Interpolant tree automata and their application in Horn clause verification

Bishoksan Kafle and John P. Gallagher

Roskilde University, Denmark

VPT'16 Eindhoven, 2/4/2016

Constrained Horn clause (CHC)

- $p(X) \leftarrow \phi \land p_1(X_1), \ldots, p_k(X_k)$ (encodes program's behavior);
- false ← φ ∧ p₁(X₁),..., p_k(X_k) (integrity constraint, encodes program's property) where false is interpreted as false

CHC verification problem

- find a model of a set of CHCs P.
- a program is safe if it has a model, unsafe if it has no model.

Running example: Fibonacci function encoded as Horn clauses

We need to show

- there is no feasible derivation of false in Fibonacci or
- false ∉ *M*[*Fibonacci*] (minimal model of *Fibonacci*)

Formulation 1: deductive or proof based

P has a model if and only if $P \not\models false$.

Techniques: trace abstraction refinement [Heizmann et al. 2009, Wang et al. 2015]

Formulation 2: model based

P has a model if and only if *false* $\notin M\llbracket P \rrbracket$ (minimal model of *P*).

Techniques: Abstract interpretation [Cousot and Cousot 1977]

Horn clause and Finite tree automata (FTA)

Example (Trace FTA)

 $\mathcal{A}_{P} = (\mathcal{Q}, \mathcal{Q}_{f}, \Sigma, \Delta)$ where:

The elements of $\mathcal{L}(\mathcal{A}_P)$ are called trace-terms or trace-trees or simply traces for P.

We can also generate Horn clauses from FTA.

Our previous approach

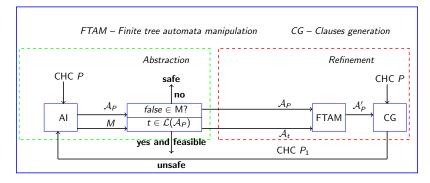


Figure : Abstraction-refinement scheme in Horn clause verification. M is an approximation produced as a result of abstract interpretation. A'_P recognizes all traces in $\mathcal{L}(\mathcal{A}_P) \setminus \mathcal{L}(\mathcal{A}_t)$.

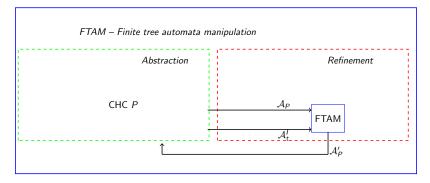


Figure : Trace abstraction refinement scheme in Horn clause verification. \mathcal{A}'_{P} recognizes all traces in $\mathcal{L}(\mathcal{A}_{P}) \setminus \mathcal{L}(\mathcal{A}'_{t})$.

Our previous approach and trace abstraction-refinement

- both abstract interpretation and trace (counterexample) generalisation play a crucial role in verification
- in this sense, our approaches miss the aspect of each others.

Our contribution is a combination of these techniques.

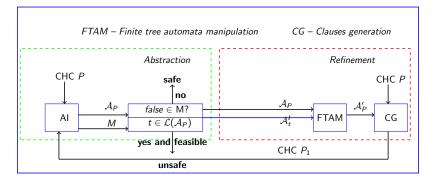
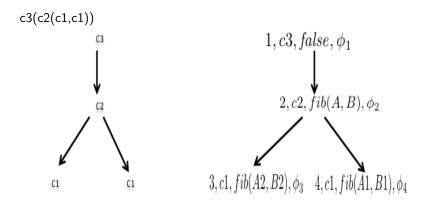


Figure : The combination: $\mathcal{A}'_{\mathcal{P}}$ now recognizes all traces in $\mathcal{L}(\mathcal{A}_{\mathcal{P}}) \setminus \mathcal{L}(\mathcal{A}'_{t})$.

