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Abstract
In this paper we apply tree-automata techniques to refinement of abstract interpretation in Horn clause verification. We go

beyond previous work on refining trace abstractions; firstly we handle tree automata rather than string automata and thereby can
capture traces in any Horn clause derivations rather than just transition systems; secondly, we show how algorithms manipulating
tree automata interact with abstract interpretations, establishing progress in refinement and generating refined clauses that eliminate
causes of imprecision. We show how to derive a refined set of Horn clauses in which given infeasible traces have been eliminated,
using a recent optimised algorithm for tree automata determinisation. We also show how we can introduce disjunctive abstractions
selectively by splitting states in the tree automaton. The approach is independent of the abstract domain and constraint theory
underlying the Horn clauses. Experiments using linear constraint problems and the abstract domain of convex polyhedra show that
the refinement technique is practical and that iteration of abstract interpretation with tree automata-based refinement solves many
challenging Horn clause verification problems. We compare the results with other state of the art Horn clause verification tools.
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1. Introduction

The formalism of Constrained Horn clauses (CHCs), as an intermediate language for verification of programs in
various languages, has become popular due to its well understood properties and expressiveness; this has led to a
range of tools for analysis and verification of CHCs. Given a program and a property φ to be verified, a set of CHCs
V , such that V is satisfiable if and only if φ holds, is called a verification condition for φ. CHC verification conditions
can be obtained from imperative, functional or concurrent languages, among others, by a variety of semantics-based
techniques including big- and small-step semantics, Hoare triples, or other intermediate forms such as control-flow
graphs [1, 2, 3, 4, 5, 6]. We do not consider the process of generating CHC verification conditions in this paper.

There are several approaches to checking the satisfiability of CHC verification conditions, including abstract
interpretation and counterexample-guided abstraction refinement (see Section 7). In this paper we apply tree-automata
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techniques to refinement of abstract interpretation in Horn clause verification. We go beyond previous work on refining
trace abstractions [7]; firstly, we handle tree automata rather than word automata and thereby can capture traces in
any Horn clause derivations rather than just transition systems; secondly, we show how algorithms manipulating tree
automata interact with abstract interpretations, establishing progress in refinement and generating refined clauses that
eliminate causes of imprecision.

Our approach is similar in spirit to counterexample-guided abstraction refinement (CEGAR) or iterative special-
isation approaches, in which a refined set of clauses is generated by eliminating one or more of the infeasible paths
from the original set of clauses until the safety or unsafety of the clauses is proven. More specifically, we show how
to construct tree automata capturing both the traces (derivations) of a given set of Horn clauses and also one or more
infeasible traces discovered after abstract interpretation of the clauses. From these we construct a refined automaton
in which the infeasible trace(s) have been eliminated and a new set of clauses is constructed from the refined automa-
ton. This guarantees progress in that the same infeasible trace cannot be generated (in any abstract interpretation). In
addition, the clauses are restructured during the elimination of the trace, which can lead to more precise abstractions
in subsequent iterations. The refinement is manifested in the refined clauses, rather than in an accumulated set of
properties as in the CEGAR [8] approach. We rely on the abstract interpretation of the clauses to generate useful
properties, rather than hoping to find them during the refinement itself.

We also show how we can introduce disjunctive abstractions selectively by splitting states in the tree automaton.
This splitting induces splitting in the predicates of the original set of clauses and its analysis using convex polyhedra
leads to disjunctive abstractions. The approach is independent of the abstract domain and constraint theory underlying
the Horn clauses. Experiments using linear constraint problems and the abstract domain of convex polyhedra show that
the refinement technique is practical and that iteration of abstract interpretation with tree automata-based refinement
solves many challenging Horn clause verification problems. We compare the results with other state of the art Horn
clause verification tools.

The main contributions of this paper are the following; (1) We construct a correspondence between computations
using Horn clauses and finite tree automata (FTA) (Section 4). (2) We construct a refined set of clauses directly
from a tree automaton representation of the clauses and an infeasible trace; the trace is eliminated from the refined
clauses (Section 4.4). (3) We propose a “splitting” operator on FTAs (Section 3) and describe its role in Horn clause
verification (Section 5.1). (4) We demonstrate the feasibility of our approach in practice applying it to Horn clause
verification problems (Section 6).

This paper is an extended version of [9]. The paper has been extended in the following directions: (1) The proofs
of all propositions have been provided; (2) further information about the implementation of our tool chain is given
(see Section 6); (3) further experiments comparing our results with the state of the art verification tools in the literature
are provided (see Sub-sections 4.5.1 and 4.5.2); (4) further experimental results on some additional bechmarks from
the software verification competition 2015 have been provided (see Sub-section 6.5).

