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Motivating examples (1)

oddEven ! even(X), even(s(X)).

even(0).
even(s(X)) ! odd(X).

odd(s(X)) ! even(X).

Can the query oddEven succeed?

main(X) ! 

     zeroList(X), .....,

     member(1,X).

zeroList([]).
zeroList([0|X]) ! zeroList(X).

member(X,[X|_]).

member(X,[_|Y]) ! member(X,Y).

Can the query main(X) succeed?
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Motivating examples (2)

Operations on a token ring (with any 

number of processes)

(example from Podelski & Charatonik).

gen([0,1]).
gen([0 | X]) ! gen(X).
trans(X,Y) ! trans1(X,Y).
trans([1 |X],[0|Y]) ! trans2(X,Y).
trans1([0,1|T],[1,0 |T]).
trans1([H|T],[H|T1]) ! trans1(T,T1).
trans2([0],[1]).
trans2([H|T],[H|T1]) ! trans2(T,T1).
reachable(X) ! gen(X).
reachable(X) ! reachable(Y), trans(Y,X).

What are the possible answers for
reachable(X)?  Can X be a list containing
more than one '1'?

gen([0,1]).
gen([0,0,1) .
gen([0,0,0,...,1]).
....

Intended reachable
states
reachable([0,0,...,1,...0,0])
(lists with exactly one 1)
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Motivating Examples (3)

/* transpose a matrix */

transpose(Xs,[]) :-
nullrows(Xs).

transpose(Xs,[Y|Ys]) :-
makerow(Xs,Y,Zs),
transpose(Zs,Ys).

makerow([],[],[]).
makerow([[X|Xs]|Ys],[X|Xs1],[Xs|Zs]):-

makerow(Ys,Xs1,Zs).

nullrows([]).
nullrows([[]|Ns]) :-

nullrows(Ns).

row --> []; [any | row]

matrix --> []; [row | matrix] 

Show "type correctness"
of transpose(X,Y) .  I.e.
X and Y are both of type "matrix"
in all possible solutions.

Show "mode correctness"
of transpose(X,Y) .  I.e.
X is a ground term iff
Y is a ground term.
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Motivating Examples (4)

Operations on a token ring (with any 

number of processes)

(example from Podelski & Charatonik).

gen([0,1]).
gen([0 | X]) ! gen(X).
trans(X,Y) ! trans1(X,Y).
trans([1 |X],[0|Y]) ! trans2(X,Y).
trans1([0,1|T],[1,0 |T]).
trans1([H|T],[H|T1]) ! trans1(T,T1).
trans2([0],[1]).
trans2([H|T],[H|T1]) ! trans2(T,T1).
reachable(X) ! gen(X).
reachable(X) ! reachable(Y), trans(Y,X).

zero --> 0.
one --> 1.
zerolist --> []; [zero|zerolist] 
goodlist --> [one|zerolist]; 
                     [zero|goodlist] .

Show that all solutions of
reachable(X) are such that
X is a goodlist.
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Motivating Examples (5)

/* transpose a matrix */

transpose(Xs,[]) :-
nullrows(Xs).

transpose(Xs,[Y|Ys]) :-
makerow(Xs,Y,Zs),
transpose(Zs,Ys).

makerow([],[],[]).
makerow([[X|Xs]|Ys],[X|Xs1],[Xs|Zs]):-

makerow(Ys,Xs1,Zs).

nullrows([]).
nullrows([[]|Ns]) :-

nullrows(Ns).

row --> []; [any | row]

matrix --> []; [row | matrix] 

Suppose we are partially
evaluating transpose(X,Y) w.r.t
a partially known matrix,
where X is a list of unknown 
values, e.g. X = [U1,U2,U3].
I.e. specialise for 3 X m matrices.

Show that every call to transpose
during partial evaluation has
its first argument instantiated to
a list.
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Approximating sets of terms

• Let " be a signature - a set of function

symbols, each having a rank (arity)

• Term(") is the set of all terms (trees)

constructible from "

• i.e. terms of form f(t1,...,tn) where f # ", f has
arity n and t1 # Term("),...,tn # Term(")

• when arity is 0, we write f() as f.

• Termn(") denotes the set of n-ary relations

over Term(").
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Regular/Recognizable Tree Languages

• Suppose " = {[], [.|.], 0, s(.)}

• We can specify the set of all lists, i.e.

{[],[0],[s(0)],[s(s([])), 0], [[]], [[0],[0,0]],...}

[] --> list

[any|list] --> list

0 --> any

[] --> any

[any|any] --> any

s(any) --> any
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NFTA - Nondeterministic finite tree automata

Tree automata provide a means of specifying infinite sets of
trees (terms) over some signature ".

A (nondeterministic) finite tree automaton (N)FTA is a 
tuple <Q, Qf, ", $> where

Q is a finite set of states 
Qf & Q are the accepting states
$ is a finite set of transitions (rules) of the form 

f(q1,…,qn) % q0, 
where q0, q1,…,qn # Q, and f is an n-ary
function in ".

An FTA A defines a set of terms L(A) (we will see how shortly)

Example:  <{list, any}, {list}, {[], [.|.], 0, s(.)}, $>

where $ = {[] % list,[any|list] % list, 0 % any,[] % any,

[any|any] % any, s(any) % any} 
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Cartesian Approximation

• Our aim is to approximate the relations computed
by logic programs.

• Let R be some relation over Term(")

• The Cartesian approximation of a relation R is the
product of the sets of values in each position of the
relation.