Trace tree and AND-Tree



 $\begin{array}{l} \phi_1\equiv A>5 \wedge B<A; \phi_2\equiv A>1 \wedge A2=A-2 \wedge A1=A-1 \wedge B=B1+B2;\\ \phi_3\equiv A2\geq 0 \wedge A2\leq 1 \wedge B2=1; \phi_4\equiv A1\geq 0 \wedge A1\leq 1 \wedge B1=1.\\ \mbox{AND-Tree is feasible if its constraints are satisfiable.} \end{array}$

Definition (Interpolant)

Given two formulas ϕ_1, ϕ_2 such that $\phi_1 \wedge \phi_2$ is unsatisfiable, a (Craig) interpolant is a formula I with

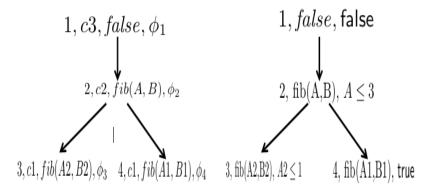
2
$$I \land \phi_2 \rightarrow false; and$$

3
$$\operatorname{vars}(I)\subseteq\operatorname{vars}(\phi_1)\cap\operatorname{vars}(\phi_2).$$

Example (Interpolant example)

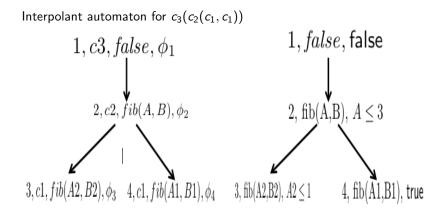
Let $\phi_1 \equiv A2 \leq 1 \land A > 1 \land A2 = A - 2 \land A1 = A - 1 \land B = B1 + B2$ and $\phi_2 \equiv A > 5 \land B < A$ such that $\phi_1 \land \phi_2$ is unsatisfiable. $I \equiv A \leq 3$ is an interpolant.

AND-Tree and its tree interpolant



Let I_j represents an interpolant of the node j. Then we have: $I_1 \equiv$ false; $I_4 \equiv I(\phi_4, \phi_3 \land \phi_1 \land \phi_2)$; $I_3 \equiv I(\phi_3, \phi_1 \land \phi_2 \land I_4)$; $I_2 \equiv I(I_3 \land I_4 \land \phi_2, \phi_1)$.

Interpolant automata (I)



mapping from each node in the tree to the original predicate

Interpolant automata (II)

 Δ are derived

- Given $c: p(X) \leftarrow \phi, p_1(X_1), \dots, p_k(X_k) \in P$
- if $TI(p^{j})(X) \leftarrow \phi, TI(p_{1}^{j_{1}})(X_{1}), \dots, TI(p_{k}^{j_{k}})(X_{k})$ then add $c(p_{1}^{j_{1}}, \dots, p_{k}^{j_{k}}) \rightarrow p^{j}$ to Δ

For example Δ contains $c_2(\texttt{fib}^3,\texttt{fib}^2) o \texttt{fib}^2$ because

- c2. fib(A, B) :- A > 1, A2 = A 2, fib(A2, B2), A1 = A 1, fib(A1, B1), B = B1 + B2
- TI: fib(A,B) \equiv A ${\leq}3$ (at node 2) and fib(A,B) \equiv A ${\leq}1$ (at node 3)
- consider the mapping fib at any node corresponds to fib of the original program
- so the implication $A > 1, A2 = A 2, A2 \le 1, A1 = A 1, A1 \le 3, B = B1 + B2 \rightarrow A \le 3$ holds

Experimental setting

- 68 verification problems (SVCOMP'15, repository of Horn clause problems¹)
- computer: OS X, 2.3 GHz Intel, 8 GB RAM, timeout: 5mins
- implementation: Ciao interfaced with PPL library and Yices SMT solver and FTA library
- our current tool: RAHIT (Refinement of abstraction in Horn clauses with Interpolant Tree Automata)
- comparison:
 - RAHFT (our previous approach) : the effect of removing a set of traces rather than the single one
 - TAR (trace abstraction refinement, Wang et al. 2015): the effect of polyhedral abstraction

 1 https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA/Eldarica = $\circ \circ \circ \circ \circ$

	Time RAHFT	#Itr. RAHFT	Time RAHIT	#ltr. RAHIT
avg.	10.55	2.33	11.40	2.08
solved	82%		89%	

• RAHIT more effective than RAHFT : more tasks solved with fewer iterations (result of trace generalisation) but takes longer time (the cost of computing interpolant automaton)

	Time RAHIT	#ltr. RAHIT	Time TAR	#ltr. TAR
avg.	8.78	0.93	9.52	38.64
solved	86%		73%	

• RAHIT more effective than TAR: solves more tasks, in few iterations, less time (emphasizes the power of abstract interpretation)

- The proposed combination shows improvements over the previous approaches
- Next, use SMT solvers for computing interpolant

Thanks for your attention!