2. Summary of our approach

To motivate readers, we present an example set of CHCs P in Figure 1 which will be used throughout this paper.
This is an interesting problem in which the computations are trees rather than linear sequences.

c1. mc91(A,B) :- A > 100, B = A-10.

c2. mc91(A,B) :- A =< 100, C = A+11, mc91(C,D), mc91(D,B).

c3. false :- A =< 100, B > 91, mc91(A,B).

c4. false :- A =< 100, B =< 90, mc91(A,B).

Figure 1. Example CHCs. The McCarthy 91-function

After applying abstract interpretation to this set of clauses, we obtain the following set of constained facts (also
called approximation):

mc91(A,B) :- [B>90, B>=A-10].

false :- [].

Since false is in our approximation, our tool generates an abstract derivation for false which in our case is the
clause c3 followed by the clause c1 and is represented by a trace term c3(c1). Since this abstract counterexample is
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infeasible, our refinement procedure removes this from the set of clauses in Figure 1 to produce a new set of clauses
as shown in Figure 2. Our refinement can be viewed as a program transformation guided by a counterexample. From
the set of refined clauses, it can be seen that the counterexample c3(c1) is impossible to construct. This refinement
split the predicate mc91 of the original clauses and as a result of this we gain some precision. We again analyse the
refined clauses using abstract interpretation until its safety or unsafety is proven. In the sections to follow we describe
our abstraction-refinement procedure which led to this result in details.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

Figure 2. Refined set of CHCs

The architecture of our abstraction-refinement scheme is shown in the Figure 3. It is accompanied by our main
algorithm 1 to give the early picture of our approach.

FTAM – Finite tree automata manipulation
AI –Abstract interpretation

CG – Clauses generation

Abstraction Refinement

CHC P AI
set of traces

Aprx.

safe
no

unsafe

yes and feasible

set of traces
error traces

CHC P1

CHC P

f alse ∈ Aprx.?

error traces? FTAM
traces

CG

Figure 3. Abstraction-refinement scheme in Horn clause verification. Aprx. is an approximation produced as a result of abstract interpretation.

Input: A set of Horn clauses P
Output: safe or unsafe

1. analyse P using abstract interpretation producing constrained facts M ( Algorithm 3);
2. if false < M then return safe ;
3. if false ∈ M then produce derivation t of false using P ;
4. if t is feasible return unsafe ;
5. P′ ← refinedCls(P, t) ( Algorithm 4) ;
9. P← P′ and goto step 1 ;

Algorithm 1: Algorithm for abstraction-refinement of Horn clauses
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3. Finite tree automata

Finite tree automata (FTAs) are mathematical machines that define so-called recognisable tree languages, which
are possibly infinite sets of terms that have desirable properties such as closure under Boolean set operations and
decidability of membership and emptiness.

Definition 1 (Finite tree automaton). An FTAA is a tuple (Q,Q f ,Σ,∆), where Q is a finite set of states, Q f ⊆ Q is a
set of final states, Σ is a set of function symbols, and ∆ is a set of transitions. We assume that Q and Σ are disjoint.

Each function symbol f ∈ Σ has an arity n ≥ 0, written as ar( f ) = n. The function symbols with arity 0 are called
constants. Term(Σ) is the set of ground terms or trees constructed from Σ where t ∈ Term(Σ) iff t ∈ Σ is a constant
or t = f (t1, t2, ..., tn) where ar( f ) = n and t1, t2, ..., tn ∈ Term(Σ). Similarly Term(Σ ∪ Q) is the set of terms/trees
constructed from Σ and Q, treating the elements of Q as constants.

Each transition in ∆ is of the form f (q1, q2, ..., qn) → q where ar( f ) = n. Given δ ∈ ∆ we refer to its left- and
right-hand-sides as lhs(δ) and rhs(δ) respectively. Let⇒ be a one-step rewrite in which t1 ⇒ t2 iff t2 is the result of
replacing one subterm of t1 equal to lhs(δ) by rhs(δ), from some δ ∈ ∆. The reflexive, transitive closure of⇒ is⇒∗.
We say there is a run (resp. successful run) for t ∈ Term(Σ) if t ⇒∗ q where q ∈ Q (resp. q ∈ Q f ), and we say that t is
accepted if t has a successful run. An FTAA defines a set of terms, that is, a tree language, denoted by L(A), as the
set of all terms accepted byA.

Definition 2 (Deterministic FTA (DFTA)). An FTA (Q,Q f ,Σ,∆) is called bottom-up deterministic iff ∆ has no two
transitions with the same left hand side.

We omit the adjective “bottom-up” in this paper and just refer to deterministic FTAs. Runs of a DFTA are deter-
ministic in the sense that for every t ∈ Term(Σ) there is at most one q ∈ Q such that t ⇒∗ q.

