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Abstract

This paper describes an algorithm performing an analysis and transformation of logic
programs. The transformation achieves two goals: redundant functors are removed from
the program, and procedures may be split into two or more specialised versions handling
different cases. It can be applied to most logic programming languages, including concur-
rent logic programming languages, because the transformations perform no unfolding of
the program; they only remove some redundant operations within the unifications. The
main saving is in heap usage, though time performance may also be improved. One of
the main purposes of the transformation is to “clean up” programs generated by other
methods of transformation or synthesis. The analysis is an example of an abstract in-
terpretation, and is guaranteed to terminate. A Prolog implementation of the algorithm,
illustrating some meta-programming techniques, is given and some results are reported.

Keywords: program analysis, abstract interpretation, program transformation.

1 Introduction

The most common measure of efficiency for computations of logic programs is the number
of logical inferences (reductions) performed. While serving a useful purpose, this often leads
Prolog programmers to ignore the complexity of the reductions themselves. Also, few Prolog
programmers who have not actually implemented the language are aware of the effects on
space usage of various programming styles. This is by no means a bad thing, for one of the
aims of declarative programming is surely to free the programmer from low-level concerns.
Besides, the development of better compilers held forth the promise that the programmer
could safely ignore the levels below unification, because many inefficiencies could be “compiled
away”.
∗Work performed in ESPRIT Basic Research Action Project COMPULOG (3012)
†Current address: Dept of Computer Science, University of Bristol, Bristol BS8 1TR, U.K.
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In this paper we tackle the problem of “transforming away” some kinds of inefficiency.
The transformation depends on an analysis that performs an abstract computation starting
from a given initial goal. The result of the analysis is a description of the calls to procedures
in the program; these descriptions are used to construct new procedures “specialised” to the
calls. In some cases two or more versions of a procedure might be constructed, handling
different call types.

The transformations themselves are not very deep and many experienced Prolog program-
mers will no doubt already apply them. However we think they are of interest for several
reasons.

• They can significantly reduce the heap consumption of some programs, and typically
even improve the behaviour of carefully written programs by a small amount. We have
not found an example where space or time performance was worse after the transfor-
mations were applied.

• They can be applied in conjunction with other kinds of program transformation or syn-
thesis methods. Such methods often leave a lot of “dead” structure in the transformed
program. In this case our transformation acts as a cleaning up operation. This was in
fact the original motivation for this work.

• The analysis phase is an instance of a general approach to logic program analysis based
on abstract interpretation.

• The analysis and transformation are computationally cheap and can be applied to almost
all Prolog constructs, and in addition can be applied to some concurrent logic programs.
(There are complications for languages that require mode declarations for arguments).

Two examples illustrate the main ideas. Time and space usage are similar in all WAM-
based Prolog implementations. We measured performance using BIMprolog [2], a fast Prolog
implementation based on the WAM.

Example 1. Difference lists are often represented by a functional term such as Xs-Ys. In
this way the difference list is easily identified when reading the program. However its presence
introduces unnecessary operations into computations.

The program for reversing a list, yielding a difference list, is written as follows:

reverse(nil, Ys-Ys).
reverse([X|Xs], Ys-Zs) :- reverse(Xs, Ys-[X|Zs]).

The presence of the function symbol "-" plays no computational role, assuming that the
program is always called with an argument containing "-", as in reverse([a,b,c],Ys-[]).
The reverse procedure is compiled to handle arbitrary calls, but every call actually contains
a second argument instantiated to a structure X-Y. Each unification of a call with the head
of one of the reverse clauses thus performs a redundant comparison of "-" with "-".

A more serious drawback of the use of the functor is that heap space is used to store the
"-" structure each time the body of the recursive clause is activated. The following program
removes these two drawbacks.
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reverse(nil,Ys,Ys).
reverse([X|Xs],Ys,Zs) :- reverse(Xs,Ys,[X|Zs]).

When solving a query such as reverse([a,b,c],Ys,[]), this uses half the heap space of the
first program.

Example 2. The following program was produced by a transformation using the compiling
control method [4],[6].

fib(N,F) :-
p(fib(N,F),fib(0,1),fib(1,1)).

p(fib(0,1),_,_).
p(fib(N,F),_,fib(N,F)).
p(fib(N,F),fib(N1,F1),fib(N2,F2)) :-

N2 is N1 + 1,
N3 is N2 + 1,
N3 > 1,
F3 is F1 + F2,
p(fib(N,F),fib(N2,F2),fib(N3,F3)).

