Analysis and transformation tools for constrained

Horn clause verification

John Gallagher Bishoksan Kafle

Roskilde University

ICLP 2014, Vienna

Bishoksan, John Analysis and transformation tools for Horn clause verification

Constrained Horn clause verification
Constrained Horn clause (CHC)

A predicate logic formula, H(X) < ¢ A B1(X1), ..., Bk(Xk)

@ ¢ - a conjunction of constraints with respect to some background
theory,

4

false «— ¢ A B1(X1), ..., Bk(Xk).
where false is always interpreted as false.

V.

CHC verification problem

@ given a set of CHCs P (including integrity constraints encoding
safety properties),

@ does P have a model?

Bishoksan, John Analysis and transformation tools for Horn clause verification

An Example

false :- A>0, B=0, C=0, D=0, 1(B,C,D,A).

1(A,B,C,D) :- -A+D>0, A-G= -1, 1_body(B,C,E,F), 1(G,E,F,D).
1(A,B,C,D) :- A-D>=0, B+C-3*D>0.
1(A,B,C,D) :- A-D>=0, -B-C+3%D>0.

1_body(A,B,C,D) :- A-C= = .
1_body(A,B,C,D) :- A-C= -2, B-D= -1.

Bishoksan, John Analysis and transformation tools for Horn clause verification

CHCs verification techniques and tools

@ CHC has gained interest from CLP and software verification
communities

e approximation of the minimal model of a CLP program using abstract
interpretation (Al)

o specialisation wrt a goal

o model preserving transformations etc.

Verification

o Abstract interpretation

e counter example guided abstraction refinement (CEGAR) etc.

@ Tools: VeriMAP, HSF(C) , TRACER etc.

CHGs is the software verification community's terminology for CLP
From now on set of CHCs, CLP are used interchangeably

Bishoksan, John Analysis and transformation tools for Horn clause verification

Characteristics

Commonalities Characteristics Issues
Abstract interpretation | derive invariants scalable, not property guided domain choice, false alarms
Specialisation by transformation | model preserving, property guided | generalisation operators
CEGAR by cEx analysis property guided cEx generalisation

In essence, CHC verification boils down to deriving required program
invariants but each of these techniques usually miss the aspect of each
others

The idea of this paper is to investigate:

@ whether the off-the-shelf CLP tools are suitable for this purpose
@ whether we can fill the gap betweeen CLP and verification techniques

Bishoksan, John Analysis and transformation tools for Horn clause ve

Proof by over-approximation of the minimal model

@ There exists a minimal model, /\/I|[P]], wrt the subset ordering,

e M[P] is equivalent to the set of atomic consequences of P (model
vs. proof)

@ It is sufficient to find a set of constrained facts M’ such that
M[P] € M’, where false ¢ M'.

Bishoksan, John Analysis and transformation tools for Horn clause verification

Proof by specialisation / Transformation

Given Py and an atom A, we wish to prove A is not a consequence of Py

Po P Py

P, contains no clause with head A

we wish to prove A is a consequence of Py

Py Py P

Py contains a clause with head A <+ true

e PEAifandonlyif P"|= A, P’ is a specialisation of P.

Bishoksan, John Analysis and transformation tools for Horn clause verification

Analysis

Convex polyhedra approximation (CPA)

@ when applied to P it constructs an over-approximation M’ of the
minimal model of P, where M’ contains at most one constrained
fact p(X) <« C for each predicate p.

@ where the constraint C is a conjunction of linear inequalities,
representing a convex polyhedron.

6r +y < 111
3r +2y <78
T+y =11
2r —y > —5
v=3

y <21

source: http://bugseng.com/products/ppl/abstractions

Bishoksan, John Analysis and transformation tools for Horn clause verification

Our approach

We carry out following steps in an iterative manner:
© apply CLP transformation and specialisation ,

@ analyse the resulting program by Al (over convex polyhedra),
© refine (drawing idea from CEGAR)

Bishoksan, John

Analysis and transformation tools for Horn clause verification

Transformation tools and their roles (1)

@ Redundant argument filtering (Leuschel and Sgrensen 1996)

o specialise a program by removing redundant variables (equivalent to
live variable analysis)

o needed for scalability

@ Unfolding (Pettorossi and Proietti 1999)

e can improve the structure of a program, by removing some case of
mutual recursion, or propagating constraints upwards towards the
Integrity constraints

© Specialisation / partial evaluation (Gallagher 1993; Leuschel 1999)

e can remove parts of theories not relevant to the verification problem

Bishoksan, John Analysis and transformation tools for Horn clause verification

Transformation tools and their roles

© Predicate splitting (Pettorossi and Proietti 1999)

o splits a predicate wrt to criteria
o its role is to improve the precision loss by the analyser

P = Aifand only if P = A, P’ is a transformation of P.