• E.g. let R = reverse = {<[],[]>, <[a],[a]>,

<[a,b],[b,a]>, <[a,a,b],[b,a,a]>,...},

• or written as {reverse([],[]), reverse([a],[a]),
reverse([a,b],[b,a]), reverse([a,a,b],[b,a,a]), ...}

• Cartesian approximation is R1X R2 where R1 = {[],
[a], [a,b], [a,a,b],....} and R2 = {[], [a], [b,a],
[b,a,a],....}
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Approximation Using FTAs

• The set of values in each argument will be
approximated using an FTA.

• So we could approximate reverse as reverse =
{<x,y> | x # L(A), y # L(A)} where A is the FTA
<{list,a,b},{list},",$>

• " = {[],[.|.],a,b}, $ = {[]%list, [a|list]%list, [b|list]%
list, a%a, b%b}

• So reverse has lists of a and b as arguments.

• we write reverse(list, list) as the approximation.

• in general, we write a Cartesian approximation of
relation R using FTAs as R(q1,...,qn) where q1,...,qn
are the states in an FTA.
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Two Approaches to Analysis using FTAs

1. Given a program and an FTA, compute an
approximation of the program in terms of
the states in the given FTA.
• e.g. given the matrix transpose program and

the FTA defining matrices, derive the relation
transpose(matrix,matrix) as an approximation.

2. Given a program, derive an FTA that is a
safe approximation of the relations
defined by the programs
• e.g. given the reverse program, derive the list-

FTA and the relation approximation
reverse(list,list).
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FTA Properties and Operations

• FTAs form a reasonably expressive
language for describing sets of terms.

• Languages defined by FTAs are closed
under operations (intersection, union,
complement).

• Emptiness of an FTA and membership of a
term in L(A) are decidable.

• We will see later that expressiveness can
be increased more, while retaining
desirable computational properties.
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Running an FTA

• Top-down

1. Initialise current term =
an accepting state

2. Pick a state q at a leaf in

the current term, and
find a rule f(q1,...,qn) %

q

3. Replace q by f(q1,...,qn)

4. Terminate (successfully)
when a term in Term(")

is generated

• Bottom-up

1. Initialise current term
= a term in Term(")

2. Pick a subterm

f(q1,...,qn) from the
current term, and find a
rule f(q1,...,qn) % q

3. Replace f(q1,...,qn) by q

4. Terminate (successfully)

when the current term is

an accepting state.
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Running the list-FTA

• Top-down

• list

replace list by [any|list]

• [any|list]

• [s(any)|list]

• [s(s(any))|list]

replace any by 0

• [s(s(0))|list]

• [s(s(0)), any|list]

• [s(s(0)), 0|list]

replace list by []

• [s(s(0)), 0]

• Bottom-up

• [s(s(0)), 0]

replace [] by list

• [s(s(0)), 0|list]

• [s(s(0)), any|list]

• [s(s(0))|list]

replace 0 by any

• [s(s(any))|list]

• [s(any)|list]

• [any|list]

replace [any|list] by list

• list
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Language accepted by an FTA

• Top-down and bottom-up are equivalent

• Given an FTA <Q,Qf, ",$>

• there exists a top-down run (derivation) from
accepting state q # Qf to t # Term(") if and only
if there exists a bottom-up run (derivation) from
t to q.

• In either case we say that t is accepted by
(state q of) the FTA.

• The set of all terms accepted by some final
state of an FTA A is called the language of
A, L(A).
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Regular tree languages

• If a set of terms can be represented as

L(A) from some FTA A, we say that the set

of terms is recognizable.

• Such a set of terms is also known as a

regular tree language
• the set $ can be seen as a regular tree

grammar.
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Deterministic FTAs

• Unlike string automata, determinism comes
in two flavours.
• An FTA is bottom-up deterministic (DFTA) if

there are no two rules in $ having the same left-
hand-side.
• f(q1,...,qn) % q and f(q1,...,qn) % q', q ! q' disallowed

• An FTA is top-down deterministic (DTTA) if there
are no two rules in $ having both the same right-
hand-side and the same function symbol on the
left.
• f(q1,...,qn) % q and f(s1,...,sn) % q, qi ! si disallowed
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Equivalence of FTAs and DFTAs

• For every FTA, there is an equivalent DFTA

(bottom-up deterministic FTA).

• However, this does not hold for top-down

deterministic FTAs.

• there are some FTAs that have no equivalent
DTTA.

• E.g. " = {[],[.|.],a,b}, $ = {[]%ablist, [a|ablist]
%ablist, [b|ablist]%blist, []%blist, [b|blist]}

• (lists of a's  followed by b's, [a,a,a,....,b,b,b])
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Disjoint Accepting States in DFTAs

• Given a DFTA and a term t, we can see

that a bottom-up run starting from t is

deterministic.

• Hence each term can be accepted by at

most one state of a DFTA.

• Thus the sets of terms accepted by the

states of a DFTA are disjoint.
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Determinizing FTAs

• An algorithm exists for converting an
arbitrary FTA to a DFTA.

• Consider transitions for list and any
[] % list

[any|list] % list

[] % any

[any|any] % any

0 % any

s(any) % any

• This is not b-u deterministic ([] occurs
twice in lhs of a transition)
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Determinization of FTAs

• Any FTA can be determinized.