3.1. Operations on FTAs

FTAs are closed under Boolean set operations, but for our purposes we mention only union and difference of
language of automata, where in addition we assume that the signature Σ is fixed and that the states of FTAs are
disjoint from each other when applying operations (the states can be renamed apart).

Definition 3 (Union of FTAs). LetA1,A2 be FTAs (Q1,Q1
f ,Σ,∆

1) and (Q2,Q2
f ,Σ,∆

2) respectively. ThenA1 ∪A2 =

(Q1 ∪ Q2,Q1
f ∪ Q2

f ,Σ,∆
1 ∪ ∆2), and we have L(A1 ∪A2) = L(A1) ∪ L(A2).

Determinisation plays a key role in the theory of FTAs. As far as expressiveness is concerned, we can limit our
attention to DFTAs since for every FTA A there exists a DFTA Ad such that L(A) = L(Ad) [10]. The standard
construction builds a DFTAAd whose states are elements of the powerset of the states ofA. The textbook procedure
for constructing Ad from A [10] is not viewed as a practical procedure for manipulating tree automata, even fairly
small ones. In a recent work Gallagher et al. [11] developed an optimised algorithm for determinisation, whose worst-
case complexity remains unchanged, but which performs dramatically better than existing algorithms in practice. A
critical aspect of the algorithm is that the transitions of the determinised automaton are generated in a potentially very
compact form called product form, which can often be used directly when manipulating the determinised automaton.

Definition 4 (Product Transition). A product transition is of the form f (Q1, . . . ,Qn) → q where Qi are sets of states
and q is a state. The product transition represents a set of transitions { f (q1, . . . , qn) → q | qi ∈ Qi, i = 1..n}. Thus
Πn

i=1|Qi| transitions are represented by a single product transition.

Alternatively, we can regard a product transition as introducing ε-transitions. An ε-transition has the form q1 → q2
where q1, q2 are states. ε-transitions can be eliminated, if desired. Given a product transition f (Q1, . . . ,Qn) → q,
introduce n new non-final states s1, . . . , sn corresponding to Q1, . . . ,Qn respectively and replace the product transition
by the set of transitions { f (s1, . . . , sn) → q} ∪ {q′ → si | q′ ∈ Qi, 1 = 1..n}. It can be shown that this transformation
preserves the language of the FTA.

Given FTAs A1 and A2 there exists an FTA A1 \ A2 such that L(A1 \ A2) = L(A1) \ L(A2). To construct the
difference FTA we use union and determinisation and exploit the following property of determinised states [11].
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Property 1. Let Ad be the DFTA constructed from A. Let Q be the states of A. Then there is a run t ⇒∗ q in A if
and only if there is a run t ⇒∗ Q′ inAd where Q′ ∈ 2Q, such that q ∈ Q′.

Furthermore recall that a term is accepted by at most one state in a DFTA. This gives rise to the following con-
struction of the difference FTAA1 \A2. We first form the DFTA for the union of the two FTAs and then remove those
of its final states containing the final states of A2. In this way we remove the terms, and only the terms (by Property
1), accepted by A2. The availability of a practical algorithm for determinisation is what makes this construction of
the difference FTA feasible.

Definition 5 (Construction of difference of FTAs). Let A1,A2 be FTAs (Q1,Q1
f ,Σ,∆

1) and (Q2,Q2
f ,Σ,∆

2) respec-
tively. Let (Q′,Q′f ,Σ,∆

′) be the determinisation of A1 ∪ A2. Let Q2 = {Q′ ∈ Q′ | Q′ ∩ Q2
f , ∅}. Then

A1 \ A2 = (Q′,Q′f \ Q
2,Σ,∆′).

Next we introduce a new operation over FTA called state splitting, which consists of splitting a state q into a
number of states, based on a partition of the set of transitions whose rhs is q. We define this splitting as follows:

Definition 6 (Splitting a state in an FTA). LetA = (Q,Q f ,Σ,∆) be an FTA. Let q ∈ Q and ∆q = {t ∈ ∆ | rhs(t) = q}.
Let Φ = {∆1

q, . . . ,∆
k
q} (k > 1) be some partition of ∆q. Introduce k new states q1, . . . , qk. Then the FTA splitΦ(A) is

(Qs,Qs
f ,Σ,∆

s) where:

• Qs = Q \ {q} ∪ {q1, . . . , qk};

• Qs
f = Q f \ {q} ∪ {q1, . . . , qk} if q ∈ Q f , otherwise Qs

f = Q f ;

• ∆s = unfoldq(∆ \ ∆q ∪ {lhs(t) → qi | t ∈ ∆i
q, i = 1..k}), where unfoldq(∆′) is the result of repeatedly replacing a

transition f (. . . , q, . . .) → s ∈ ∆′ by the set of k transitions { f (. . . , q1, . . .) → s, . . . , f (. . . , qk, . . .) → s} until no
more such replacements can be made.

