Solving non-linear Horn clauses using a linear solver

Bishoksan Kafle

Roskilde University
Joint work with John Gallagher and Pierre Ganty (IMDEA Software institute)

Roskilde University, 04-11-2015
Is a sequence: 1, 1, 2, 3, 5, 8, 13, 21...

Mathematically,
- \(\text{fib}(n) = 1 \), \(n \geq 0 \) and \(n \leq 1 \).
- \(\text{fib}(n) = \text{fib}(n - 1) + \text{fib}(n - 2) \), \(n > 1 \).

As Constrained Horn clauses,

\[
\text{fib}(A, B) :- \ A \geq 0, \ A = \langle 1, \ B = 1.
\]
\[
\text{fib}(A, B) :- \ A > 1, \ A2 = A-2, \ \text{fib}(A2, B2),
\]
\[
A1 = A-1, \ \text{fib}(A1, B1), \ B = B1+B2.
\]
Encoding property as Horn clauses

Property: $A > 5$, $\text{fib}(A,B)$, $B \geq A$.

c1. $\text{fib}(A, B) :- A \geq 0, \ A = <1, \ B = 1$. (linear)

c2. $\text{fib}(A, B) :- A > 1, \ A_2 = A - 2, \ \text{fib}(A_2, B_2)$,
 $A_1 = A - 1, \ \text{fib}(A_1, B_1), \ B = B_1 + B_2$. (non-linear)

c3. false: $A > 5, \ \text{fib}(A,B), \ B < A$. (linear)

Horn clauses: $p(X) \leftarrow C, p_1(X_1), \ldots, p_k(X_k) \ (k \geq 0)$
Given,

c1. fib(A, B):- A>=0, A=<1, B=1.
c2. fib(A, B) :- A > 1, A2 = A−2, fib(A2, B2),
c3. false:- A>7, fib(A,B), B<A.

Finding an interpretation for the predicates in the above program (fib(A,B) and false, where false is always interpreted as false) such that each clause is satisfied (finding a model).

fib(A,B) :- [A>=0,B>=1,B>=A].
A solver which can only deal with linear clauses e.g., c1 and c3 but not c2.

c1. fib(A, B):- A>=0, A=<1, B=1. (linear)
c3. false:- A>7, fib(A,B), B<A. (linear)

So we cannot solve the above clauses just like this using a linear solver!

Can we solve these clauses using a linear solver?
idea: interleave program transformation and linear solving

- program transformation is based on the idea of tree dimension of Horn clause derivations
What is the dimension of a tree?

The dimension of a tree is a measure of its (non)-linearity.
A derivation tree for a set of clauses P is a labelled tree, where each node is labelled by the id of a clause in P, the head, and constraint of the corresponding clause.

A trace tree is a derivation tree containing only the clause id labels.

false has a derivation \Rightarrow there exists a derivation tree whose root is labelled by false.
Derivation tree - Example

c1. fib(A, A):- A>=0, A=<1.
c2. fib(A, B) :- A > 1, A2 = A−2, fib(A2, B2),
c3. false:- A>5, fib(A,B), B<A.
c1. fib(A, A):- A>=0, A=<1.
c2. fib(A, B) :- A > 1, A2 = A-2,
 fib(A2, B2),
 A1 = A-1, fib(A1, B1),
 B = B1+B2.
c3. false:-
 A>5, fib(A,B), B<A.
Program transformation - exactly-k predicate

\[p(X) :\neg\phi, p_1(X_1), \ldots, p_n(X_n) \]

Proof tree using clause \(c \):

\[p^=k(X) :\neg\phi, p_1^{\leq k-1}(X_1), \ldots, p_i^{=k-1}(X_i), \ldots, p_j^{=k-1}(X_j), \ldots, p_n^{\leq k-1}(X_n) \]

\[p^=k(X) :\neg\phi, p_1^{\leq k-1}(X_1), \ldots, p_i^{=k-1}(X_i), \ldots, p_j^{=k-1}(X_j), \ldots, p_n^{\leq k-1}(X_n) \]
For each predicate \(p \) in a set of CHCs \(P \), and a given dimension \(k \), generate clauses for:

- predicates \(p^0, p^1, \ldots, p^k \);
- predicates \(p^{\leq 0}, p^{\leq 1}, \ldots, p^{\leq k} \);

\(p^{\leq k} \) defined by the clauses

\[
p^{\leq k} \leftarrow p^0
\]

\[
\vdots
\]

\[
p^{\leq k} \leftarrow p^k
\]

The resulting set of clauses is called \(P^{\leq k} \).
Example: at-most-0 dimension clauses.

c1. fib(A, A):- A>=0, A=<1.
c2. fib(A, B) :- A > 1, A2 = A-2,
 fib(A2, B2),
 A1 = A-1, fib(A1, B1),
 B = B1+B2.
c3. false:-
 A>5, fib(A,B), B<A.

fib(0)(A,B) :- A>=0, A=<1, B=1.
false(0) :- A>5, B<A, fib(0)(A,B).