• There is an equivalent FTA that is bottom-

up deterministic

• In a deterministic FTA, each term is in at

most one type (state).  Types are disjoint.

list

any nonlist

list+
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Determinization of list/any

[] % list'

[list'|list'] % list'

[nonlist|list'] % list'

[nonlist|nonlist] % nonlist

[list|nonlist] % nonlist

0 % nonlist

s(list) % nonlist

s(nonlist) % nonlist

list' = [list ' any]

nonlist = [any]

An expression 

[q1, q2, ....,qn] denotes

a state in the DFTA

that accepts terms accepted

by all of q1,...,qn 

and accepted by no

other state.

PAT 2005 Summer School, DIKU, Copenhagen 24

Advantages of DFTAs for approximation

append([],Ys,Ys).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

The best approximation of the append relationusing

the FTA defining list and any.

append(list, any, any).
append(list, any, list).
append(list, list, any).
append(list, list, list).

The first argument is definitely a list, but no dependencies

between the second and third arguments can be detected.

This is because list and any are not disjoint.

append(list, any, any).



PAT 2005 Summer School, DIKU, Copenhagen 25

Approximation using DFTA

We list the minimum set of true “abstract facts”

for append over the determinized types list' and 

nonlist.

append(list', list', list').
append(list', nonlist, nonlist).

The first argument has to be a list, and

the dependency between the second and

third arguments can be observed.

(Similar analysis performed using Boolean 

abstract domain (Codish-Demoen)).
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Modes defined by FTAs

• Instantiation modes (like ground, nonvar, var) can also

be defined by FTAs

• Add an extra constant $VAR to the language (which is

defined to be non-ground)

• Define types var, static (or ground) and dynamic.

Transitions
a % static
b % static
f(static,...,static) % static
[static|static] % static
. . .
a % dynamic
b % dynamic 
f(dynamic,..., dynamic) % dynamic
[dynamic | dynamic] % dynamic
$VAR % dynamic
. . .
$VAR % var 

static

var

dynamic
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Determinized modes

• Modes static, dynamic and var
[] % static

a % static

b % static

[static|static] % static

f(static,...,static) % static

. . .

[var|*] % nvng

[nvng|*] % nvng

f(*,...,var,...,*) % nvng

f(*,...,nvng,...,*) % nvng

. . .

$VAR % var

var

static

nonvar-nonground (nvng)

+

+
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From DFTAs to abstract interpretation

• A determinized automaton can be seen as a pre-
interpretation of a given set of constants and
functions.

• E.g. the set D = {static, var, nvng} is the domain
of a pre-interpretation

• The determinized mode transitions define functions

• for each n-ary functor f, the transitions define a
function Dn % D
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Abstract Interpretation of Logic Programs

• Aim is to approximate the semantics of a logic program.

• The minimal Herbrand model is the concrete semantics.

• It is the least fixed point of the "immediate consequence
operator" TP

concrete domain abstract domain

) )

T())
T2())

T3())

T*()) = lfp(T)

+
concretisation function

(monotonic)

S())

S2())

S3())

Sk()) = lfp(S)

+(lfp(S))

&

Safety cond.

T o + & + o S
 lfp(T) & +(lfp(S))

+
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Computing the model of a program

oddEven ! even(X), even(s(X)).

even(0).
even(s(X)) ! odd(X).

odd(s(X)) ! even(X).

Initial approximation = (

T(() = {even(0)}

T2(() = {even(0), odd(s(0))}

T3(() = {even(0), odd(s(0)), even(s(s(0)))}

.....

Minimal model of the program is the limit 

of this sequence, which is the least fixedpoint

of T.

oddEven will not be in the least fixpoint,

but this requires an inductive proof.
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Abstraction using even-odd types

• Consider the FTA <{e,o}, {e,o}, {0,s(.)},
$}, where

• $ = {0 % e, s(e) % o, s(o) % e}

• This is already a DFTA so does not need
determinizing.

• We will compute the least model with this
pre-interpretation.
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Abstract compilation of a pre-interpretation

1. Put each clause in normal form

• every argument of predicates (apart from =/2) is a
variable

• every equality atom is of the form f(X1,...,Xn)=X0

Example

append(U,X,X) :- []=U.

append(U,Y,V) :- append(Xs,Y,Zs), [X|Xs]=U,
[X|Zs]=V.

reverse(U,V) :- []=U, []=V.

reverse(U,V) :- reverse(Xs,W),append(W,Z,V),
[X|Xs]=U, [X|X1]=Z, []=X1.

2. Then replace = by %.  The predicate % is defined
by some pre-interpretation (determinized FTA).
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Abstraction of the even-odd program

oddEven ! even(X), even(U), s(X)%U.

even(U) ! 0%U

even(U) ! s(X)%U, odd(X).

odd(U) ! s(X)%U, even(X).

0%e.

s(e)%o.

s(o)%e.

Computing the model

Initial approximation  = (

T(() = {0%e,s(e)%o,s(o)%e}

T2(() = {0%e,s(e)%o,s(o)%e, even(e)}

T3(() = {0%e,s(e)%o,s(o)%e, even(e),,

                 odd(o)}
T3(() = T4(()

We can see that oddEven has no
solution in the abstract model.

Hence it has no solution in the concrete
model either.
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Abstract program - another example

append(U,X,X) :- [] % U.

append(U,Y,V) :- append(Xs,Y,Zs), [X|Xs]%U, [X|Zs]%

V.

reverse(U,V) :- [] % U, [] % V.

reverse(U,V) :- reverse(Xs,W),append(W,Z,V), [X|Xs]%
U, [X|X1]%Z, [] % X1.

[] % list.

[list|list] % list.

[nonlist|list] % list.

[nonlist|nonlist] % nonlist.

[list|nonlist] % nonlist.

