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Horn clause verification problem

Constrained Horn clause (CHC)

p(X )← φ ∧ p1(X1), . . . , pk(Xk) (encodes program’s behavior);

false← φ ∧ p1(X1), . . . , pk(Xk) (integrity constraint, encodes
program’s property) where false is interpreted as false

CHC verification problem

find a model of a set of CHCs P.

a program is safe if it has a model, unsafe if it has no model.
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Running example: Fibonacci function encoded as Horn
clauses

c1. fib(A, B):- A>=0, A=<1, B=1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

We need to show

there is no feasible derivation of false in Fibonacci or

false 6∈ M[[Fibonacci ]] (minimal model of Fibonacci)
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Techniques and Proofs

Formulation 1: deductive or proof based

P has a model if and only if P 6|= false.

Techniques: trace abstraction refinement [Heizmann et al. 2009, Wang
et al. 2015]

Formulation 2: model based

P has a model if and only if false 6∈ M[[P]] (minimal model of P).

Techniques: Abstract interpretation [Cousot and Cousot 1977]
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Horn clause and Finite tree automata (FTA)

c1. fib(A, B):- A>=0, A=<1, B=1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

Example (Trace FTA)

AP = (Q,Qf ,Σ,∆) where:

Q = {fib, false}
Qf = {false}
Σ = {c1, c2, c3}
∆ = {c1 → fib, c2(fib, fib)→ fib,

c3(fib)→ false}

The elements of L(AP) are called trace-terms or trace-trees or simply
traces for P.

We can also generate Horn clauses from FTA.
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Our previous approach

FTAM – Finite tree automata manipulation CG – Clauses generation

Abstraction Refinement
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Figure : Abstraction-refinement scheme in Horn clause verification. M is an
approximation produced as a result of abstract interpretation. A′

P recognizes
all traces in L(AP) \ L(At).
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Trace abstraction refinement

FTAM – Finite tree automata manipulation

Abstraction Refinement
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Figure : Trace abstraction refinement scheme in Horn clause verification. A′
P

recognizes all traces in L(AP) \ L(AI
t).
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Our previous approach and trace abstraction-refinement

both abstract interpretation and trace (counterexample)
generalisation play a crucial role in verification

in this sense, our approaches miss the aspect of each others.

Our contribution is a combination of these techniques.
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Our approach

FTAM – Finite tree automata manipulation CG – Clauses generation
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Figure : The combination: A′
P now recognizes all traces in L(AP) \ L(AI

t).
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Trace tree and AND-Tree

c3(c2(c1,c1))

φ1 ≡ A > 5 ∧ B < A;φ2 ≡ A > 1 ∧ A2 = A− 2 ∧ A1 = A− 1 ∧ B = B1 + B2;
φ3 ≡ A2 ≥ 0∧ A2 ≤ 1 ∧ B2 = 1;φ4 ≡ A1 ≥ 0 ∧ A1 ≤ 1 ∧ B1 = 1.
AND-Tree is feasible if its constraints are satisfiable.
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Construction of interpolant tree automata

Definition (Interpolant)

Given two formulas φ1, φ2 such that φ1 ∧ φ2 is unsatisfiable, a (Craig)
interpolant is a formula I with

1 φ1 → I ;

2 I ∧ φ2 → false; and

3 vars(I ) ⊆ vars(φ1) ∩ vars(φ2).

Example (Interpolant example)

Let φ1 ≡ A2 ≤ 1 ∧ A > 1 ∧ A2 = A− 2 ∧ A1 = A− 1 ∧ B = B1 + B2
and φ2 ≡ A > 5 ∧ B < A
such that φ1 ∧ φ2 is unsatisfiable.
I ≡ A ≤ 3 is an interpolant.
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AND-Tree and its tree interpolant

Let Ij represents an interpolant of the node j . Then we have: I1 ≡ false;
I4 ≡ I (φ4, φ3 ∧ φ1 ∧ φ2) ; I3 ≡ I (φ3, φ1 ∧ φ2 ∧ I4); I2 ≡ I (I3 ∧ I4 ∧ φ2, φ1).
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Interpolant automata (I)

Interpolant automaton for c3(c2(c1, c1))

Q = {fib2, fib3, fib4, false}
Qf = {false}
Σ = {c1, c2, c3} (all function symbols of P)

mapping from each node in the tree to the original predicate
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Interpolant automata (II)

∆ are derived

Given c : p(X )← φ, p1(X1), . . . , pk(Xk) ∈ P

if TI (pj)(X )← φ,TI (pj1
1 )(X1), . . . ,TI (pjk

k )(Xk) then add

c(pj1
1 , . . . , p

jk
k )→ pj to ∆

For example ∆ contains c2(fib3, fib2)→ fib2 because

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2), A1 =

A - 1, fib(A1, B1), B = B1 + B2

TI: fib(A,B) ≡ A≤3 (at node 2) and fib(A,B) ≡ A≤1 (at node 3)

consider the mapping fib at any node corresponds to fib of the
original program

so the implication A > 1,A2 = A− 2,A2 ≤ 1,A1 = A− 1,A1 ≤
3,B = B1 + B2→ A ≤ 3 holds
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Experimental setting

68 verification problems (SVCOMP’15, repository of Horn clause
problems 1)

computer: OS X, 2.3 GHz Intel, 8 GB RAM, timeout: 5mins

implementation: Ciao interfaced with PPL library and Yices SMT
solver and FTA library

our current tool: RAHIT (Refinement of abstraction in Horn clauses
with Interpolant Tree Automata)

comparison:

RAHFT (our previous approach) : the effect of removing a set of
traces rather than the single one
TAR (trace abstraction refinement, Wang et al. 2015): the effect of
polyhedral abstraction

1https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA/Eldarica
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Experiments (I)

Time RAHFT #Itr. RAHFT Time RAHIT #Itr. RAHIT
avg. 10.55 2.33 11.40 2.08

solved 82% 89%

RAHIT more effective than RAHFT : more tasks solved with fewer
iterations (result of trace generalisation) but takes longer time (the
cost of computing interpolant automaton)
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Experiments (II)

Time RAHIT #Itr. RAHIT Time TAR #Itr. TAR
avg. 8.78 0.93 9.52 38.64
solved 86% 73%

RAHIT more effective than TAR: solves more tasks, in few iterations,
less time (emphasizes the power of abstract interpretation)
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Conclusion

The proposed combination shows improvements over the previous
approaches

Next, use SMT solvers for computing interpolant
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The end!

Thanks for your attention!
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