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Definitions

Constrained Horn Clause (CHC)

A predicate logic formula, H(X )← φ ∧ B1(X1), . . . ,Bk(Xk)

φ - a conjunction of constraints with respect to some background
theory,

Xi ,X are (possibly empty) vectors of distinct variables,

B1, . . . ,Bk ,H are predicate symbols,

H(X ) is the head of the clause and

φ ∧ B1(X1) ∧ . . . ∧ Bk(Xk) is the body.

Integrity constraints

false← φ ∧ B1(X1), . . . ,Bk(Xk).
where false is always interpreted as false.
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CHC Verification

CHC verification problem

given a set of CHCs P (including integrity constraints encoding
safety properties),

does P have a model?
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CHCs verification techniques and tools

CHC has gained interest from CLP and software verification
communities

CLP

approximation of the minimal model of a CLP program using abstract
interpretation (AI)

specialisation wrt a goal

model preserving transformations etc.

Verification

AI

counter example guided abstraction refinement (CEGAR) etc.

Tools: VeriMAP, HSF(C) , TRACER etc.

CHCs is a software verification community’s terminology for CLP
From now on set of CHCs, CLP and CHC program are used
interchangeably
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Characteristics

Commonalities Characteristics Issues
AI derive invariants scalable, not property guided domain choice, false alarms
Specialisation by transformation model preserving, property guided generalisation operators
CEGAR by cEx analysis property guided cEx generalisation

In essence, CHC verification boils down to deriving required program
invariants but each of these techniques usually miss the aspect of each
others

Does our paper give any answer?
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Proof by over-approximation of the minimal model

There exists a minimal model, M[[P]], wrt the subset ordering,

M[[P]] is equivalent to the set of atomic consequences of P (model
vs. proof)

It is sufficient to find a set of constrained facts M ′ such that
M[[P]] ⊆ M ′, where false 6∈ M ′.

M[[P]]

M ′
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Proof by specialisation / Transformation

Given P0 and an atom A, we wish to prove A is not a consequence of P0

P0 P1 Pk

Pk contains no clause with head A

we wish to prove A is a consequence of P0

P0 P1 Pk

Pk contains a clause with head A← true

P |= A if and only if P ′ |= A, P ′ is a specialisation of P.
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Analysis

Convex polyhedra approximation (CPA)

a program analysis technique based on abstract interpretation.

when applied to P it constructs an over-approximation M ′ of the
minimal model of P, where M ′ contains at most one constrained
fact p(X )← C for each predicate p.

where the constraint C is a conjunction of linear inequalities,
representing a convex polyhedron.

source: http://bugseng.com/products/ppl/abstractions
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Our approach

We carry out following steps in an iterative manner:

1 constraints strengthening ( in the clauses ),

2 abstract interpretation ( over convex polyhedra) ,

3 predicate splitting

4 program refinement
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Running Example

false :- A>0, B=0, C=0, D=0, l(B,C,D,A).

l(A,B,C,D) :- -A+D>0, A-G= -1, l_body(B,C,E,F), l(G,E,F,D).

l(A,B,C,D) :- A-D>=0, B+C-3*D>0.

l(A,B,C,D) :- A-D>=0, -B-C+3*D>0.

l_body(A,B,C,D) :- A-C= -1, B-D= -2.

l_body(A,B,C,D) :- A-C= -2, B-D= -1.
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Query answer transformation (QA)

Simulates goal-directed computation in a goal-independent framework.

For each predicate p in P, define two predicates pq and pa.

l(A,B,C,D) :- -A+D >0, A-G= -1, l_body(B,C,E,F), l(G,E,F,D).

l_ans(A,B,C,D) :- l_query(A,B,C,D), -A+D>0, A-E= -1,

l_body_ans(B,C,F,G), l_ans(E,F,G,D).

l_body_query(A,B,_,_) :- l_query(C,A,B,D), -C+D>0,

C+ -_= -1.

l_query(A,B,C,D) :- l_query(E,F,G,D), -E+D>0,

E-A= -1, l_body_ans(F,G,B,C).