This program has a finite

least model
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Least model wrt to a pre-interpretation

• The least model of the transformed
program P is lfp(TP)

• The arguments of the predicates (apart
from %) are domain elements (types).

• E.g. using the domain {list, nonlist} and
the determinised transitions, the least
model is

reverse(list, list),

append(list, nonlist, nonlist),

append(list, list, list)
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Steps in building a regular-type-based
analysis

• Define some regular types

• Determinise the corresponding FTA,
obtaining a pre-interpretation

• Compute the minimal model wrt to the

pre-interpretation

• we use abstract compilation and then compute
minimal Herbrand model of abstract program
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Mixing modes and types in BTA

• Binding time analysis in off-line partial

evaluation

• Static, dynamic and program-specific types

matrix row

dynamic

static

q1

q2

q3

q4

q5

q6
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Determinizing modes+lists example

% q1 = [dynamic ' matrix ' row]

% q2 = [dynamic ' row ' static]

% q3 = [dynamic ' row]

% q4 = [dynamic ' matrix ' row ' static]

% q5 = [dynamic]

% q6 = [dynamic ' static]

$VAR -> q5.

$CONST -> q6.

[A|q5] -> q5.

[A|q3] -> q3.

[q2|q4] -> q4.

[q4|q4] -> q4.

[q2|q6] -> q6.

[q4|q6] -> q6.

[q2|q2] -> q2.

[q4|q2] -> q2.

[q2|q1] -> q1.

[q4|q1] -> q1.

[q5|q4] -> q3.

[q5|q6] -> q5.

[q5|q2] -> q3.

[q5|q1] -> q3.

[q6|q4] -> q2.

[q6|q6] -> q6.

[q6|q2] -> q2.

[q6|q1] -> q3.

[q1|q4] -> q1.

[q3|q4] -> q1.

[q1|q6] -> q5.

[q3|q6] -> q5.

[q1|q2] -> q3.

[q3|q2] -> q3.

[q1|q1] -> q1.

[q3|q1] -> q1.

[] -> q4.
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Analyzing Programs using disjoint types

• E.g. for naive reverse, with above pre-

interpretation:
{app(q3,q6,q5),app(q3,q5,q5),app(q3,q4,q3),

app(q3,q3,q3),app(q3,q2,q3),app(q3,q1,q3),

app(q2,q6,q6),app(q2,q5,q5),app(q2,q4,q2),

app(q2,q3,q3),app(q2,q2,q2),app(q2,q1,q3),

app(q1,q6,q5),app(q1,q5,q5),app(q1,q4,q1),

app(q1,q3,q3),app(q1,q2,q3),app(q1,q1,q1),

app(q4,A,A)}

{rev(q4,q4),rev(q3,q3),rev(q2,q2),rev(q1,q1)}

Compact representations are essential!
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Precision

• The method computes the least model with

the given pre-interpretation (DFTA).

• Accurate query-dependent information can

be obtained by querying the model.

• module at a time analysis without loss of
precision

• “condensing” property

• call patterns can be computed by a separate
fixpoint iteration



PAT 2005 Summer School, DIKU, Copenhagen 41

Steps in building an FTA-based analysis

• Define an FTA capturing some properties

of interest

• Determinize the FTA, obtaining a pre-

interpretation (DFTA)

• Compute the minimal model wrt to the
pre-interpretation

• use abstract compilation and then compute
minimal model of abstract program
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Determinizing modes+lists example

% q1 = [dynamic ' matrix ' row]

% q2 = [dynamic ' row ' static]

% q3 = [dynamic ' row]

% q4 = [dynamic ' matrix ' row ' static]

% q5 = [dynamic]

% q6 = [dynamic ' static]

$VAR -> q5.

$CONST -> q6.

[A|q5] -> q5.

[A|q3] -> q3.

[q2|q4] -> q4.

[q4|q4] -> q4.

[q2|q6] -> q6.

[q4|q6] -> q6.

[q2|q2] -> q2.

[q4|q2] -> q2.

[q2|q1] -> q1.

[q4|q1] -> q1.

[q5|q4] -> q3.

[q5|q6] -> q5.

[q5|q2] -> q3.

[q5|q1] -> q3.

[q6|q4] -> q2.

[q6|q6] -> q6.

[q6|q2] -> q2.

[q6|q1] -> q3.

[q1|q4] -> q1.

[q3|q4] -> q1.

[q1|q6] -> q5.

[q3|q6] -> q5.

[q1|q2] -> q3.

[q3|q2] -> q3.

[q1|q1] -> q1.

[q3|q1] -> q1.

[] -> q4.
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Analyzing reverse using disjoint modes + types

• E.g. for naive reverse, with above pre-

interpretation:
{app(q3,q6,q5),app(q3,q5,q5),app(q3,q4,q3),

app(q3,q3,q3),app(q3,q2,q3),app(q3,q1,q3),

app(q2,q6,q6),app(q2,q5,q5),app(q2,q4,q2),

app(q2,q3,q3),app(q2,q2,q2),app(q2,q1,q3),

app(q1,q6,q5),app(q1,q5,q5),app(q1,q4,q1),

app(q1,q3,q3),app(q1,q2,q3),app(q1,q1,q1),

app(q4,A,A)}

{rev(q4,q4),rev(q3,q3),rev(q2,q2),rev(q1,q1)}

Compact representations are essential!