Proposition 1. L(A) = L(splitΦ(A)).

Proof. Let A = 〈Q,Q f ,Σ,∆〉 and splitΦ(A) = 〈Qs,Qs
f ,Σ,∆

s〉. Let split(q) mean that the state q is split and let
q1, . . . , qk be the new states introduced during splitting. We write⇒∗ for derivations in A and⇒∗s for derivations in
splitΦ(A). We first prove by induction on the depth of terms that for all terms t and states q ∈ Q,

(split(q)→ (t ⇒∗ q ≡ ∃i.(t ⇒∗s qi))) ∧ (¬split(q)→ (t ⇒∗ q ≡ t ⇒∗s q)). (1)

Base case. Let a be a term of depth 1.

split(q)→
a⇒∗ q ≡ a→ q ∈ ∆ ∧ ∃ i.(q ∈ ∆i

q ∧ a→ qi ∈ ∆s)
following Definition 6

≡ ∃i.(a⇒∗s qi)
¬split(q)→
a⇒∗ q ≡ a→ q ∈ ∆ ∧ a→ q ∈ ∆s

≡ a⇒∗s q)

Inductive case. Let f (t1, . . . , tn) ⇒ q where f (t1, . . . , tn) is a term of depth k + 1 and assume that the property holds
for all terms with depth at most k.
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split(q)→
f (t1, . . . , tn)⇒∗ q ≡ ∃ r1, . . . , rn .( f (r1, . . . , rn)→ q ∈ ∆ ∧

t1 ⇒∗ r1 ∧ · · · ∧ tn ⇒∗ rn)∧
(split(r1) ∨ ¬split(r1)) ∧ · · · ∧ (split(rn) ∨ ¬split(rn))

≡ ∃ r1, . . . , rn .[ f (r1, . . . , rn)→ q ∈ ∆ ∧

(split(r1) ∧ ∃i1(t1 ⇒∗s r1,i1 )) ∨ (¬split(r1) ∧ t1 ⇒∗s r1) ∧
· · ·

(split(rn) ∧ ∃in(tn ⇒∗s rn,in )) ∨ (¬split(rn) ∧ tn ⇒∗s rn))]
by inductive hypothesis after rearranging formula, since t1, . . . , tn have depth at most k

≡ ∃ r1, . . . , rn ∃i1, . . . , in.[ f (r1, . . . , rn)→ q ∈ ∆ ∧

((t1 ⇒∗s r1,i1 ∨ t1 ⇒∗s r1) ∧ · · · ∧ (tn ⇒∗s rn,in ∨ tn ⇒∗s rn))]
after rearranging formula, moving quantifiers outwards
and eliminating split(ri) ∨ ¬split(ri), 1 ≤ i ≤ n

≡ ∃ i, r1, . . . , rn ∃i1, . . . , in.[ f (r1,i1 , . . . , rn,in )→ qi ∈ ∆s ∧

((t1 ⇒∗s r1,i1 ∨ (r1,i1 = r1 ∧ t1 ⇒∗s r1)) ∧ · · · ∧ (tn ⇒∗s rn,in ∨ (rn,in = rn ∧ tn ⇒∗s rn)))]
applying Definition 6 to introduce f (r1,i1 , . . . , rn,in )→ qi

since f (r1,i1 , . . . , rn,in )→ qi is included after applying unfold to f (r1, . . . , rn)→ qi

≡ ∃ i. f (t1, . . . , tn)⇒∗s qi

¬split(q)→
f (t1, . . . , tn)⇒∗ q ≡ [Similar to previous case but where f (r1,i1 , . . . , rn,in )→ q

is in the unfolding of f (r1, . . . , rn)→ q in Definition 6]
≡ f (t1, . . . , tn)⇒∗s q

Finally, if q ∈ Q f and split(q) then qi ∈ Qs
f where qi is a new state introduced during the splitting. It follows from this

and property (1) that for all t, ∃q ∈ Q f . t ⇒∗ q ≡ ∃q′ ∈ Qs
f . t ⇒∗s q′. Thus for all t, t ∈ L(A) iff t ∈ L(splitΦ(A)).

4. Horn clauses and their trace automata

A constrained Horn clause (CHC) is a first order predicate logic formula of the form ∀(φ∧ p1(X1)∧ . . .∧ pk(Xk)→
p(X)) (k ≥ 0), where φ is a conjunction of constraints with respect to some constraint theory, Xi, X are (possibly empty)
vectors of distinct variables, p1, . . . , pk, p are predicate symbols, p(X) is the head of the clause and φ ∧ p1(X1) ∧ . . . ∧
pk(Xk) is the body.

