

Recently, Bossi and Etalle [BE94] have proved the stronger result that the
Tamaki-Sato transformation system preserves another termination property, namely
acyclicity. Although many typical terminating programs are neither recurrent
nor acyclic these results are further evidence of the importance of termination
properties in program transformation.

6.1 Preservation of Recurrence in Seki’s System

We first recall that a transformation sequence is a sequence P0, . . . , Pn where
P0 = Pnew ∪ Pold. The predicates in the heads of clauses in Pnew are new predi-
cates and the other predicates are old predicates.

The unfolding rule is standard and we do not repeat it here. The folding rule
depends on the notion of an inherited atom. We do not give the full definition
of an inherited atom here. Intuitively, an atom A in the body of a clause in Pi

is inherited from P0 if

– A was in the body of a clause in Pnew, and
– for each transformation in the sequence up to Pi, A was neither the unfolded

atom nor one of the folded literals.

Seki’s folding rule can now be defined.

Definition 18. Let Pi be a program in a transformation sequence and C a clause
in Pi of form A← Q1θ,Q, where A is an atom and Q1, Q conjunctions of atoms.
Let D be a clause in Pnew of form B ← Q1. Then the result of folding C using
D is

C ′ : A← Bθ,Q

provided that all the following conditions hold.

– For each variable occurring in Q1 but not in B, θ substitutes a distinct
variable not appearing in C ′.

– D is the only clause in Pnew whose head is unifiable with Bθ.
– Either the predicate in the head of C is an old predicate, or there is no atom

in Q1θ which is inherited from P0.

The resulting program is Pi+1 = (Pi/{C}) ∪ {C ′}.

We first state a lemma (whose proof is in the appendix), and then the final
result that recurrence is preserved by Seki’s transformations.

Lemma 19. Let P0, . . . , Pn be a Seki transformation sequence and let P0 be
recurrent. Then for all clauses A← B1, . . . , Bm in Pi:

(i) If A has an old predicate, none of the Bj is inherited from P0.
(ii) If Bj has an old predicate and is not inherited from P0, then for all ground

instances (A← B1, . . . , Bm)θ we have |Aθ| − |Bjθ| ≥ 2 for some level map-
ping |.|.

An outline proof of the lemma is in the appendix.

Theorem 20. Suppose P0, . . . , Pn is a Seki transformation sequence and P0 is
recurrent. Then Pn is recurrent.

Proof. (Outline:) Suppose P0 is recurrent by some level mapping|.|′. Construct
a level mapping |.| in the same way as in Lemma 19. The proof is by induction
on the length of the transformation sequence. The case for P0 is established by
the construction of |.|. The inductive case for unfolding is a straightforward case
analysis of the unfolding rule. For the folding case suppose Pi+1 is obtained from
Pi by folding C : A ← Q1θ,Q using the folding clause C0 : B ← Q1 in Pnew to
obtain C ′ : A← Bθ,Q in Pi+1. By Lemma 19 and using the definition of folding,
the ‘distance’ between A and each atom in Q1θ is at least 2 (with respect to
level mapping |.|). Also, since C0 ∈ Pnew the distance between B and Q1 is at
least 1. Therefore the ‘distance’ between the head of C ′ and each atom in its
body is at least 1. Therefore Pi+1 is recurrent with respect to |.|.2

7 Conclusion

The results of this work can be summarised as follows: we have introduced a
goal replacement rule based on termination analysis. By making the requirement
that all ground calls to the head of the transformed clause terminate, we have
shown that the replacement rule preserves the success set of a definite program.
Finite failure is preserved when a symmetric goal replacement rule is used, with
an extended notion of goal equivalence. We have shown that a transformation
system based on our rules can perform ‘foldings’ based on equivalences that
depend on recursive definitions of predicates in the original program. Tamaki
and Sato’s folding rule and other similar versions do not allow this. Finally
we have shown that Seki’s unfold/fold rules (restricted to definite programs)
preserve recurrence.

The identification of termination as the key property could be said merely to
shift the problem of checking goal replacement conditions to that of establishing
termination properties. In practice this is so, but the advantages of doing this
are that promising research on termination analysis can be brought to bear, and
links between folding and goal replacement are clarified and strengthened.

Two approaches to implementation can be envisaged. Firstly, automated ter-
mination analysis tools could provide direct checking of the goal replacement
conditions (e.g. checking the transformed program for recurrence or acceptabil-
ity). Secondly, we could search for some syntactic conditions that guaranteed
applicability of the replacement rule, as in forms of ‘folding’ that are special
cases of our replacement rule.