Bishoksan, John Analysis and transformation tools for Horn clause verification

Convex Polyhedral Analysis of P’

@ produces an overapproximation
@ presence of constrained fact for false — P may not be safe

@ generate counterexamples

Bishoksan, John Analysis and transformation tools for Horn clause verification

@ analysis of counterexamples

o satisfiable — bug
e unsat — : the reason for refinement

@ refinement of the program

o the clauses appearing in counterexamples say which predicates to
split
o refine program by specialisation (Gallagher (1993))

Bishoksan, John Analysis and transformation tools for Horn clause verification

Summary of our approach

CPA —Convex Polyhedra Analyzer SA — Safety Analyser

Transformer - Analyzer | Refiner :
CHC P ! 1
' CHC P !
cEszafe ! '
CPC P trace | constrs .
Transformer CPA SA . Refiner| 1
constrs . ;
e ..
CHC P”

Figure : Tool chain overview (CHC verification).

Transformation sequence: Redudant argument filtering, unfolding,
specialisation, predicate splitting.

Bishoksan, John Analysis and transformation tools for Horn clause verification

Experiments

@ repository of SV benchmarks ? and

@ other sources including Gupta et al. (2009) [Invgen], Beyer (2013)
[SV-COMP 2013], Jaffar et al. (2012) [TRACER], De Angelis et al.
(2014) [VeriMap] etc.

2https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/

environment

@ Implementation: 32-bit Ciao Prolog @ with Parma Polyhedra Library
(Bagnara et al. (2008))

e Computer: Intel(R) X5355 having 4 processors (each @ 2.66GHz)
and total memory of 6 GB. Debian 5 (64 bit) - OS,

@ we set 2 minutes of timeout for each experiment.

2http://ciao-lang.org/

Bishoksan, John Analysis and transformation tools for Horn clause verification

Experimental results

Toolchain Toolchain w-ref
solved (safe/unsafe) | 162 (144/18) | 180 (158/22)
unknown / timeout 54 (46/8) 36 (-/36)
average time (secs) 8.62 20.7

Table : Experimental results on 216 (179/37) CHC verification problems

@ this shows the feasibility of our approach

@ compares favourably with other tools in the literature (HSF(C),
VeriMap, Tracer etc.)

Bishoksan, John Analysis and transformation tools for Horn clause verification

Summary and Future Works

@ a combination of off-the-shelf tools from CLP transformation and
analysis is surprisingly effective in CHC verification

@ component based approach give insights for further development of
automatic CHC verification tools.

@ understand better the connection between different techniques for
verification

Bishoksan, John Analysis and transformation tools for Horn clause verification

The End!

Thanks for your attention!

Bishoksan, John Analysis and transformation tools for Horn clause verification

Query answer transformation (QA)

Simulates goal-directed computation in a goal-independent framework.

Given P and an atom A, the QA for P wrt. A, denoted P$?, contains:

Answer clauses

For each clause H - C, By, ..., B, (n>0) in P, P;® contains the clause
H* « C,H%, B3, ..., B2

v
Query clauses

For each clause H <- C,By,...,Bj,...,B, (n>0) in P, P3* contains:
BY + C,HA.

BY« C,H9,B2,... B2 .

B« C,HY,B2,... B3 ,.

Goal clause
A9 < true.

Bishoksan, John Analysis and transformation tools for Horn clause verification

Specialisation by constraint propagation

The procedure is as follows: the inputs are a set of CHCs P and an
atomic formula A.

© Compute a P§?, containing predicates p9 and p? for each predicate
pin P.

@ Compute an over-approximation of the model of P3®, expressed as a
set of constrained facts p*(X) + C, where x is q or a. We assume
that each predicate p* has exactly one constrained fact in the model

@ For each clause p(X) « B in P, let the model of p? be p?(X) + C?
(where X is the same tuple of variables in p(X) and p?(X)).

Q Replace the clause p(X) < Bin P by p(X) + C?, B in Pa.

Property

If P is a set of CHCs and Pk,ise is the set obtained by strengthening the
clause constraints as just described, then P |= false if and only if
Pfalse ': false.

Bishoksan, John Analysis and transformation tools for Horn clause verification

Sound and completeness (1)

P has a model if and only if P £ false.

@ holds for arbitrary interpretations (only assuming that the predicate
false is interpreted as false)

@ does not depend on the constraint theory

Soundness
o P Aimplies PE A
@ means that P I false is a sufficient condition for P to have no
model, by above Lemma

@ corresponds to using a sound proof procedure to find or check a
counterexample

Bishoksan, John Analysis and transformation tools for Horn clause verification

Sound and completeness (I1)

But soundness is not enough for P to have a model since we need to
establish P }~ false
Completeness

@ we approach this problem by using approximations to reason about
the non-provability of false

@ applying the theory of abstract interpretation to a complete proof
procedure for atomic formulas (the “fixed-point semantics” for
constraint logic programs Jaffar et al. (1994)

@ In effect, we construct by abstract interpretation a proof procedure
that is complete (but possibly not sound) for proofs of atomic
formulas

o P I/ false implies P [~ false and thus establishes that P has a model

Bishoksan, John Analysis and transformation tools for Horn clause verification

	Constrained Horn clause verification
	Our approach to CHC verification
	Application of CLP tools
	Convex Polyhedral Analaysis (CPA)
	Refinement

	Experimental Results
	Conclusion and Future works
	Appendix
	Specialisation by constraint propagation