Given P and a query A, derive Pqa
A (QA for P wrt. A)

P |= A iff Pqa
A |= A
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Specialisation by constraint propagation

Input: P and an atomic formula A,
output: a specialised set of CHCs PA.

Compute an over-approximation of the model of Pqa
A , expressed as a

set of constrained facts p∗(X )← C .

l_ans(A,B,C,D) :- 2*B-C>=0, D>0, -B+2*C>=0, -B-C+3*D> -3,

3*A-B-C=0.

Replace

l(A,B,C,D) :- -A+D >0, A-G= -1, l_body(B,C,E,F), l(G,E,F,D).

by

l(A,B,C,D) :- 2*A-B>=0, -A+D>0, -A+B>=0,

3*A-B-C=0, A-E= -1, l_body(B,C,F,G), l(E,F,G,D).

P |= false iff Pfalse |= false.
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Specialised set of CHCs Sp(P)

c1. false :- A>0, B=0, C=0, D=0, l(B,C,D,A).

c2. l(A,B,C,D) :- 2*A-B>=0, -A+D>0, -A+B>=0, 3*A-B-C=0,

A-E= -1, l_body(B,C,F,G), l(E,F,G,D).

c3. l(A,B,C,D) :- 3*A-3*D>0, D>0, 2*A-B>=0, -3*A+3*D> -3,

-A+B>=0, 3*A-B-C=0.

c4. l_body(A,B,C,D) :- -A+2*B>=0, 2*A-B>=0, A-C= -1, B-D= -2.

c5. l_body(A,B,C,D) :- -A+2*B>=0, 2*A-B>=0, A-C= -2, B-D= -1.
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CPA Analysis of Sp(P)

CPA Result on Sp(P)

l_body(A,B,C,D) :- B-D>= -2, -B+D>=1, -A+2*B>=0,

2*A-B>=0, A+B-C-D= -3.

false :- true.

l(A,B,C,D) :- D>0, 2*A-B>=0, -A+B>=0, -3*A+3*D> -3,

3*A-B-C=0.

presence of constrained fact for false → P may not be safe

CPA returns counter example trace c1(c3) in the form of trace term

Bishoksan, John 18 Abstraction, specialisation and refinement in Horn clause verification



Counterexample analysis

check trace for feasibility by collecting constraints from the clauses,

if feasible then our analysis terminates and returns bug

else refine Sp(P)

Interpolant

Given two constraints C1,C2 such that C1 ∧ C2 is unsatisfiable, an
interpolant is a constraint I with (i) C1 → I , (ii) I ∧ C2 is unsatisfiable
and (iii) I contains variables common to both C1 and C2.

predicate splitting

Let I(X) be such a constraint over set of variables X, and p(X )← c(X ) a
constrained fact, then we split this fact into p(X )← c(X ), I (X ) and
p(X )← c(X ),¬I (X ).
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Predicate splitting

I(A,B,C,D) = A-3*B+C+D=<0 is the interpolant computed from
the trace c1(c3) for predicate l(A,B,C,D).

splitting l(A,B,C,D) :- D>0,2*A-B>=0,-A+B>=0,-3*A+3*D>

-3, 3*A-B-C=0. with the interpolant produces (after constraint
simplification)

l(A,B,C,D) :- -4*A+4*B-D>=0,D>0,-3*A+3*D> -3, 2*A-B>=0,

3*A-B-C=0.

Based on these extended set of constraint facts and Sp(P) we
generate a new CHC through specialization (Gallagher (1993)
[Tutorial on specialisation of logic programs] )
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Summary of our approach

CPS – Constraint Propagation Specialisation

CPA –Convex Polyhedra Analyzer SA – Safety Analyser

PS – Polyvariant Specialiser

CHC P
Specializer - Analyzer Refiner-Specializer

CPS CPA
CPC P’

safecEx

trace

constrs

constrs

CHC P”

CHC P’

SA PS

Figure : Tool chain overview (CHC verification).
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Settings

benchmarks

repository of SV benchmarks a and

other sources including Gupta et al. (2009) [Invgen], Beyer (2013)
[SV-COMP 2013], Jaffar et al. (2012) [TRACER], De Angelis et al.
(2014) [VeriMap] etc.

