
Interpolant tree automata and their application in
Horn clause verification

Bishoksan Kafle and John P. Gallagher

Roskilde University, Denmark

VPT’16 Eindhoven, 2/4/2016

Bishoksan, John 1 Interpolant tree automata and their application in Horn clause verification



Horn clause verification problem

Constrained Horn clause (CHC)

p(X )← φ ∧ p1(X1), . . . , pk(Xk) (encodes program’s behavior);

false← φ ∧ p1(X1), . . . , pk(Xk) (integrity constraint, encodes
program’s property) where false is interpreted as false

CHC verification problem

find a model of a set of CHCs P.

a program is safe if it has a model, unsafe if it has no model.

Bishoksan, John 2 Interpolant tree automata and their application in Horn clause verification



Running example: Fibonacci function encoded as Horn
clauses

c1. fib(A, B):- A>=0, A=<1, B=1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

We need to show

there is no feasible derivation of false in Fibonacci or

false 6∈ M[[Fibonacci ]] (minimal model of Fibonacci)

Bishoksan, John 3 Interpolant tree automata and their application in Horn clause verification



Techniques and Proofs

Formulation 1: deductive or proof based

P has a model if and only if P 6|= false.

Techniques: trace abstraction refinement [Heizmann et al. 2009, Wang
et al. 2015]

Formulation 2: model based

P has a model if and only if false 6∈ M[[P]] (minimal model of P).

Techniques: Abstract interpretation [Cousot and Cousot 1977]

Bishoksan, John 4 Interpolant tree automata and their application in Horn clause verification



Horn clause and Finite tree automata (FTA)

c1. fib(A, B):- A>=0, A=<1, B=1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),

A1 = A - 1, fib(A1, B1), B = B1 + B2.

c3. false:- A>5, fib(A,B), B<A.

Example (Trace FTA)

AP = (Q,Qf ,Σ,∆) where:

Q = {fib, false}
Qf = {false}
Σ = {c1, c2, c3}
∆ = {c1 → fib, c2(fib, fib)→ fib,

c3(fib)→ false}

The elements of L(AP) are called trace-terms or trace-trees or simply
traces for P.

We can also generate Horn clauses from FTA.
Bishoksan, John 5 Interpolant tree automata and their application in Horn clause verification



Our previous approach

FTAM – Finite tree automata manipulation CG – Clauses generation

Abstraction Refinement

CHC P

AI
AP

M

safe

no

unsafe

yes and feasible

AP

At

CHC P1

CHC P

false ∈ M?

t ∈ L(AP) FTAM
A′

P

CG

Figure : Abstraction-refinement scheme in Horn clause verification. M is an
approximation produced as a result of abstract interpretation. A′

P recognizes
all traces in L(AP) \ L(At).

Bishoksan, John 6 Interpolant tree automata and their application in Horn clause verification



Trace abstraction refinement

FTAM – Finite tree automata manipulation

Abstraction Refinement

CHC P AP

AI
t

FTAM

A′
P

Figure : Trace abstraction refinement scheme in Horn clause verification. A′
P

recognizes all traces in L(AP) \ L(AI
t).

Bishoksan, John 7 Interpolant tree automata and their application in Horn clause verification



Our previous approach and trace abstraction-refinement

both abstract interpretation and trace (counterexample)
generalisation play a crucial role in verification

in this sense, our approaches miss the aspect of each others.

Our contribution is a combination of these techniques.

Bishoksan, John 8 Interpolant tree automata and their application in Horn clause verification



Our approach

FTAM – Finite tree automata manipulation CG – Clauses generation

Abstraction Refinement

CHC P

AI
AP

M

safe

no

unsafe

yes and feasible

AP

AI
t

CHC P1

CHC P

false ∈ M?

t ∈ L(AP) FTAM
A′

P

CG

Figure : The combination: A′
P now recognizes all traces in L(AP) \ L(AI

t).

Bishoksan, John 9 Interpolant tree automata and their application in Horn clause verification



Trace tree and AND-Tree

c3(c2(c1,c1))

φ1 ≡ A > 5 ∧ B < A;φ2 ≡ A > 1 ∧ A2 = A− 2 ∧ A1 = A− 1 ∧ B = B1 + B2;
φ3 ≡ A2 ≥ 0∧ A2 ≤ 1 ∧ B2 = 1;φ4 ≡ A1 ≥ 0 ∧ A1 ≤ 1 ∧ B1 = 1.
AND-Tree is feasible if its constraints are satisfiable.