Future research possibilities include the following. The replacement rule could
be extended to normal programs. This is obviously dependent on advances in
the termination analysis of such programs, since finite failure is closely bound up
with termination analysis. The relationship between the goal replacement rule
we have introduced and other existing goal replacement/folding rules, such as
[GS91] could be further investigated. The termination properties preserved by

folding/goal replacement conditions in systems other than Seki’s can be investi-
gated. Application of the goal replacement rule can be extended by using weaker
notions of termination (such as in [DVB92]).

Acknowledgements

We thank M. Proietti for pointing out a serious error in a previous version.
We also thank A. Pettorossi and the LOPSTR’94 referees for comments and
corrections.

References

[AP90] K.R. Apt and D. Pedreschi. Studies in Pure Prolog: Termination. In J.W.
Lloyd, editor, Proceedings of the Esprit symposium on computational logic,
pages 150–176, 1990.

[BB93] D. Boulanger and M. Bruynooghe. Using abstract interpretation for goal re-
placement. In Y. Deville, editor, Logic Program Synthesis and Tranformation
(LOPSTR’93), Louvain-la-Neuve, 1993.

[BCE92] A. Bossi, N. Cocco, and S. Etalle. Transforming Normal Programs by Re-
placement. In Third Workshop on Metaprogramming in Logic, Uppsala, 1992.
META92.

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24:44–67, 1977.

[BE94] A. Bossi and S. Etalle. Transforming Acyclic Programs. ACM Transactions
on Programming Languages and Systems, (to appear); also available as CWI
Technical Report CS-R9369 December 1993, CWI, Amsterdam, 1994.

[Bez89] M. Bezem. Characterising Termination of Logic Programs with Level Map-
pings. In E.L. Lusk and R.A. Overbeek, editors, Proceedings NACLP89, pages
69–80, 1989.

[Coo92] J. Cook. A transformation system for definite logic programs based on termi-
nation analysis. Master’s thesis, School of Mathematics, University of Bristol,
1992.

[DV92] D. De Schreye and K. Verschaetse. Termination of Logic Programs:Tutorial
Notes. In Third Workshop on Metaprogramming in Logic, Uppsala, 1992.
META92.

[DVB92] D. De Schreye, K. Verschaetse, and M. Bruynooghe. A Framework for
Analysing the Termination of Definite Logic Programs with respect to call
patterns. In ICOT, editor, Proceedings of the International Conference on
Fifth Generation Computer Systems, 1992.

[GS91] P.A. Gardner and J.C. Shepherdson. Unfold/fold transformations of logic
programs. In J.L Lassez and G. Plotkin, editors, Computational Logic: Essays
in Honour of Alan Robinson. MIT Press, 1991.

[Llo87] J.W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer-
Verlag, 1987.

[LS91] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming.
Journal of Logic Programming, 11(3 & 4):217–242, 1991.

[Mah87] M.J. Maher. Correctness of a Logic Program Transformation System. Re-
search Report RC13496, IBM, T.J. Watson Research Center, 1987.

[Plü92] L. Plümer. Automatic Termination Proofs for Prolog Programs Operating on
Nonground Terms. In Proceedings ILPS’91,San Diego, pages 503–517. MIT
Press, 1992.

[PP93] M. Proietti and A. Pettorossi. Synthesis of programs from unfold/fold proofs.
In Y. Deville, editor, Logic Program Synthesis and Tranformation (LOP-
STR’93), Louvain-la-Neuve, 1993.

[Sek89] H. Seki. Unfold/Fold Transformation of Stratified Programs. In G. Levi and
M. Martelli, editors, Sixth Conference on Logic Programming,Lisboa,Portugal.
The MIT Press, 1989.

[TS84] H. Tamaki and T. Sato. Unfold/Fold Transformation of Logic Programs. In
Proceedings of the Second international Logic Programming Conference, pages
127–138, Uppsala, 1984.

[UV88] J.D. Ullman and A. Van Gelder. Efficient tests for top-down termination of
logical rules. Journal of the ACM, 35(2), pages 345–373, 1988.

[VP86] T. Vasak and J. Potter. Characterisation of Terminating Logic Programs. In
Proceedings 1986 Symposium on Logic Programming, Salt Lake City, pages
140–147, 1986.