It represents a bottom-up execution of the usual clauses defining fibonacci numbers. The
predicate p of the above program is a meta-predicate whose arguments are object-language
predicates. Assuming that the program is always called using the fib predicate, the structures
in the arguments to p are redundant since all calls to p have all three arguments bound to
structures fib(X,Y).

The result of the transformation is the following program:

fib(X1,X2) :-
p1(X1,X2,0,1,1,1) .

p1(0,1,X1,X2,X3,X4) :-
true .

p1(X1,X2,X3,X4,X1,X2) :-
true .

p1(X1,X2,X3,X4,X5,X6) :-
X5 is X3 + 1,
X7 is X5 + 1,
1 < X7,
X8 is X4 + X6,
p1(X1,X2,X5,X6,X7,X8) .
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The new program uses essentially no heap space, whereas the first one consumes heap pro-
portional to N when computing fib(N,M). It is also possible to declare more accurate modes
for the transformed program, further improving time performance (see Section 6).

We now proceed to define the operations needed to achieve these transformations.

2 Specialised Procedures

The idea of specialising a procedure to a call is the central idea of the transformation.

Definition 2.1. Let P be a program containing a procedure consisting of the n clauses
p(t1) ← B1, ..., p(tn) ← Bn. Let p(s) be an atom. We define a procedure called the speciali-
sation of p for p(s). Let x1 . . . xk be the distinct variables in p(s), in the order of their first
occurrence, and assume that x1 . . . xk do not occur in P . Let q be a predicate symbol not
occurring in P . Let θi be an mgu of p(s) and p(ti), for 1 ≤ i ≤ n. The procedure for q is the
set of clauses

q(x1 . . . xk)θi ← Biθi for each i such that θi 6= fail.

Example 3. Let P be the program:

append(nil,Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

Let append([a,b|Us],[c],Ws) be a query. Then define a new query append1(Us,Ws). The
procedure for append1 is:

append1(Us,[a|Zs]) :- append([b|Us],[c],Zs).

Note that the answer substitutions for the query append1(Us,Ws) are the same as those for
append([a,b|Us],[c],Ws). This is expressed more generally in the following lemma.

Lemma 2.2. Let a program P , a procedure for predicate p and an atom p(s) be given as
in Definition 2.1. Let the procedure Q for a new predicate q be the specialisation of p for
p(s). Then σ is a computed answer substitution for p(s)θ in P iff σ is a computed answer for
q(x1 . . . xk)θ in P ∪Q.

This lemma shows that if we replace a query p(s) by a query q(x1 . . . xk) containing the
variables of p(s), the same answer substitutions are retained. Note that if p(s) contains some
nonvariable arguments, or variables with more than one occurrence, then the first reduction
of q(x1 . . . xk) will be more efficient than the corresponding reduction of p(s). This is partly
because the unification with the head contains less operations than before, and partly because
indexing of the procedure for q by the compiler can be more effective than the indexing for
p. An artificial example illustrates the point.
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Example 4. Let the procedure for p be:

p(s(a)) :- Q1.
p(s(b)) :- Q2.
p(s(c)) :- Q3.

Suppose all calls for p are of the form p(s(X)). Then we can replace calls p(s(X)) by p1(X)
and define a new procedure:

p1(a) :- Q1.
p1(b) :- Q2.
p1(c) :- Q3.

Not only is the matching of the symbol s avoided, but indexing on the principal functor
distinguishes the clauses in the second program, but does not in the first.

We have now described the basis for the transformation. If we can derive, for each pred-
icate p in a program, an atom p(s) that describes all calls to p, (in the sense that all calls
to p are instances of p(s)), then we can replace the procedure for p with a procedure for q,
and systematically replace all body atoms p(t) = p(s)θ by q(x1 . . . xk)θ. Next we introduce
an analysis method that yields an approximation to the set of calls to each predicate.

3 Analysing the Set of Calls in a Prolog Computation

A Prolog clause is of the form A ← B1, . . . , Bn where each Bi is an atom or a literal ¬C or
a metacall such as bagof(X,G, S) or G1;G2 (disjunction), which has a goal as an argument.
The atoms in clause bodies are either defined by clauses or are calls to built in procedures
such as <, =.., !, write and so on. We aim for a transformation method with as wide a
coverage of Prolog as possible. Our method as stated does not make any syntactic restriction
on Prolog; but there is discussion in Section 4 on limitations of certain uses of assert,
retract and metacalls.