There is a distinguished predicate symbol false which is interpreted as false. In practice the predicate false only
occurs in the head of clauses; we call clauses whose head is false integrity constraints, following the terminology of
deductive databases. They are also sometimes referred to as negative clauses. We follow the syntactic conventions of
constraint logic programs and write a clause as p(X)← φ, p1(X1), . . . , pk(Xk).

4.1. Interpretations and models

An interpretation of a set of CHCs is represented as a set of constrained facts of the form A ← φ where A is an
atomic formula p(Z1, . . . ,Zn) where Z1, . . . ,Zn are distinct variables and φ is a constraint over Z1, . . . ,Zn. This set
may be infinite. The constrained fact A ← φ is shorthand for the set of variable-free facts Aθ such that φθ holds in
the constraint theory, and an interpretation M denotes the set of all facts denoted by its elements; M assigns true to
exactly those facts. M1 ⊆ M2 if the set of denoted facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies (whenever the body of a clause holds
under the given interpretation then so does the head) each clause. There exists a minimal model with respect to the
subset ordering, denoted M[[P]] where P is a satisfiable set of CHCs. M[[P]] can be computed as the least fixed point
(lfp) of an immediate consequences operator (called S D

P in [12, Section 4]), which is an extension of the standard TP

operator from logic programming, extended to handle the constraint theory D. Furthermore lfp(S D
P ) can be computed
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as the limit of the ascending sequence of interpretations ∅, S D
P (∅), S D

P (S D
P (∅)), . . .. This sequence provides a basis for

abstract interpretation of CHC clauses. The minimal model of P is equivalent to the set of atomic logic consequences
of P.

4.2. The constrained Horn clause verification problem.
Given a set of CHCs P, the CHC verification problem is to check whether there exists a model of P. Obviously

any model of P assigns false to the bodies of integrity constraints. We restate this property in terms of the derivability
of the predicate false. Let P |= F mean that F is a logical consequence of P, that is, that every interpretation satisfying
P also satisfies F.

Lemma 1. P has a model if and only if P 6|= false.

Proof. Writing I(F) to mean that interpretation I satisfies F, we have:

P 6|= false ≡ there exists an interpretation I such that I(P) and ¬I(false)
by definition of |=

≡ there exists an interpretation I such that I(P)
(since ¬I(false) is true by defn. of false)

≡ P has a model.

This lemma holds for arbitrary interpretations (only assuming that the predicate false is interpreted as false), uses only
the textbook definitions of “interpretation” and “model” and does not depend on the constraint theory. We have yet
another equivalent formulation of the CHC verification problem.

Lemma 2. P has a model if and only if false < M[[P]].

Proof. Follows from the equivalence of the minimal model of P with the set of atomic logical consequences of P [13].
See also Proposition 2 later.

It is this formulation that is most relevant to our method, since we compute over-approximations of M[[P]] by
abstract interpretation. That is, if false < M′ where M[[P]] ⊆ M′ then we have shown that P has a model. An assertion
φ is an invariant (over-approximation) for a predicate q in P, if P |= ∀(q→ φ). If a set of Horn clauses P have a model
then we say that P is safe, otherwise we say that P is unsafe.

4.3. Trace automata for CHCs
Before constructing the trace automaton we introduce identifiers for each clause. An identifier is a function symbol

whose arity is the same as the number of atoms in the clause body. For instance a clause p(X)← φ, p1(X1), . . . , pk(Xk)
is assigned a function symbol with arity k. More than one clause can be assigned the same function symbol, but all the
clauses with the same identifier have the same structure, including their constraints; that is, they differ only in one or
more predicate names. Given a set of CHCs and a set Σ of ranked function symbols, let idP : P→ Σ be the assignment
of function symbols to clauses.

Definition 7 (Trace FTA for a set of CHCs). Let P be a set of CHCs. Define the trace FTA for P asAP = (Q,Q f ,Σ,∆)
where

• Q is the set of predicate symbols of P;

• Q f = Q;

• Σ is a set of function symbols;

• ∆ = {c(p1, . . . , pk)→ p | where c ∈ Σ, c = idP(cl),where cl = p(X)← φ, p1(X1), . . . , pk(Xk)}.

The elements of L(AP) are called trace terms for P. In Section 5 we will see that several clauses differing only in
their predicate names are assigned the same function symbol.
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Example 1. Let P be the set of CHCs in Figure 1. Let idP map the clauses to c1, . . . , c4 respectively. Then AP =

(Q,Q f ,Σ,∆) where:

Q = {mc91, false} ∆ = {c1 → mc91,
Q f = {mc91, false} c2(mc91, mc91)→ mc91,
Σ = {c1, c2, c3, c4} c3(mc91)→ false, c4(mc91)→ false}

For each trace term there exists a corresponding derivation tree called an AND-tree, which is unique up to variable
renaming. The concept of an AND-tree is derived from [14] and [15].

