
Tree automata-based refinement with application
to Horn clause verification

Bishoksan Kafle John Gallagher

Roskilde University

VMCAI, Mumbai, India 12/14-01-2015

Bishoksan, John 1 Tree automata-based refinement with application to Horn clause verification



Introduction

Goal: find a model of a set of Horn clauses (program)
Desired characteristics :

scalable and terminating way of computing a model of Horn clauses
(approximation)

if we don’t know if there is a model then refine the program (recover
precision)

For this we use the theory of abstract interpretation (abstraction) and the
theory of finite tree automata (refinement)
Key contributions:

interaction between abstract interpretation and finite tree automata

refinement using finite tree automata

feasibility in practice (experiments)

Bishoksan, John 2 Tree automata-based refinement with application to Horn clause verification



Summary of our approach

FTAM – Finite tree automata manipulation

AI –Abstract interpretation

CG – Clauses generation

Abstraction Refinement

CHC P
AI

Approximation

set of traces

safe

no

unsafe

yes and feasible

set of traces

error traces

CHC P1

CHC P

error traces? FTAM
traces

CG

Figure : Abstraction-refinement in Horn clause verification

Bishoksan, John 3 Tree automata-based refinement with application to Horn clause verification



Overview

1 Horn clause verification

2 Correspondence between Horn clauses and Finite Tree Automata

3 Abstract Interpretation of Horn clauses

4 Refinement in Horn clauses

5 Experimental Results

6 Conclusion and Future work

Bishoksan, John 4 Tree automata-based refinement with application to Horn clause verification



Overview

1 Horn clause verification

2 Correspondence between Horn clauses and Finite Tree Automata

3 Abstract Interpretation of Horn clauses

4 Refinement in Horn clauses

5 Experimental Results

6 Conclusion and Future work

Bishoksan, John 5 Tree automata-based refinement with application to Horn clause verification



Definitions

Constrained Horn Clause (CHC)

A predicate logic formula, p(X )← φ ∧ p1(X1), . . . , pk(Xk)

φ - a conjunction of constraints wrt some background theory,

Xi ,X are (possibly empty) vectors of distinct variables,

p1, . . . , pk , p are predicate symbols,

p(X ) is the head of the clause and

φ ∧ p1(X1) ∧ . . . ∧ pk(Xk) is the body.

Integrity constraints

false← φ ∧ p1(X1), . . . , pk(Xk).

Bishoksan, John 6 Tree automata-based refinement with application to Horn clause verification



Horn clause verification problem

CHC verification problem

given a set of CHCs P (including integrity constraints encoding
safety properties),

does P have a model?

Results from CLP:

Lemma 1

P has a model if and only if P 6|= false.

Lemma 2

P has a model if and only if false 6∈ M[[P]] (minimum model of P).

Bishoksan, John 7 Tree automata-based refinement with application to Horn clause verification



Running example

Example: McCarthy91 function

c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

The goal is to show false 6∈ M[[McCarthy91]].

Notation: ci is a clause identifier (ranked function symbol)

Bishoksan, John 8 Tree automata-based refinement with application to Horn clause verification



Overview

1 Horn clause verification

2 Correspondence between Horn clauses and Finite Tree Automata

3 Abstract Interpretation of Horn clauses

4 Refinement in Horn clauses

5 Experimental Results

6 Conclusion and Future work

Bishoksan, John 9 Tree automata-based refinement with application to Horn clause verification



Finite tree automata

Definition (Finite tree automaton (FTA))

An FTA A is a tuple (Q,Qf ,Σ,∆), where Q is a finite set of states,
Qf ⊆ Q is a set of final states, Σ is a set of function symbols, and ∆ is a
set of transitions. We assume that Q and Σ are disjoint.

Definition (Deterministic FTA (DFTA))

An FTA (Q,Qf ,Σ,∆) is called bottom-up deterministic iff ∆ contains no
two transitions with the same left hand side.

Bishoksan, John 10 Tree automata-based refinement with application to Horn clause verification



Trace automata for CHCs

Given a set of CHCs P and a set Σ of ranked function symbols,

idP : P → Σ

(assignment of function symbols to clauses).

Definition (Trace FTA for a set of CHCs)

Define the trace FTA for P as AP = (Q,Qf ,Σ,∆) where

Q is the set of predicate symbols of P;

Qf ⊆ Q is the set of predicate symbols occurring in the heads of
clauses of P;

Σ is a set of function symbols;

∆ = {cj(p1, . . . , pk)→ p | where cj ∈
Σ, p(X )← φ, p1(X1), . . . , pk(Xk) ∈ P, cj = idP(p(X )←
φ, p1(X1), . . . , pk(Xk))}.