Let G0 be an atomic goal, and P a Prolog program. A Prolog computation is a sequence
of goals ← G0,← G1,← G2, . . ., where Gi+1 (i ≥ 0) is obtained in one of the following ways:

• by resolving Gi on its leftmost literal with a clause in P :

• by starting a sub-computation for A, where A is an atom in the leftmost literal (a
negative literal or metacall) in Gi;

• by returning from a sub-computation activated by some previous Gk, k < i. That is,
Gi+1 is some instance of ← A2, . . . Am, where Gk =← A1, . . . , Am and A1 is a metacall.

The set of atoms CallsG (assuming some fixed program P ) is defined as:

CallsG =

{
A1

∣∣∣∣∣ ← A1, . . . , Ak occurs in a Prolog
computation starting from G

}
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3.1 Approximating the Set of Calls

CallsG is infinite in general. In order to perform procedure specialisation as defined above it
is necessary to compute some finitely representable approximation to CallsG. We now define
the concept of approximation.

Definition 3.1. Let V be a countable set of variables, and let Atoms be the set of all
atoms constructed from some finite alphabet of predicate and function symbols and V ; let
S ⊆ Atoms. We define the downward closure of S, denoted [S], as {Aθ | A ∈ S}. S is
downward closed if S = [S].

Definition 3.2. Let S and T be sets of atoms. T is said to be a safe approximation of S if
[S] ⊆ [T ].

The downward closure of a set of atoms is taken as the basis for approximation because
we wish to say, for example, that the set of calls {p(X), q(f(Y )} is a safe approximation of
{p(a), p(b), q(f(a))}; any procedure able to handle the first set can also handle the second.

The aim of the next section is to develop a way of computing some finite set of atoms S
such that S is a safe approximation of CallsG. We can then use the atoms in S to construct
specialised procedures, as shown above.

3.2 Fixpoint Definition of Call Sets

We need a notion of canonical atoms [12].

Definition 3.3. Assume that each atom A has a canonical form denoted by ||A||, such that
||A|| = ||B|| iff A is a variant of B. If S is a set of atoms then ||S|| is defined to be {||A|| | A ∈ S}.

Definition 3.4. Let A be an atom, and H ← B1 . . . Bn a clause standardised apart from
A, and let θ be an mgu of A and H.. Then for 1 ≤ j ≤ n, if Bj is an atom then ||Bjθ|| is said
to be immediately called by A; if Bj is a negative literal ¬C or a metacall containing a call
to atom C, then ||Cθ|| is immediately called by A.

Note that the atoms immediately called by A do not correspond directly to atoms selected
in Prolog computations of the atomic goal A, in which the body is solved from left to right.

Definition 3.5. Given a program P , an initial atomic goal G, and a set of canonical atoms
S, the set of immediate calls derived from S is defined by a function CG : 2Atoms → 2Atoms.

CG(S) = {||G||}
⋃ {

||Bθ||
∣∣∣ A ∈ S,Bθ is immediately called byA

}
Claim. CG is continuous (on the lattice of sets of canonical atoms with the ⊆ partial
order).
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Lemma 3.6. lfp(CG) is a safe approximation of CallsG.

Proof. (outline) The proof is by induction on the length of Prolog computations. Let CallsnG
(a subset of CallsG), be the set of atoms selected in Prolog computations of G of length at
most n. By induction it can be shown that for all n there exists some k such that Ck

G(∅)
is a safe approximation of CallsnG. lfp(CG) contains Ck

G for all k, hence CallsG is safely
approximated by lfp(CG). 2

Our aim is now to show how to construct safe approximations of lfp(CG), which in turn
are safe approximations of CallsG.

3.3 Finite Approximations

An important concept for the algorithm is the most specific generalisation (or msg) of a set
of atoms.

Definition 3.7. Let T be a non-empty set of atoms. A generalisation of T is an atom s
such that for all t ∈ T , t is an instance of s. A most specific generalisation (or msg) of T
is a generalisation u such that for all other generalisations s of T , u is an instance of s. An
msg of a non-empty set of atoms always exists and is unique modulo variable renaming. We
therefore write msg(T ) = ||u||, if u is an msg of T . Efficient algorithms for computing a most
specific generalisation of a set of atoms were given by [13] and [14].