false[0] :- false(0).
fib[0](A,B) :- fib(0)(A,B).
Algorithm for solving non-linear clauses

Given a set of Horn clauses P (linear and non-linear)

1. initialize $k = 0$,
2. generate linear clauses (k-dim program),
3. solve linear clauses (use a linear solver),
4. if not solvable then return P is not solvable,
5. if solvable get solution S,
6. check if S is a solution of P, if so S is a solution of P, return S,
7. if not, transform P to (k+1)-linear ((k+1)-dim program) clauses, say P_1,
8. plug S in P_1 giving rise to linear clauses, set $k = k + 1$ and go to 3.
Example I

Linear clauses (0-dim)

‘fib(0)’(A,B) :-
 A>=0,
 A=<1,
 B=1.
‘false(0)’ :-
 A>5,
 B<A,
 ‘fib(0)’(A,B).
‘false[0]’ :-
 ‘false(0)’.
‘fib[0]’(A,B) :-
 ‘fib(0)’(A,B).

Solution:

‘fib(0)’(A,B) :- [−A>= −1,A>=0,B=1].
‘fib[0]’(A,B) :- [−A>= −1,A>=0,B=1].
Solution of linear clauses:

\[\text{\texttt{fib(0)}}(A,B) \leftarrow [-A>= -1, A>=0, B=1]. \]

\[\text{\texttt{fib[0]}}(A,B) \leftarrow [-A>= -1, A>=0, B=1]. \]

use the following to check if the solution is inductive wrt the original program (mapping)

\[\text{fib(A,B)} \leftarrow [-A>= -1, A>=0, B=1]. \]

\[\text{fib(A,B)} \leftarrow [-A>= -1, A>=0, B=1]. \]
Part of 1-Linear clauses (1-dim)

\['\text{fib}(0)'(A,B) :- A \geq 0, A < 1, B = 1. \]
\['\text{false}(1)' :- A > 5, B < A, '\text{fib}(1)'(A,B). \]
\['\text{false}[1]' :- '\text{false}(0)'. \]
\['\text{false}(0)' :- A > 5, B < A, '\text{fib}(0)'(A,B). \]
\['\text{fib}(1)'(A,B) :- A > 1, C = A - 2, E = A - 1, \]
\[\quad B = F + D, '\text{fib}(1)'(C,D), '\text{fib}[0]'(E,F). \]
...

Linear solution (0-dim):

\['\text{fib}(0)'(A,B) :- [-A \geq -1, A \geq 0, B = 1]. \]
\['\text{fib}[0]'(A,B) :- [-A \geq -1, A \geq 0, B = 1]. \]
Example III

Linearisation:

'default(1)' :-
 1*A > 5,
 1*A + -1*B > 0,
 'fib(1)'(A,B).
'default(1)'(A,B) :-
 -1*A >= -2,
 1*A > 1,
 1*A + -1*C = 2,
 1*B + -1*D = 1,
 'fib(1)'(C,D).
...

Solving non-linear Horn clauses using a linear solver
solution for a 2-dim clauses

\[
\text{'fib}(0)'(A,B) :- [-A>= -1,A>=0,B=1].
\]
\[
\text{'fib}[0]'(A,B) :- [-A>= -1,A>=0,B=1].
\]
\[
\text{'fib}(1)'(A,B) :- [A>=2,A+ -B=0].
\]
\[
\text{'fib}[1]'(A,B) :- [A+ -B>= -1,B>=1,-A+B>=0].
\]
\[
\text{'fib}(2)'(A,B) :- [A>=4,-2*A+B>= -3].
\]
\[
\text{'fib}[2]'(A,B) :- [A>=0,B>=1,-A+B>=0].
\]

inductive solution to the original set of clauses

\[
\text{fib}(A,B) :- [-A>= -1,A>=0,B=1].
\]
\[
\text{fib}(A,B) :- [-A>= -1,A>=0,B=1].
\]
\[
\text{fib}(A,B) :- [A>=2,A+ -B=0].
\]
\[
\text{fib}(A,B) :- [A+ -B>= -1,B>=1,-A+B>=0].
\]
\[
\text{fib}(A,B) :- [A>=4,-2*A+B>= -3].
\]
\[
\text{fib}(A,B) :- [A>=0,B>=1,-A+B>=0].
\]
Experiments

<table>
<thead>
<tr>
<th>Program</th>
<th>Result</th>
<th>Time(s)</th>
<th>dim(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>safe</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>bfprt</td>
<td>safe</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>binarysearch</td>
<td>safe</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>countZero</td>
<td>safe</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>identity</td>
<td>safe</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>merge</td>
<td>safe</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>palindrome</td>
<td>safe</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>fib</td>
<td>safe</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>revlen</td>
<td>safe</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>avg. time(s)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions and Future Work

- solve non-linear clauses using only a linear solver.
- The approach seems feasible for solving solvable non-linear clauses.

Other possible directions:
- generation of counterexamples if the clauses cannot be solved.
- refinement.
Thank you