The elements of L(AP) are called trace terms for P.

Bishoksan, John 11 Tree automata-based refinement with application to Horn clause verification



Trace FTA for McCarthy91

c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

Let P be the above set of CHCs. Let idP map the clauses to c1, . . . , c4
respectively. Then AP = (Q,Qf ,Σ,∆) where:

Q = {mc91, false}
Qf = {mc91, false}
Σ = {c1, c2, c3, c4}
∆ = {c1 → mc91, c2(mc91, mc91)→ mc91,

c3(mc91)→ false, c4(mc91)→ false}

Figure : Example CHCs McCarthy91 and its trace automata

Bishoksan, John 12 Tree automata-based refinement with application to Horn clause verification



Generation of CHCs from a trace FTA

It is also possible to generate a set of CHCs from an FTA with the
following properties.

Proposition (Correctness)

Given P and an FTA A whose signature is the same as that of AP .
Let P ′ be the set of clauses generated from A and P. Then
L(AP′) = L(A).

Bishoksan, John 13 Tree automata-based refinement with application to Horn clause verification



Example: From FTA to CHC

c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

The set of states is {[false],[mc91],[mc91,e1]}.

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91, e1]) -> [false].

ρ = {[false] 7→ false, [mc91] 7→ mc91, [mc91, e1] 7→ mc91 1}.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

Bishoksan, John 14 Tree automata-based refinement with application to Horn clause verification



Overview

1 Horn clause verification

2 Correspondence between Horn clauses and Finite Tree Automata

3 Abstract Interpretation of Horn clauses

4 Refinement in Horn clauses

5 Experimental Results

6 Conclusion and Future work

Bishoksan, John 15 Tree automata-based refinement with application to Horn clause verification



Proof by over-approximation of the minimal model

There exists a minimal model, M[[P]], wrt the subset ordering,

M[[P]] is equivalent to the set of atomic consequences of P (model
vs. proof)

It is sufficient to find a set of constrained facts M ′ such that
M[[P]] ⊆ M ′, where false 6∈ M ′.

M[[P]]

M ′

Bishoksan, John 16 Tree automata-based refinement with application to Horn clause verification



Polyhedral Analysis

Convex polyhedra approximation (CPA)

a program analysis technique based on abstract interpretation.

when applied to P it constructs an over-approximation M ′ of the
minimal model of P, where M ′ contains at most one constrained
fact p(X )← C for each predicate p.

where the constraint C is a conjunction of linear inequalities,
representing a convex polyhedron.

Bishoksan, John 17 Tree automata-based refinement with application to Horn clause verification



Example Polyhedral Abstraction

Constrained facts

mc91(A,B) :- [B>90, B>=A-10].

false :- [].

Since there is a constrained fact for false in the overaproximation,
this overapproximation is too imprecise.

We produce a derivation for false as a trace term c3(c1).

Checking SAT(c3(c1)) returns UNSAT =⇒ infeasible trace
(spurious counterexample).

Bishoksan, John 18 Tree automata-based refinement with application to Horn clause verification



Overview

1 Horn clause verification

2 Correspondence between Horn clauses and Finite Tree Automata

3 Abstract Interpretation of Horn clauses

4 Refinement in Horn clauses

5 Experimental Results

6 Conclusion and Future work

Bishoksan, John 19 Tree automata-based refinement with application to Horn clause verification



Clause refinement algorithm

Input: A set of Horn clauses P and an infeasible trace t
Output: A set of Horn clauses P ′

1. construct the trace FTA AP ;
2. construct an FTA At such that L(At) = {t} ;
3. compute the difference FTA AP \ At ;
4. generate P ′ from AP \ At and P
5. return P ′;

Proposition (Progress)

The same counterexample does not arise again in any future
approximations.

Bishoksan, John 20 Tree automata-based refinement with application to Horn clause verification



But ...

Definition (Union of FTAs)

Let A1,A2 be FTAs (Q1,Q1
f ,Σ,∆

1) and (Q2,Q2
f ,Σ,∆

2) respectively.
Then A1 ∪ A2 = (Q1 ∪ Q2,Q1

f ∪ Q2
f ,Σ,∆

1 ∪∆2), and we have
L(A1 ∪ A2) = L(A1) ∪ L(A2).