PAT 2005 Summer School, DIKU, Copenhagen 44

Infinite State Model Checking

Prolog program representing operations 

on a token ring (with any number of processes)

(example from Roychoudhury et al.).

gen([0,1]).
gen([0 | X]) ! gen(X).
trans(X,Y) ! trans1(X,Y).
trans([1 |X],[0|Y]) ! trans2(X,Y).
trans1([0,1|T],[1,0 |T]).
trans1([H|T],[H|T1]) ! trans1(T,T1).
trans2([0],[1]).
trans2([H|T],[H|T1]) ! trans2(T,T1).
reachable(X) ! gen(X).
reachable(X) ! reachable(Y), trans(Y,X).

0 -> zero.
1 -> one.
[] -> zerolist.
[zero|zerolist] -> zerolist.
[one|zerolist] -> goodlist.
[zero|goodlist] -> goodlist.

% q3 = [dynamic]
% q1 = [dynamic ' goodlist]

% q4 = [dynamic ' one]

% q5 = [dynamic ' zero]

% q2 = [dynamic ' zerolist]

{reachable(q1),

trans(q1,q1),trans(q3,q3),

trans1(q1,q1),trans1(q3,q3),

trans2(q1,q3),trans2(q2,q1),

  trans2(q3,q3)}
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Is it practical?

• Analysis of a program based on and FTA

presents two significant practical challenges

• Determinization can cause a blow-up in the
number of states and transitions

• Representation and manipulation of relations as
tuples is expensive

• it is like representing Boolean functions using
truth tables.
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Approaches to Scaling up

• Determinization.

• Product form of transitions yields much more
compact representation of DFTAs

• Representation of relations.  Use a BDD-based
representation and exploit techniques from
model-checking

• But of course there is no escape from
exponential worst case complexity, so we may
need to make further approximations
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Product representation of transitions

• f(Q1,...,Qn) % q  represents the set of
transitions
{f(q1,...,qn) % q | qj # Qj, 1"j"n}

E.g.  determinized list/nonlist example

[] % list

[{list,nonlist}|{list}] % list

[{list,nonlist}|{nonlist}] % nonlist

f({list,nonlist},..., {list,nonlist}) % nonlist

PAT 2005 Summer School, DIKU, Copenhagen 48

Determinization algorithm generating
product form

qmap(q, fn, j) = {f(q1, . . . , qn) % q0 #  $ | j ,  n, q = qj}

Qmap(Q0, f
n, j) = -{qmap(q, fn, j) | q # Q0}

states($) = {q0 | f(q1, . . . , qn) % q0 # $}

fmap(fn, i,D) = {Qmap(Q0, fn, i) | i , n, Q0 # D} \ (

C = {q | f0 % q # $}| f0 # "}

F(D) = ({states($1 ' ･ ･ ･ ' $n) | $i # fmap(fn, i,D), 1, i , n} \ () - C

The algorithm finds the least set D # 22D such that D = F(D).

The set D is computed by a fixpoint iteration as follows.

initialise i = 0; D0 = (; repeat Di+1 = F(Di); i = i + 1 until Di = Di#1
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Example:  list/nonlist

t1: [] % list,

t2:[dynamic|list] % list,

t3: [] % dynamic,

t4: [dynamic|dynamic] % dynamic,

t5: f(dynamic,dynamic) % dynamic,

. . .

qmap(list,cons,1) = {}

qmap(list,cons,2) = {t2}

qmap(list,f,1) = {}

qmap(list,f,2) = {}

qmap(dynamic,cons,1) = {t2,t4}

qmap(dynamic,cons,2) = {t4}

qmap(dynamic,f,1) = {t5}

qmap(dynamic,f,2) = {t5}
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Example: continued

• D0 = (

• D1 = {{t1,t3}}

• 2nd iteration

• fmap(cons,1,D1) = fmap(cons,2,D1) = {{t2,t4}}

• fmap(f,1,D1) = fmap(f,2,D1) = {{t5}}

• D2 = F(D1) = {{t1,t3},{t2,t4},{t5}}

• 3rd iteration

• fmap(cons,1,D2) = {{t2,t4}}

• fmap(cons,2,D2) = {{t2,t4},{t4}}

• fmap(f,1,D2) = fmap(f,2,D2) = {{t5}}

• D3 = F(D2) = {{t1,t3},{t2,t4},{t5},{t4}}

• D4=D3
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Extracting product transitions

fmap(cons,1,D3) fmap(cons,2,D3)

{{t2,t4}} {{t2,t4} ,{t4}}

To generate the product transitions for cons, form the product

of the fmap values.

[{t2,t4}|{t2,t4}] % {t2,t4}'{t2,t4}

[{t2,t4}|{t4}] % {t2,t4}'{t4}

[{{list,dynamic},{dynamic}}|{{list,dynamic}}] % {list,dynamic}

[{{list,dynamic},{dynamic}}|{{dynamic}}] % {dynamic}
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Reduction in size with product
representation

Q   $ Qd ($d)  $. 

3 1933 4 (1130118) 1951 

4 1934 5 (10054302) 1951 

3 655 4 (20067) 433 

4 656 5 (86803) 433 

105 803 46 (6567) 141 

16 65 16 (268436271) 89 

Q = no. of FTA states
$ = no. of FTA rules

Qd = no. of DFTA states
$d = no. of DFTA rules
$. = no. of DFTA product rules
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Some more results

Q   $ Qd   $d  $p  $dc

chr 21 64 46 118837 242 86

dnf 104 791 57 6567 168 141

mat1 6 10 8 39 8 8

mat2 3 8 3  12 9 7

ring 5 12 5 30 14 11

pic 8 270 8 4989 274 280

Q=original states   

$=original transitions

Qd =determinized states

$d = determinized transitions  

$p = product transitions 

$d = product transitions with don’t cares
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BDD-representation of relations

• Let R be a relation in Dn where D is a finite set with
m elements.