Definition 3.8. Let S be a set of atoms. Let p be a predicate symbol. Define Sp to be the
set of atoms in S having predicate symbol p. We define α(S) as follows:

α(S) =
{
msg(Sp))

∣∣∣ Sp 6= ∅ }
Lemma 3.9. α(S) is a safe approximation of S.

Proof. By definition of msg. 2

A set of atoms is α-canonical if it contains at most one atom for each predicate symbol and
each element of the set is in canonical form. We can now define a partial order on α-canonical
sets of atoms.

Definition 3.10. Let S and T be α-canonical sets of atoms. Define S � T iff [S] ⊆ [T ].

Definition 3.11. Let S be an α-canonical set of atoms. The function Cα
G is defined as

follows:

Cα
G(S) = ||α(CG(S))||

Lemma 3.12. lfp(Cα
G) exists and is a safe approximation of lfp(CG).

Proof. By induction on the sequence of approximations to the fixed points. 2
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3.4 Termination of the Analysis

The basis of our analysis algorithm is the computation of the least fixed point of Cα
G. This

is done by computing a sequence of sets of atoms, namely, Cα
G(∅),Cα

G(Cα
G(∅)), . . . , lfp(Cα

G).
Clearly each element in the sequence is an α-canonical set. Now we show that the least fixed
point of Cα

G is computed in a finite number of steps.

Definition 3.13. Let A and B be atoms. Define A � B iff ∃θ.A = Bθ. Define A ≺ B iff
A � B ∧B 6� A.

Definition 3.14. Let t be an atom or a term. Define s(t) to be the number of symbols in
t, recursively defined by

s(t) =
{

1 if t is a variable or a constant
s(r1) + · · ·+ s(rk) + 1 if t = f(r1, . . . rk)

Let the number of distinct variables in t be v(t). Define h(t) = s(t)−v(t). Note that h(t) > 0
for all non-variable t.

Lemma 3.15. Let A and B be atoms. Then A ≺ B ⇒ h(A) > h(B).

Proof. (outline)
Assume A ≺ B and consider A = Bθ where θ = {X 7→ T}. Suppose there is just one

occurrence of X in B. Let w(T ) be the number of occurrences of variables in T which also
occur in B. Then h(A) = h(B) + h(T ) + w(T ). Then h(A) > h(B) since h(T ) > 0 and
w(T ) ≥ 0; the extension of the argument for more than one occurrence of X in B, and for θ
containing more than one substitution pair is straightforward. 2

This shows that given an atom A0 there is no infinite chain of atoms A0 ≺ A1 ≺ A2 . . .,
since h(Ai) > h(Ai+1) for all i. It can easily be seen that successive elements of the sequence
Cα
G(∅),Cα

G(Cα
G(∅)), . . . , lfp(Cα

G) that are not equal differ either by adding one or more atoms
with different predicate names, or by replacing an atom A by an atom B such that A ≺ B.
Since the number of predicates in the program is finite and there are no infinite increasing ≺
chains the lfp is computed after a finite sequence of applications of Cα

G to ∅.

3.5 Multiple Versions of Procedures

Using the function Cα
G we get just one atom describing calls to each predicate p, and hence

we define one specialised procedure for each predicate. We now present a way of deriving
possibly more than one atom describing calls to p, and from them we will derive multiple
procedures.

Definition 3.16. Assume that every clause in a program has a unique identifier, say a
number. We define the set of immediate choices of an atom A (denoted choice(A)), as the
set of identifiers of clauses whose head unifies with A.
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Definition 3.17. Let S be a set of atoms. We can partition S into a finite number of sets
SI1 , SI2 , . . ., where SIk = {A | A ∈ S, choice(A) = Ik}. That is, all atoms that have the same
set of immediate choices Ik are in the set SIk . Define a function β : 2Atoms → 2Atoms:

β(S) =
{
msg(SIk)

∣∣∣ SIk 6= ∅ }
That is, β(S) contains one element for each immediate choice set represented in S. Note that
choice(msg(SIk)) = Ik, so that β(S) contains atoms with the same set of choices as those in
S.