Definition (Construction of difference of FTAs)

Let A1,A2 be FTAs (Q1,Q1
f ,Σ,∆

1) and (Q2,Q2
f ,Σ,∆

2) respectively.
Let (Q′,Q′

f ,Σ,∆
′) be the determinisation of A1 ∪ A2. Let

Q2 = {Q ′ ∈ Q′ | Q ′ ∩ Q2
f 6= ∅}. Then A1 \ A2 = (Q′,Q′

f \ Q2,Σ,∆′).

The difference construction needs determinising an FTA,

Thanks to a practical algorithm (Gallagher et al. TR-2014) which
made this operation possible, where they use compact representation
for the set of transitions (product form)

Bishoksan, John 21 Tree automata-based refinement with application to Horn clause verification



Further refinement: FTA state splitting

split states representing predicates where convex hull operations
have lost precision.

inspired by predicate splitting from CLP

the effect is to delay join (widen) operations for precision gain

splitting the states preserves the set of traces

Bishoksan, John 22 Tree automata-based refinement with application to Horn clause verification



Overview

1 Horn clause verification

2 Correspondence between Horn clauses and Finite Tree Automata

3 Abstract Interpretation of Horn clauses

4 Refinement in Horn clauses

5 Experimental Results

6 Conclusion and Future work

Bishoksan, John 23 Tree automata-based refinement with application to Horn clause verification



Settings

benchmarks

216 (179 safe / 37 unsafe) problems

repository of SV benchmarks a and

other sources including Gupta et al. (2009) [Invgen], Jaffar et al.
(2012) [TRACER], De Angelis et al. (2014) [VeriMap] etc.

ahttps://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/

environment

Implementation: 32-bit Ciao Prolog a with Parma Polyhedra Library
(Bagnara et al. (2008))

Computer: Intel(R) X5355 @ 2.66GHz and total memory of 6 GB.
Debian 5 (64 bit) - OS,

we set 5 minutes of timeout for each experiment.

ahttp://ciao-lang.org/

Bishoksan, John 24 Tree automata-based refinement with application to Horn clause verification



Experimental results

CPA CPA+R CPA+R+Split QARMC
solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)
unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1
% solved 74 84.25 90.27 82.4

Figure : Experimental results on 216 (179 safe / 37 unsafe) CHC verification
problems with a timeout of five minutes

Bishoksan, John 25 Tree automata-based refinement with application to Horn clause verification



Experimental results

CPA CPA+R CPA+R+Split QARMC
solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)
unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1
% solved 74 84.25 90.27 82.4

Convex polyhedral anaysis is poweful on its own solving 74% of the
problems.

Bishoksan, John 26 Tree automata-based refinement with application to Horn clause verification



Experimental results

CPA CPA+R CPA+R+Split QARMC
solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)
unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1
% solved 74 84.25 90.27 82.4

22 more problems can be solved by refining the program with the
increase in time.

Bishoksan, John 27 Tree automata-based refinement with application to Horn clause verification



Experimental results

CPA CPA+R CPA+R+Split QARMC
solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)
unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1
% solved 74 84.25 90.27 82.4

splitting increases the precision of analysis.

Bishoksan, John 28 Tree automata-based refinement with application to Horn clause verification



Experimental results

CPA CPA+R CPA+R+Split QARMC
solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37)
unknown/ timeout 49/7 -/34 -/22 -/38

average time (secs.) 5.98 51.66 50.08 59.1
% solved 74 84.25 90.27 82.4

compares favourably with QARMC (Grebenshchikov et al. PLDI12).

Bishoksan, John 29 Tree automata-based refinement with application to Horn clause verification



Overview

1 Horn clause verification

2 Correspondence between Horn clauses and Finite Tree Automata

3 Abstract Interpretation of Horn clauses

4 Refinement in Horn clauses

5 Experimental Results

6 Conclusion and Future work

Bishoksan, John 30 Tree automata-based refinement with application to Horn clause verification



Summary and Future Work

Conclusion:

we presented abstraction (using abstraction interpretation)
refinement (using finite tree automata) in Horn clauses;

our refinement phase is independent of the abstract domain used;

the practicality of our approach was demonstrated on a set of Horn
clause verification problems;

Future work:

investigate the elimination of a larger set of infeasible traces in each
refinement step, possibly by

generalising a trace using interpolation or
discovering a set of infeasible traces.

Bishoksan, John 31 Tree automata-based refinement with application to Horn clause verification



The end!

Thanks for your attention!

Bishoksan, John 32 Tree automata-based refinement with application to Horn clause verification


	Horn clause verification
	Correspondence between Horn clauses and Finite Tree Automata
	Abstract Interpretation of Horn clauses
	Refinement in Horn clauses
	Experimental Results
	Conclusion and Future work