Bishoksan, John 10 Interpolant tree automata and their application in Horn clause verification



Construction of interpolant tree automata

Definition (Interpolant)

Given two formulas φ1, φ2 such that φ1 ∧ φ2 is unsatisfiable, a (Craig)
interpolant is a formula I with

1 φ1 → I ;

2 I ∧ φ2 → false; and

3 vars(I ) ⊆ vars(φ1) ∩ vars(φ2).

Example (Interpolant example)

Let φ1 ≡ A2 ≤ 1 ∧ A > 1 ∧ A2 = A− 2 ∧ A1 = A− 1 ∧ B = B1 + B2
and φ2 ≡ A > 5 ∧ B < A
such that φ1 ∧ φ2 is unsatisfiable.
I ≡ A ≤ 3 is an interpolant.

Bishoksan, John 11 Interpolant tree automata and their application in Horn clause verification



AND-Tree and its tree interpolant

Let Ij represents an interpolant of the node j . Then we have: I1 ≡ false;
I4 ≡ I (φ4, φ3 ∧ φ1 ∧ φ2) ; I3 ≡ I (φ3, φ1 ∧ φ2 ∧ I4); I2 ≡ I (I3 ∧ I4 ∧ φ2, φ1).

Bishoksan, John 12 Interpolant tree automata and their application in Horn clause verification



Interpolant automata (I)

Interpolant automaton for c3(c2(c1, c1))

Q = {fib2, fib3, fib4, false}
Qf = {false}
Σ = {c1, c2, c3} (all function symbols of P)

mapping from each node in the tree to the original predicate

Bishoksan, John 13 Interpolant tree automata and their application in Horn clause verification



Interpolant automata (II)

∆ are derived

Given c : p(X )← φ, p1(X1), . . . , pk(Xk) ∈ P

if TI (pj)(X )← φ,TI (pj1
1 )(X1), . . . ,TI (pjk

k )(Xk) then add

c(pj1
1 , . . . , p

jk
k )→ pj to ∆

For example ∆ contains c2(fib3, fib2)→ fib2 because

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2), A1 =

A - 1, fib(A1, B1), B = B1 + B2

TI: fib(A,B) ≡ A≤3 (at node 2) and fib(A,B) ≡ A≤1 (at node 3)

consider the mapping fib at any node corresponds to fib of the
original program

so the implication A > 1,A2 = A− 2,A2 ≤ 1,A1 = A− 1,A1 ≤
3,B = B1 + B2→ A ≤ 3 holds

Bishoksan, John 14 Interpolant tree automata and their application in Horn clause verification



Experimental setting

68 verification problems (SVCOMP’15, repository of Horn clause
problems 1)

computer: OS X, 2.3 GHz Intel, 8 GB RAM, timeout: 5mins

implementation: Ciao interfaced with PPL library and Yices SMT
solver and FTA library

our current tool: RAHIT (Refinement of abstraction in Horn clauses
with Interpolant Tree Automata)

comparison:

RAHFT (our previous approach) : the effect of removing a set of
traces rather than the single one
TAR (trace abstraction refinement, Wang et al. 2015): the effect of
polyhedral abstraction

1https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA/Eldarica
Bishoksan, John 15 Interpolant tree automata and their application in Horn clause verification



Experiments (I)

Time RAHFT #Itr. RAHFT Time RAHIT #Itr. RAHIT
avg. 10.55 2.33 11.40 2.08

solved 82% 89%

RAHIT more effective than RAHFT : more tasks solved with fewer
iterations (result of trace generalisation) but takes longer time (the
cost of computing interpolant automaton)

Bishoksan, John 16 Interpolant tree automata and their application in Horn clause verification



Experiments (II)

Time RAHIT #Itr. RAHIT Time TAR #Itr. TAR
avg. 8.78 0.93 9.52 38.64
solved 86% 73%

RAHIT more effective than TAR: solves more tasks, in few iterations,
less time (emphasizes the power of abstract interpretation)

Bishoksan, John 17 Interpolant tree automata and their application in Horn clause verification



Conclusion

The proposed combination shows improvements over the previous
approaches

Next, use SMT solvers for computing interpolant

Bishoksan, John 18 Interpolant tree automata and their application in Horn clause verification



The end!

Thanks for your attention!

Bishoksan, John 19 Interpolant tree automata and their application in Horn clause verification


	Horn clause verification