A β-canonical set of atoms is a set of canonical atoms containing at most one atom A for
each set of clause identifiers I, such that choice(A) = I. A partial order on β-canonical sets
of atoms is given by S � T iff [S] ⊆ [T ] ∧ ∀A ∈ S.∃B ∈ T.choice(A) = choice(B). (Note that
we cannot use simple downward closure to define � because now we want to distinguish sets
{p(a), p(X)} and {p(X)} if choice(p(X)) 6= choice(p(a))).

Now we define a function analogous to Cα
G.

Definition 3.18. Let S be a β-canonical set of atoms. Define Cβ
G : 2Atoms → 2Atoms to be:

Cβ
G(S) = ||β(CG(S))||

The function is continuous with respect to the partial order � on β-canonical sets, and
the least fixed point can be found in a finite number of steps, as with Cα

G. However this time
there may be more than one atom for each predicate. Atoms that match one set of clauses
are not merged with atoms that match another set.

Example 5. Let P be the following program:

rev(nil,Ys-Ys).
rev([X|Xs],Ys-Zs) :- rev(Xs,Ys-[X|Zs]).

Let G = rev([U|Us],Vs-nil). Then

lfp(Cα
G) = {rev(Zs,Vs-Ws)};

lfp(Cβ
G) = {rev([Z|Zs],Vs-nil),rev(Zs,Vs-[W|Ws])}.

This second result distinguishes the calls that match only the second clause from those that
match both clauses.

4 The Transformation

From the analysis of the previous section we obtain a finite set S of atoms. Using Cα
G we get

at most one atom per predicate; using Cβ
G we get possibly more than one per predicate. The

next stage is to define a transformed program. The transformation has two stages.
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1. Derive a specialised procedure for each atom in S, as shown in Section 2.

2. Rename the goals in the bodies of the specialised clauses.

The first of these steps has already been defined. For each atom A ∈ S, let rename(A)
denote the atom q(x1 . . . xk) (with new predicate q) used to construct the specialised procedure
for A (Section 2).

The second step depends on which analysis function was used.

• If Cα
G was used, then suppose H ← Q is a specialised clause. Let C be a non built-in

atom occurring in Q, and let A be a variant of the atom in S with the same predicate
name as C, where the clause and A share no variables. Let θ be an mgu of C and
A. Replace H ← Q by (H ← Q′)θ, where Q′ is the result of replacing C in Q by
rename(A). Repeat until all non built-in atoms have been renamed.

• If Cβ
G was used, then suppose H ← Q is a specialised clause. Let C be a non built-in

atom occurring in Q, and let A be a variant of the atom in S such that choice(C) =
choice(A). where the clause and A share no variables. Let θ be an mgu of C and
A. Replace H ← Q by (H ← Q′)θ, where Q′ is the result of replacing C in Q by
rename(A). Repeat until all non built-in atoms have been renamed.

A special clause to handle the initial goal may be defined, so as to preserve the same
external interface of the program. Let G be the initial (atomic) goal, and let C ∈ S be the
appropriate atom (with the same predicate if Cα

G was used, or the same immediate choices if
Cβ
G was used). Let θ be an mgu of G and C; then the initial clause is Gθ ← rename(C)θ.

Instead of this initial clause, we can instead not rename the initial goal, but just produce
specialised clauses for it (see example below).

Example 6. Let the program and initial goal be as in the previous example. Then using
Cα
G we obtain the program:

rev1(nil,Ys,Ys).
rev1([X|Xs],Ys,Zs) :- rev1(Xs,Ys,[X|Zs]).

In this program the "-" symbol is eliminated. Using Cβ
G we obtain the program:

rev([U|Us],Vs,nil) :- rev2(Us,Vs,U,nil).

rev2(nil,[Y|Ys],Y,Ys).
rev2([X|Xs],Ys,Z,Zs) :- rev2(Xs,Ys,X,[Z|Zs]).

This contains a procedure to handle the initial goal, which matches only one clause, and
another procedure to handle the more general case. In this case we did not rename the initial
goal.
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4.1 Correctness

Assuming for the moment the absence of assert and retract and similar procedures, the
correctness of the transformation follows from the safety of the analysis, and Lemma 2.2. We
sketch the proof. Suppose A is some (non built-in) call in the computation of G. Then by
the safety of the analysis there is a procedure in the transformed program that handles an
atom more general than A. By induction on the length of computation and using Lemma 2.2
it can be shown that the same answer substitutions are given for the renamed version of A
in the transformed program.