• Code the m elements using k = /log2(m)0 bits each

• introduce n.k Boolean variables x1,1, . . . , x1,k, x2,1,
. . . , xn,1, . . . , xn,k.

• A tuple in R is then a conjunction

x1,1 = b1,1 12 . . .1, xn,k = bn,k

where bi,1 $ $ $ bi,k is the encoding of the ith component

of the tuple.

• The whole relation is a disjunction of such
conjunctions.
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Using Binary Decision Diagrams

• A BDD is a representation of a Boolean

function as a graph or decision tree.

• It can give much more compact

representations of some large Boolean

functions.

• BDDs are successfully used in verification
of hardware (since a digital circuit can be

represented as a (large) Boolean function)
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Example: Relations as Boolean functions

• E.g. let R & Dn where D={a,b,c,d}

• Let relation R be

{<a,a,b>, <d,a,b>,<c,d,a>,<b,d,c>}

• How to represent this as a Boolean

function?
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Mapping to Boolean formulas

• Code the domain elements as bit strings

• e.g. a = 00, b = 01, c = 10, d = 11

• Introduce one variable per bit

• e.g. for relation R with 3 arguments, and 2 bits
per argument, there are 6 bits

• x1, x2, x3,...,x6

• Each tuple in the relation is a boolean
conjunction of 6 variables (positive = 1,

negative = 0)
• <a,a,b> = ¬x1.¬x2.¬x3.¬x4.¬x5.x6

                       0     0     0     0     0   1
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Mapping complete relation

• R = {<a,a,b>, <d,a,b>,<c,d,a>,<b,d,c>}

 = ¬x1.¬x2.¬x3.¬x4.¬x5.x6

+ x1.x2.¬x3.¬x4.¬x5.x6

+ x1.¬x2.x3.x4.¬x5.¬x6

+ ¬x1.x2.x3.x4.x5.¬x6

• Relational operations (join, projections etc.) can then be handled using
BDD operations

• For our experiments, we use a publicly available BDD package BuDDy
• http://www.itu.dk/research/buddy

• http://sourceforge.net/projects/buddy

• We also use a relation manipulation package based on BuDDy, called
bddbddb
• http://suif.stanford.edu/bddbddb

• http://bddbddb.sourceforge.net/

PAT 2005 Summer School, DIKU, Copenhagen 59

Computing an FTA Approximation of a Programs

q([],X,X).
q([c(X1)|Y],Acc,X) ! 

integer(X1), q(Y,c(X1,Acc),X).
q([d(X1)|Y],Acc,X) ! 

 integer(X1), q(Y,d(X1,Acc),X).
p(X,Y) ! q(X,0,Y).

Aim of set-based analysis - to find a regular tree 

approximation of the set of terms that can appear at 

a given program point (work goes back to [Reynolds, 1968])

SY   -->     0  |  c(Int, SY)  | d(Int, SY)

(SY is a regular tree language) 
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Need for FTA Analysis for On-line
Specialization

S1

S2

S3

s1(X) ! action1(X,Y), s2(Y).
s2(X) ! action2(X,Y), s2(Y).
s2(X) ! action3(X,Y), s3(Y).

exec([call(p(N))|Cont],Stack) ! 
    code(p(N),Pcode),
    push(Cont,Stack, Stack1), 
    exec(Pcode,Stack1).
. . . .
exec([return],Stack) !
    pop(Stack, ContCode,Stack1),
    exec(ContCode,Stack1).

Problem - to get an accurate specialization of s3.

Example: When specializing

interpreter for procedure calls,

approximate the stack, 

otherwise continuation code 

is unknown.
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Regular Approximation of Data Structures

Stack % cons(Pcont,S1) | cons(Rcont,S2)
S1 % cons(Qcont,Stack)
S2 % emptyStack

. . .
call r;
. . .

proc r { 
   . . .
   call p;
   . . . }

proc p {
    if e {return}
    else call q;
    . . . }

proc q {
    . . .
    call p; }

Stack = (Pcont Qcont)*Rcont

In general, non-deterministic tree grammars are

required to represent such structures.
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Set-Based Analysis

•  There are several approaches to set-based

analysis

•  Derive set constraints from the program text
and solve the constraints [Reynolds, Heintze &

Jaffar]

•  Abstract interpretation of the program over a
domain of regular types/tree grammars [Jones,

Dart & Zobel, Janssens  & Bruynooghe, Gallagher & de
Waal, van Hentenryck et al., Cousot & Cousot …]

•  Approximate the (logic) program by a monadic

“type” program, and then transform that
program to a normal form [Frühwirth et al.].
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Other Variations

• Top-down deterministic DTTAs vs. FTAs

• precision (FTAs) vs. efficiency (DTTAs)

• Finite height abstract domain vs. infinite

height domains

• with various widening operators

• Constraint solving techniques
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Limited Precision of Top-Down Deterministic FTAs

append([], Ys,Ys).
append([X|Xs], Ys, [X|Zs]) ! append(Xs,Ys,Zs).

?- append(A,B,C).

[] % A

[a | A] % A

[a,a,….a]

[] % B

[b | B] % B

[b,b,….b]

?

with a deterministic

automaton, the best we can

do is
[] % C

[D | C] % C

a % D

b % D

This is the set of lists 

of a and b (mixed).