Appendix: Proofs of Lemma 9 and Lemma 19

Lemma 9: Let the definite program P ′ be obtained by applying a goal replace-
ment transformation to a clause in P . Then for all definite goals ← B,

– P ′ ∪ {← B} has a finitely failed SLD-tree implies that P ∪ {← B} has no
SLD-refutation.

Proof. Proof is by induction on the depth of the smallest finitely failed SLD-tree
for P ′ ∪ {← B}. Let B = B1, . . . , Bm.

For the base case, suppose that P ′ ∪ {← B} has a finitely-failed SLD-tree
of depth 0. This means that some atom Bj (1 ≤ j ≤ m) fails to unify with the
head of any clause in P ′. Goal replacement has no effect on clause heads, so Bj

also fails to unify with the head of any clause in P . Hence P ∪ {← B} has no
SLD-refutation.

For the induction step, assume that the property holds for goals G such that
P ′ ∪{G} has a finitely-failed SLD-tree of depth at most k, and that P ′ ∪{← B}
has a finitely-failed SLD-tree F ′ of depth k + 1. Let ← B have n immediate
successor nodes,← S1, . . . ,← Sn, in F ′, and let D1, . . . , Dn be the corresponding
clauses used. Each ← Si (i = 1 . . . n) is at the root of a finitely failed SLD-tree
of depth at most k. By the induction hypothesis P ∪{← Si} (for i = 1 . . . n) has
no SLD-refutation.

If none of the clauses D1, . . . , Dn is the clause produced by the goal replace-
ment, then clearly P ∪ {← B} has no SLD-refutation, since otherwise at least
one P ∪ {← Si} would have a refutation, violating the induction hypothesis.

If Di, say, is the clause produced by the goal replacement, then we have

Di : A← Q2, Q in P ′

which replaced
C : A← Q1, Q in P

where for some j (1 ≤ j ≤ m) Bj is unifiable with A with mgu θ. Assume
without loss of generality that j = 1.

Then Si = (Q2, Q,B2, . . . , Bm)θ and P ∪ {← Si} has no SLD-refutation, by
the induction hypothesis. Consider the computation of P ∪ {← Si}. There are
two cases to consider.

(1) Suppose P ∪ {← Q2θ} succeeds with computed answer α. Then P ∪ {←
(Q,B2, . . . , Bm)θα} has no SLD-refutation. By the definition of goal replace-
ment, Q1 ≡vars(A,Q) Q2 in P . The mgu θ acts on the variables of A so P ∪ {←
Q1θ} succeeds with computed answer α̂ where α and α̂ agree on variables in Aθ
and Qθ. It follows that P ∪ {← (Q,B2, . . . , Bm)θα̂} has no SLD-refutation, and
therefore P ∪ {← (Q1, Q,B2, . . . , Bm)θ} has no SLD-refutation.

(2) Suppose P ∪{← Q2θ} has no SLD-refutation. Again, since Q1 ≡vars(A,Q)

Q2 in P and θ acts on the variables of A, it follows that P ∪ {← Q1θ} has no
SLD-refutation. Therefore P ∪{← (Q1, Q,B2, . . . , Bm)θ} has no SLD-refutation.

It now follows that P∪{← B} has no SLD-refutation, since otherwise at least
one of the goals← S1, . . . ,← Si−1,← Si+1, . . . ,← Sn or← (Q1, Q,B2, . . . , Bm)θ
would have an SLD-refutation, violating the induction hypothesis.2

Lemma 19: Let P0, . . . , Pn be a Seki transformation sequence and let P0 be
recurrent. Then for all clauses A← B1, . . . , Bm in Pi:

(i) If A has an old predicate, none of the Bj is inherited from P0.
(ii) If Bj has an old predicate and is not inherited from P0, then for all ground in-

stances (A← B1, . . . , Bm)θ we have |Aθ|− |Bjθ| ≥ 2 for some level mapping
|.|.

Proof. (Outline): Suppose P0 is recurrent by level mapping |.|′. Construct a level
mapping |.| as follows:

– |Aα| = 2 ∗ |Aα|′ if A has an old predicate and Aα is a ground atom.
– |Aα| = max{|A1α|, . . . , |Apα|}+1 if (A← A1, . . . , Ap)α is a ground instance

of a clause in Pnew.

Note that (i) holds trivially from the definition of inherited atom. We prove
(ii) by induction on the length of the transformation sequence. The base case
(that is, for P0) is established by the construction of the level mapping |.|. The
inductive case is a straightforward case analysis using the definitions of unfold
and fold.2

This article was processed using the LATEX macro package with LLNCS style