4.2 Meta Calls and Side Effects

The presence of certain uses of side effects and meta calls can cause problems, because of
the renaming transformation. One difficulty may be the interaction of assert with program
procedures which get renamed during the transformation. Another difficulty is the presence
of uninstantiated meta calls such as call(G), bagof(X,P,S) and the like. It is not known
at transformation time what atoms may appear as the arguments to such calls. Furthermore,
if these meta call arguments are constructed by predicates such as functor or "=..", then
the renaming of goals may mean that the transformed program constructs the wrong names.

The following restrictions on the uses of assert, retract and meta calls appear to ensure
correctness though no proof is offered here.

1. assert and retract do not act on predicates occurring in the program text.

2. No uninstantiated meta calls occur in the transformed program text.

Many typical uses of side effect predicates (e.g. to store temporary information) can be
handled.

These conditions can be checked during the analysis phase. Our approach is to print a
warning during the transformation if an uninstantiated meta call or a harmful assert/retract
appears. The programmer then has the responsibility of altering the source program and
rerunning the analysis.

5 Implementation

An implementation of the analysis and transformation has been carried out using Prolog.

5.1 Data Structures

Canonical atoms are represented as ground atoms and are generated in the program by
the Prolog built-in numbervars. The predicate canonical(A) instantiates an atom A to
its canonical form. A predicate melt(A,M) takes a canonical term A and returns a term
with fresh variables. The use of ground atoms obtained by canonical(A) simulates ground
representation of object terms in meta-level expressions.

A set of canonical atoms is represented as an incomplete structure; updates are carried
out by instantiating variables within the structure. This technique saves space because the
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structure need not be copied on each iteration up to the fixed point. The form of α-canonical
sets is

[ atom(p1,[p1(s1),p1(s2),...|_]), atom(p2,[p2(t1)...|_],
....
atom(pn,[pn(r1),....|_]) |_]

Each pj is distinct predicate symbol. The element atom(pj, [pj(u1),pj(u2)...|Tail])
represents an ascending sequence of canonical atoms [pj(u1),pj(u2)...|Tail]). The last
atom before the variable tail is the most recent addition and is the most general; the set of
canonical atoms derived from the whole structure is the set of last elements in the lists for
each predicate.

The form of β-canonical sets is similar. Each kj in the structure is a distinct set of clause
identifiers.

[ atom(k1,[p1(s1),p1(s2),...|_]), atom(k2,[p2(t1)...|_],
....
atom(kn,[pn(r1),....|_]) |_]

The element atom(kj, [pj(u1),pj(u2)...|Tail]) represents a sequence of atoms having
the same immediate choices kj.

Elements for new predicates or immediate choices sets respectively are added by instan-
tiating the tail of the whole structure.

The techniques of programming with incomplete data structures and canonical atoms are
described in Chapter 15 of [16].

5.2 Algorithm

The core of the algorithm is expressed by the following procedure for iterate. The first
argument of iterate is an incomplete structure representing a set of canonical atoms as
described above. The second argument is a set of “new” atoms produced by the previous
iteration.

iterate(S,nil).
iterate(S,More) :-

More \= nil,
immediate_calls(More,T),
insertalpha(T,S,More1),
iterate(S,More1).

On each iteration, the immediate calls resulting from new calls from the previous iteration
are computed, and insertalpha (or insertbeta as the case may be) tries to add them to
the structure S. An atom T is added to S if:
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1. there is no existing atom in S with the same predicate name (with the same immediate
choice set) as T, or

2. the atom at the end of the list of atoms for T’s predicate name (immediate choice set)
is C, and msg(C, T ) is more general than C.

The set More1 is the set of new canonical atoms added to S. Termination occurs when no
more new atoms are added on some iteration.

Initialisation is performed by setting More to the (canonical) initial goal and calling iterate.

analyse(G,S) :-
canonical(G),
iterate(S,[G]).

Upon termination of analyse the structure S represents the set of atoms describing calls
in the computation of G.

6 Results

The β algorithm was implemented and has been tested on a range of programs. The β version
is more precise than the α version, and gives transformed programs having better run times
and store usage. The cost is a somewhat more complex analysis algorithm and sometimes
larger transformed programs. We have not yet made a thorough comparison between the
performance of the two versions. It may be that the advantages of β may not be worth the
extra computation cost in many cases.