[a,a,b,a,b,b,….a]



PAT 2005 Summer School, DIKU, Copenhagen 65

Increased Precision of Non-Determinism

With NFTAs, we can describe a more precise result.

[] % C

[a | C] % C

[b | B] % C

[] % B

[b | B] % B

[a,a,a,….,b,b,b]    sequence of ‘a’ followed by sequence of ‘b’

The extra precision can be used for more accurate debugging,

specialisation, verification etc.
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Analysis For Non-Deterministic Descriptions

•  Set-constraint approaches yield non-

deterministic descriptions

•  Previous abstract interpretations used only
deterministic descriptions

•  Aim:  to achieve the precision of set-

constraints within the flexible framework of

abstract interpretation (first suggested by
Cousot & Cousot 1995).
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Concrete Semantics

•  The concrete domain consists of sets of

relations (atomic formulas)

•  The concrete semantic function T performs
“one forward inference step”

T(X) = Y, where X and Y are sets of atomic formulas.

To evaluate T(X) for each program clause H ! B1,…,Bn

1.  Solve the body B1,…,Bn in the set of atomic formulas X

     yielding a set of substitutions for variables in B1,…,Bn.

2.  Project the substitutions onto the head H.
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Abstract Semantics

•  The abstract domain consists of the set of

all NFTAs over a fixed (program-specific)

set of states and functions.

• The concretisation function

+(A) = L(A) (the language of the NFTA A)

• The domain ordering

<Q,q*,$1>  ,  <Q,q*,$2> if $1 & $2

(I.e. not the language ordering, but subset ordering on the
set of rules).
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Abstract Semantics

S(X) = Y where X and Y are NFTAs

For each clause H ! B1,…,Bn

1.  solve the body B1,…,Bn wrt X yielding a set of automata

     states describing the values of variables in B1,…,Bn.
2.  project onto H, yielding transitions in Y

Define the abstract semantic function S
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Defining automata states

•  Given a program, define the set of points which

we observe.

•  Associate an automaton state with each point.

•  several points may be associated to a single state.

•  there are various possible ways to associate states
to points, resulting in different precision in the

analysis.

reverse([], []).

reverse([X|Xs],Ys) ! . . .

Associate a distinct state

with each head position,

   OR

associate a state to each

argument.
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Head transitions

reverse([], []).

reverse([X|Xs],Ys) ! . . .

Arg abstraction

reverse(r1,r2)  % type

[] % r1

[] % r2

[q1 | q2 ] % r1

q3 % r2

where q1, q2, q3 are states

associated with X, Xs, Ys

Var abstraction

reverse(q4, q5)  % type

reverse(q6, q7)  % type

[] % q4

[] % q5

[q1 | q2 ] % q6

q3 % q7

where q1, q2, q3 are states

associated with X, Xs, Ys

q4, q5, q6, q7, are associated

with terms in the heads.
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Solving the clause body

rev([X|Xs],Ys) ! rev(Xs,Zs), append(Zs,[X],Ys).

Given an NFTA, say R, compute the state(s) that represent the

values in R for each body variable. Example:

Xs : r1

Zs:  r2

Zs:  a1

X:   any

Ys:  a3

For each variable that occurs more than

once, check that the intersection of the

corresponding states is non-empty.

Show that r2 ' a1 (a product automaton)

is non-empty.

Emptiness is decidable for NFTAs.
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Projection

rev([X|Xs],Ys) ! rev(Xs,Zs), append(Zs,[X],Ys).

            q2   q3             r1                                  a3

r1% q2    (an epsilon transition which can be eliminated

                  and replaced by a set of ordinary transitions)

a3 % q3    similarly
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Example:  naïve reverse

append([], YsYs).

append([X|Xs], Ys [X|Zs]) ! append(Xs,Ys,Zs).

reverse([], []).

reverse([X|Xs],Ys) ! reverse(Xs,Zs), append(Zs,[X],Ys).

Result for append:
append(a1,a2,a3) % type

[] % a1

[any | a1] % a1

any % a2

any % a3

Iterations for reverse:
1.  reverse(r1,r2) % type

     [] % r1,  [] % r2

2.  [q1 | q2] % r1

     any % q1 

     [] % q2,  any % r2

3.  [q1 | q2] % q2

S())

S2())

S3())

= S4())
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Termination

•  The analysis terminates

•  least fixed point of S is found after a finite
number of iterations, because

•  the set of NFTAs for a given program is finite,
since the number of states is finite, and the
signature is finite.

•  hence the set of possible transitions is finite

•  each iteration simply adds transitions to the NFTA
until no more can be added.

• can also “grey out” subsumed transitions

• “greyed out” transitions are not used further except
to check against added transitions.
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Subsumed transitions

• A transition t = f(q1,…,qn)  % q0 is subsumed by a
set of transitions $ if <Q,q0,$> = <Q,q0,$-{t}>

A full subsumption check is expensive but we can easily

detect some cases, especially where the special state
any occurs.

f(any) % q

f(q1) % q

f(q2) % q

f(any) % q

f(q1) % q

f(q2) % q

subsumed transitions

greyed out.
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Tabulation of Non-Empty Product Automata

•  Checking non-emptiness of intersection

states (product automata) can be

expensive.

•  Automata grow monotonically

•  once a product (q1 ' q2) has been shown to be

non-empty, it remains non-empty.

•  ….even though the definitions of q1 and q2

change

•  Hence, we tabulate the non-empty

products

•  never recheck emptiness of the same product
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Experiments

•  See PADL’02 paper for experimental
results and some aspects of the
implementation.