Definition 8 (AND-tree for a trace term). Let P be a set of CHCs and let t ∈ L(AP). Denote by AND(t) the following
labelled tree, where each node of AND(t) is labelled by a clause and an atomic formula.

1. For each subterm c j(t1, . . . , tk) of t there is a corresponding node in AND(t) labelled by an atom p(X) and a
clause p(X) ← φ, p1(X1), . . . , pk(Xk) which is a renamed version of some clause c in P, such that c j = idP(c);
the node’s children (if k > 0) are the nodes corresponding to t1, . . . , tk and are labelled by p1(X1), . . . , pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a clause, the local variables in the
clause body do not occur outside the subtree rooted at n.

Definition 9 (Trace constraints). Let P be a set of CHCs. The set of constraints of a trace t ∈ L(AP), represented as
constr(t) is the set of all constraints in the clause labels of AND(t).

Definition 10 (Feasible trace). We say that a trace term t is feasible if constr(t) is satisfiable.

Definition 11 (FTA for a trace term). Let P be a set of CHCs and t ∈ L(AP). The FTA At (whose construction is
trivial) such that L(At) = {t} is called the FTA for t. The states ofAt are chosen to be disjoint from those ofAP.

Example 2 (Trace FTA). Consider the FTA in Example 1. Let t = c3(c2(c1, c1)). Each ei represents a label in the
trace. ThenAt = (Q,Q f ,Σ,∆) is defined as:

Q = {e1, e2, e3, e4}
Q f = {e1}

Σ = {c1, c2, c3, c4}

∆ = {c1 → e3, c1 → e4, c2(e3, e4)→ e2,
c3(e2)→ e1}

and Σ is the same as inAP. The trace t is not feasible since

constr(t) = {A ≤ 100, B > 91, A ≤ 100, C = A + 11, C > 100, D = C − 10, D > 100, B = D − 10}

and this is not satisfiable.

Example 3 (Trace FTA of a linear trace). Consider the FTA in Example 1 and a linear trace t = c3(c1). Let e1 and e
represents the labels in the trace. ThenAt = (Q,Q f ,Σ,∆) is defined as:

Q = {e, e1}
Q f = {e}

Σ = {c1, c2, c3, c4}

∆ = {c1 → e, c3(e1)→ e}

and Σ is the same as inAP. The trace t is not feasible.

Definition 12 (Constrained trace atom). Let P be a set of CHCs and t ∈ L(AP). Let p(X) be the atom labeling the
root of AND(t). Then the constrained trace atom of t is ∀X.(∃Z̄.constr(t)→ p(X)), where Z̄ = vars(constr(t)) \ X.

We now restate standard soundness and completeness results from constraint logic programming [13] in terms of
the concepts defined above. We assume that the underlying constraint theoryT has a complete satisfiability procedure.
Note that the domain of linear arithmetic constraints, which is used in our experiments, satisfies these conditions.

8
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Proposition 2. Let P be a set of CHCs, whose underlying constraint theory T has a complete satisfiability procedure.
LetAP be the trace FTA for P. Then

1. for all t ∈ L(AP), P ∪ T |= A, where A is the constrained trace atom of t;
2. p(c) is a variable-free atomic formula such that P ∪ T |= p(c), iff

(a) there exists a feasible trace t ∈ L(AP) whose constrained trace atom is of the form ∀X.φ → p(X) where
the constraint φ[X/c] is true; and

(b) p(c) is in M[[P]], the minimal model of P.

Proof. The proof depends on a close correspondence between AND-trees (Definition 8) and derivations defined as
sequences in [13]; we do not elaborate the correspondence in detail but just note that for each AND-tree with con-
strained trace atom ∀X.(∃Z̄.constr(t) → p(X)) there exists one or more derivations for p(X) with answer constraint
∃Z̄.constr(t). Conversely for each derivation for p(X) with answer constraint φ there exists a unique AND-tree whose
root is labelled with p(X) and whose constrained trace atom is ∀X.φ→ p(X).

(1). Let AND(t) be the AND-tree for t (Definition 8), let p(X) be the atom labeling the root and let ∀X.φ→ p(X) be
the constrained trace atom for t.
⇒ there is some derivation (as defined in [13]) for p(X) having answer constraint φ→ p(X);
⇒ P ∪ T |= φ→ p(X) by [13] (Theorem 6.0.1, Part 2).