ahttps://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/

environment

Implementation: 32-bit Ciao Prolog a with Parma Polyhedra Library
(Bagnara et al. (2008))

Computer: Intel(R) X5355 having 4 processors (each @ 2.66GHz)
and total memory of 6 GB. Debian 5 (64 bit) - OS,

we set 2 minutes of timeout for each experiment.

ahttp://ciao-lang.org/
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Experimental results

CPA CPA+CPS CPA+CPS+R
solved (safe/unsafe) 61(48/13) 160 (142/18) 181 (158/23)
unknown/ timeout 142/12 49/7 -/35
total time (secs) 1717 1293 3410

average time (secs) 7.94 5.98 18.73

Table : Experimental results on 216 (179/37) CHC verification problems, CPA
- convex polyhedra analysis, CPS - specialisation, R - refinement, “-” not
relevant.
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Discussion

the overall result shows that it compares favourably with other
advanced verification tools like HSF(C) , VeriMAP, TRACER etc. in
both time and the number of problems solved, see De Angelis et al.
(2014) TACAS paper for the comparison with other tools.

this shows the feasibility of our approach.

problems over integers and fixed bits are sometimes challenging to
us since we model programs over reals
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Summary and Future Works

presented an approach for CHC verification based on combination of
several techniques

specialisation without unfolding clauses

experimental results on some benchmark problems prove the
feasibility of our approach

understand better the connection between program specialization
and CEGAR
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Questions?

Thanks for your attention!
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Query answer transformation (QA)

Simulates goal-directed computation in a goal-independent framework.

Given P and an atom A, the QA for P wrt. A, denoted Pqa
A , contains:

Answer clauses

For each clause H ← C ,B1, . . . ,Bn (n ≥ 0) in P, Pqa
A contains the clause

Ha ← C ,Hq,Ba
1 , . . . ,B

a
n .

Query clauses

For each clause H ← C ,B1, . . . ,Bi , . . . ,Bn (n ≥ 0) in P, Pqa
A contains:

Bq
1 ← C ,Hq.
· · ·
Bq
i ← C ,Hq,Ba

1 , . . . ,B
a
i−1.

· · ·
Bq
n ← C ,Hq,Ba

1 , . . . ,B
a
n−1.

Goal clause

Aq ← true.
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Specialisation by constraint propagation

The procedure is as follows: the inputs are a set of CHCs P and an
atomic formula A.

1 Compute a Pqa
A , containing predicates pq and pa for each predicate

p in P.

2 Compute an over-approximation of the model of Pqa
A , expressed as a

set of constrained facts p∗(X )← C , where ∗ is q or a. We assume
that each predicate p∗ has exactly one constrained fact in the model

3 For each clause p(X )← B in P, let the model of pa be pa(X )← C a

(where X is the same tuple of variables in p(X ) and pa(X )).

4 Replace the clause p(X )← B in P by p(X )← C a,B in PA.

Property

If P is a set of CHCs and Pfalse is the set obtained by strengthening the
clause constraints as just described, then P |= false if and only if
Pfalse |= false.
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Sound and completeness (I)

Lemma

P has a model if and only if P 6|= false.

holds for arbitrary interpretations (only assuming that the predicate
false is interpreted as false)

does not depend on the constraint theory

Soundness

P ` A implies P |= A

means that P ` false is a sufficient condition for P to have no
model, by above Lemma

corresponds to using a sound proof procedure to find or check a
counterexample
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Sound and completeness (II)

But soundness is not enough for P to have a model since we need to
establish P 6|= false
Completeness

we approach this problem by using approximations to reason about
the non-provability of false

applying the theory of abstract interpretation to a complete proof
procedure for atomic formulas (the “fixed-point semantics” for
constraint logic programs Jaffar et al. (1994)

In effect, we construct by abstract interpretation a proof procedure
that is complete (but possibly not sound) for proofs of atomic
formulas

P 6` false implies P 6|= false and thus establishes that P has a model
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