Example 7. The program implementing the analysis algorithm was applied to itself. (The
program contained no obvious redundancies such as difference list structures). Heap consump-
tion in the transformed program was reduced by 7%. The time taken for the transformation
was approximately 15 seconds.

Example 8. A version of the above program was written containing difference list structures
in some heavily used procedures. Heap consumption increased by 3%. The transformation
removed this overhead completely, giving a total of 10% reduction.

Example 9. The program for computing fibonacci numbers quoted in Example 2, was trans-
formed (as already illustrated). Heap consumption for computing fib(20,M) was reduced
from 360 heap cells to 0.

Furthermore, the fact that the arguments in the transformed program are flattened allows
much more accurate mode declarations to be given. In BIMprolog i means input mode and
o means output mode. Unknown mode is ?. In the original program (Example 2) the mode
p(?,i,i) was given. In the transformed program the mode p1(i,o,i,i,i,i) was declared.
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The time for taken 1000 computations of fib(20,X) with the transformed program with
modes was 32% faster than the original program with modes.

The speed-up is not of course directly due to the transformation; the point is that more
accurate modes could be declared for the transformed program.

Example 10. A Prolog compiler written in Prolog [17] was transformed. This program was
already tuned and optimised. The heap consumption was further reduced by 0.5%, and time
reduced by approximately 2%. This was a fairly large (70K) program, and it is quoted to
show that the transformation was applied to large well-written programs and still gave some
improvement.

7 Related Work and Future Research

The analysis algorithm has many aspects in common with more complex analyses. It could be
described in a framework for abstract interpretation such as [9],[5], or [11], but we preferred
to give a self-contained description here. The problem of computing some finite description
of the set of calls in a computation is common also to mode analysis and call type analysis.
In [8] we defined an analysis algorithm for performing more powerful specialisations. The
present work is a special case of the analysis and transformation methods defined there. It
is much simpler than general mode analysis or program specialisation because we took no
account of answers to calls. In reality (in Prolog) the calls of an atom in a clause body are
affected by the answers to atoms to its left, but our approximation ignored this.

The idea of generating multiple versions of clauses to handle different call types derived
from an abstract interpretation was proposed in [18].

The renaming method we used to flatten calls and remove redundant structures has been
suggested elsewhere, but to our knowledge our presentation is the most general. Similar
renamings have been incorporated into partial evaluators in [15],[7], and recently related
ideas were presented in [3].

7.1 Extensions of the Method

The transformation is very generally applicable because it is simple. In general the presence of
cuts, non-logical built-ins and side-effects hampers its extension by more powerful transforma-
tion methods. However our method can safely be extended in at least one respect, which we
call the first call optimisation. The idea is as follows: suppose H ← B1 . . . Bn is a clause, and
suppose B1

1 . . . B
k
1 are the heads of clauses that match B1. We compute msg(B1

1 . . . B
k
1 ) = B′

1,
and compute θ, an mgu of B1 and B′

1. The clause H ← B1 . . . Bn can be safely replaced by
(H ← B1 . . . Bn)θ. The idea of this transformation is that if there is some argument structure
that is common to all the clause heads B1

1 . . . B
k
1 that structure will be “pushed up” into the

call B1. The renaming and specialisation procedure is then applied.
This transformation can be applied safely in general only to the first call since otherwise we

may get back substitutions that can affect the behaviour of programs with cuts, metapredicates
and so on. The following example (shown in a different context in [10]) illustrates its use:

Example 11. Let P be the program
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member(X,[X|_]).
member(X,[_|Xs]) :- member(X,Xs).

The clause heads for member both have a list structure in the second argument. This can be
pushed up into the recursive call to member. Flattening results in the following program.

member1(X,X,_).
member1(X,_,[Y|Xs]) :- member1(X,Y,Xs).

The transformed program is more efficient than the original since the list structure is matched
only once for each call, instead of twice, and because failing goals fail one step earlier.

A modification to the function generating immediate calls is all that is needed to incorpo-
rate the first call optimisation. We have done this but it is not clear whether it is generally
useful. Sometimes unwanted structures get pushed into the heads of clauses. More study of
the extension is needed.

More precision can be gained by using smaller partitions of sets of atoms. Instead of
partitioning sets using the predicate name or the immediate choices we can look at type
descriptions, or some longer computation paths like the characteristic paths described in [8].
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