2(a). P ∪ T |= p(c) is equivalent to P ∪ T |= X = c→ p(X).
⇒ there is a derivation for p(X) with answer constraint φ,

where T |= X = c→ φ (by [13] (Theorem 6.0.1, Part 4));
⇒ there is a trace term t and AND-tree AND(t)

with root labelled by p(X) and constrained trace atom ∀X.φ→ p(X), where T |= φ[X/c].
2(b). Follows directly from [13] (Theorem 6.0.1, Part 1,2)

For part 2(a) of the proof, note that the constrained trace atom in the AND-tree can be more general than the
atom p(c). For example, say that p(1) is a consequence of the set of CHCs; then the constrained trace atom could be
∀X.X ≥ 0→ p(X).

Proposition 2 establishes the correspondence between the semantics of CHCs and the feasible traces of the trace
FTA for the CHCs. Essentially, the set of feasible traces of the FTA is a representation of the minimal model of the
clauses.

If we transform AP to another FTA while preserving the set of traces, we also preserve the feasible traces. More
generally, we can transform AP to another FTA A′ so long as L(A′) ⊆ L(AP) and the elements of L(AP) \ L(A′)
are all infeasible. In this case the feasible traces of L(A′) are still a representation of the minimal model of P. We
will exploit this in our refinement procedure (see Section 5).

4.4. Generation of CHCs from a trace FTA
Now we describe a procedure (Algorithm 2) for generating a set of clauses P′ from an FTAA = (Q,Q f ,Σ,∆) and

a set of clauses P. We assume that Σ is the same as that ofAP; so Σ is the range of the function idP mapping clauses of
P to function symbols. The transitions ∆ are not in product form; a modification of the algorithm and its correctness
proposition is possible for product form (which is in fact an enabling factor which makes possible the determinisation
of FTAs in practice) but we omit that here for the simplicity of presentation. We first introduce an injective function
for renaming the states ofA since we need predicate names for the generated clauses.

ρ : Q→ Predicates

The function ρ maps each FTA state to a distinct predicate name. The algorithm simply generates a clause for each
transition, applying the renaming function from states to predicates, and introducing variables arguments according
to the pattern obtained from any clause with the corresponding identifier (all clauses with the same identifier having
the same variable pattern).

Apart from generating a set of clauses P′, Algorithm 2 also generates the clause identification mapping idP′ ,
preserving the function symbols from the FTA. In this way the set of traces is preserved from P to P′. The correctness
of Algorithm 2 is expressed by the following proposition.

9
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Input: An FTAA = (Q,Q f ,Σ,∆), set of Horn clauses P, injective functions ρ : Q→ Predicates, idP : P→ Σ

Output: A set of Horn clauses P′ represented byA and function idP′ : P′ → Σ

P′ ← ∅;
for each ci(q1, . . . , qn)→ q (where n ≥ 0) ∈ ∆ do

let c = p(X)← φ, p1(X1), . . . , pn(Xn) be the clause in P where idP(c) = ci;
cnew = ρ(q)(X)← φ, ρ(q1)(X1), . . . , ρ(qn)(Xn) ;
idP′ (cnew) = ci;
P′ ← P′ ∪ {cnew};

end
return P′;

Algorithm 2: Generating a set of clauses represented by an FTA

Proposition 3. Let P be a set of CHCs and letA be an FTA whose signature is the same as that ofAP. Let P′ be the
set of clauses generated from A and P by Algorithm 2. Then L(A) = L(AP′ ). Furthermore if L(A) ⊆ L(AP) and
L(A) includes all the feasible traces of L(AP) then the minimal model of P′ is the same as the minimal model of P,
modulo predicate renaming.

Proof. We first prove that L(A) = L(AP′ ), that is, ∀t . t ∈ L(A) ≡ t ∈ L(AP′ ). The proof is by induction on the
depth of t. LetA = 〈Q,Q f ,Σ,∆〉 andAP′ = 〈Q′,Q′f ,Σ,∆

′〉 and we assume that Q = Q f and Q′ = Q′f .

• Base case.

t has depth 0 and t ∈ L(A) ≡ ∃ t → q ∈ ∆

≡ ∃ c = p(X)← φ ∈ P where idP(c) = t
≡ ∃ cnew = ρ(q)(X)← φ ∈ P′ and idP′ (cnew) = t
≡ ∃ t → ρ(q) ∈ ∆′

≡ t ∈ L(AP′ )

• Inductive case. Assume that for all terms t of depth at most k, t ⇒∗ q in A iff t ⇒∗ ρ(q) in AP′ . Let
t = ct(t1, . . . , tn) have depth k + 1.

ct(t1, . . . , tn) ∈ L(A) ≡ ∃ ct(q1, . . . , qn)→ q ∈ ∆ ∧ ti ⇒∗ qi, 1 ≤ i ≤ n
≡ ∃ ct(q1, . . . , qn)→ q ∈ ∆ ∧ ti ⇒∗ ρ(qi), 1 ≤ i ≤ n

by ind. hyp. since depth of t1, . . . tn is at most k
≡ ∃ c = p(X)← φ, p1(X1), . . . , pn(Xn) ∈ P where idP(c) = ct