•  Results compare favourably with set-
based analysis
•  more experiments needed

•  Precision compares favourably with
deterministic types obtained by abstract
interpretation.

•  Larger programs handled than previous
methods (4000+ clauses of Prolog).
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Specialization Examples

• Unification algorithm specialized for ground
terms, reduces to term identity.
• the set of ground terms is represented as an

NFTA

• Specialization of regular parsers w.r.t.
given regular expressions.

• Specialization as “infinite state model
checking”.
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Cryptographic Protocol Example (Blanchet)

attacker(pencrypt(M,PK)) ! attacker(M),attacker(PK).
attacker(pk(SK)) ! attacker(SK).
attacker(M) ! attacker(pencrypt(M,pk(SK))), attacker(SK).
attacker(sign(M,SK)) ! attacker(M), attacker(SK).
attacker(M) ! attacker(sign(M,SK)).
attacker(sencrypt(M,K)) ! attacker(M), attacker(K). 
attacker(M) ! attacker(sencrypt(M,K)), attacker(K).
attacker(pk(skA)).
attacker(pk(skB)).
attacker(a).
attacker(pencrpyt(sign(k(pk(X)),skA),pk(X))) ! attacker(pk(X)).
attacker(sencrpyt(s,K1)) ! attacker(pencrpyt(sign(K1,skA),pk(skB))).
unsafe ! attacker(s).  (unsafe state:  if attacker gets the secret)

Abstraction of Denning-Sacco Protocol (by B. Blanchet)  

pencrypt(M,PK): encrypt message M with private key PK.  

pk(SK): public key built from secret key SK.  

sign(M,SK): message M signed with secret key SK.  

sencrypt(M,K): encrypt message M with shared key K.
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Infinite State Model Checking

Prolog program representing operations on a token ring (with any number of processes)

(example from Podelski & Charatonik, Roychoudhury et al.).

gen([0,1]).
gen([0 | X]) ! gen(X).
trans(X,Y) ! trans1(X,Y).
trans([1 |X],[0|Y]) ! trans2(X,Y).
trans1([0,1|T],[1,0 |T]).
trans1([H|T],[H|T1]) ! trans1(T,T1).
trans2([0],[1]).
trans2([H|T],[H|T1]) ! trans2(T,T1).
reachable(X) ! gen(X).
reachable(X) ! reachable(Y), trans(Y,X).
bad([0|X]) ! bad(X).
bad([1|X]) ! one(X).
one([0|X]) ! one(X).
one([1|X]).
unsafe(X) ! reachable(X), bad(X).
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Adding constraints

• Represent transitions as regular unary logic

clauses
f(q1,…,qn) % q0 represented as

q0(f(x1,…,xn)) ! q1(x1),…,qn(xn)

Add a constraint on the variables of the clause

q0(f(x1,…,xn)) ! c(x1,…,xn), q1(x1),…,qn(xn)

• We consider linear arithmetic constraints, and
equality/disequality constraints.
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Extensions preserving decidability

• If c(X1,...,Xn) consists of equalities,

disequalities, and arithmetic inequalities,

the emptiness problem remains decidable.

• If we extend to allow equalities,

disequalities, and arithmetic inequalities

between terms at different level then we
lose decidability.

• E.g. we can represent classic undecidable
problems like the Post correspondence problem
using such a language.
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Example: constrained transitions

• A sorted list of positive numbers

sorted(X1) !t1(X1).
t1([]) !true.
t1([X1|X2])  !X2=[],X1>=0,

any(X1),t2(X2).
t1([X1|X2])  !X2=[X3|X4], X1>=0, X1-X3>=0,

any(X1),t1(X2).
t2([])  !true.

But - emptiness of NFTAs with arbitrary constraints is not decidable!
A pragmatic solution

Implement a partial non-emptiness check.  
We do not know whether the results of the analysis are empty or not.
 (but results are strictly more precise than ordinary NFTAs)
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Approaches Using Widening

• Consider a domains of FTAs with an

unlimited supply of states.

• There is an infinite set of FTAs that can be

constructed, and infinite chains of FTAs

ordered by language inclusion.

• Abstract interpretation over such a domain

requires a widening operation in order to

terminate.
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Example.  Widening FTAs

• Iterations of Tappend

1. {append([],X,X)}

2. {append([],X,X), append([A],X, [A|X])}

3. {append([],X,X), append([A],X, [A|X]), append([A,B],X,
[A,B|X]), }

4. $ $ $

• The successive terms can be described reasonably
accurately by the following sequence of FTAs.
1. R1 = {append(q1, any, any) % type, [] % q1}

2. R2 = R1 [ {append(q2, any, q3) % type, [any|q1] % q2, []
% q1, [any|any] % q3}

3. R3 = R2 [ {append(q4, any, q5) % type, [any|q2] % q4,
[any|q1] % q2, [] % q1, [any|any] % q3, [any|q3] % q5}

4. $ $ $
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Introducing recursive transitions

• It can be seen that this sequence could be

continued indefinitely

• each iteration extends the terms accepted

by the first argument of append.

• There are various widening methods which

would “notice” the growth of the first

argument and introduce a recursive
transition which is a fixpoint.

• 5. R4 = {append(q6, any, q3) % type,[]%
q6, [any|q6] % q6, [any|any] % q3}
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Tradeoffs

• The tradeoffs of precision and complexity

are not completely understood.

• FTAs vs. DTTAs

• when to approximate an FTA by a DTTA?

• Different widenings

• Delaying widening

• Whether to use DFTAs and DFTA

minimization algorithms (not covered in
these lectures) rather than NFTAs