∧ ti ⇒∗ ρ(qi), 1 ≤ i ≤ n
≡ ∃ cnew = ρ(q)(X)← φ, ρ(q1)(X1), . . . , ρ(qn)(Xn) ∈ P′ and idP′ (cnew) = ct

∧ ti ⇒∗ ρ(qi), 1 ≤ i ≤ n
≡ ∃ ct(ρ(q1), . . . , ρ(qn))→ ρ(q) ∈ ∆′

∧ ti ⇒∗ ρ(qi), 1 ≤ i ≤ n
≡ ct(t1, . . . , tn) ∈ L(AP′ )

This completes the proof that L(AP′ ) = L(A). Now assume that L(A) ⊆ L(AP) and includes all the feasible traces
of L(AP); that is, for all feasible traces t, t ∈ L(AP) iff t ∈ L(A). Then by Proposition 2 M[[P]] = M[[P′]] sinceA is
the trace FTA for P′.

Example 4 (Generation of clauses from an FTA). Consider the following transitions, relating to the signature for the
program in Figure 1. The set of states is {[false],[mc91],[e,false],[mc91,e1]}. (These are elements of the
powerset of the set of states {false,mc91,e,e1} obtained from the union of FTA in Example 1 and FTA in Example
3, which were generated by the determinisation algorithm).

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

10
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c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

c3([mc91]) -> [false].

c4([mc91, e1]) -> [false].

c4([mc91]) -> [false].

c3([mc91, e1]) -> [e, false].

The clauses generated by Algorithm 2 are the following, with the renaming function ρ = {[false] 7→ false, [mc91] 7→
mc91, [e, false] 7→ false 1, [mc91, e1] 7→ mc91 1}. Below we also show the clause identifiers (the id function for
the generated clauses) showing that several clauses can have the same identifier, thus preserving traces.

c1: mc91_1(A,B) :- A>100, B=A-10.

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91_1(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91_1(C,D), mc91(D,B).

c2: mc91(A,B) :- A=<100, C=A+11, mc91(C,D), mc91_1(D,B).

c3: false :- A =< 100, B > 91, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91(A,B).

c4: false :- A =< 100, B =< 90, mc91_1(A,B).

c3: false_1 :- A =< 100, B > 91, mc91_1(A,B).

4.5. Abstract Interpretation of Constrained Horn Clauses
Abstract interpretation [16] is a technique which derives sound over-approximations by computing abstract fixed

points. Convex polyhedron analysis (CPA) [17] is a program analysis technique based on abstract interpretation [16].
When applied to a set of CHCs P it constructs an over-approximation M′ of the minimal model of P, where M′

contains at most one constrained fact p(X) ← φ for each predicate p. The constraint φ is a conjunction of linear
inequalities, representing a convex polyhedron. The first application of convex polyhedron analysis to CHCs was by
Benoy and King [18].

We summarise briefly the elements of convex polyhedron analysis for CHC; further details (with application to
CHC) can be found in [17, 18]. The abstract interpretation consists of the computation of an increasing sequence of
elements of the abstract domain of tuples of convex polyhedra (one for each predicate)Dn. We construct a monotonic
abstract semantic function FP : Dn → Dn for the set of Horn clauses P, approximating the concrete semantic
“immediate consequences” operator.

Since Dn contains infinite increasing chains, a widening operator for convex polyhedra [17] is needed to ensure
convergence of the sequence. The sequence computed is Z0 = ⊥n, Zn+1 = Zn∇FP(Zn) where ∇ is a widening operator
for convex polyhedra and the empty polyhedron is denoted ⊥. The conditions on ∇ ensure that the sequence stabilises;
thus for some finite j, Zi = Z j for all i > j and furthermore the value Z j represents an over-approximation of the least
model of P. Algorithm 3 presents convex polyhedral analysis for Horn clauses. For each constrained fact derived
from the set of clauses P using this algorithm, there is a derivation tree (trace term) associated with it. These are
syntactically possible trace terms using the clauses in P but may not be feasible due to abstraction. Thus all such trace
terms are in L(AP).

Much research has been done on improving the precision of widening operators. One technique is known as
widening-upto, or widening with thresholds [19]. A threshold is an assertion that is combined with a widening
operator to improve its precision.

Our tool for convex polyhedral abstract interpretation, called CPA in the rest of this paper, uses the Parma Poly-
hedra Library [20] to implement the operations on convex polyhedra, and incorporates a threshold generation phase
based on the method described by Lakhdar-Chaouch et al. [21], as well as a constraint strengthening pre-processing
which propagates constraints both forwards and backwards in the clauses of P.

4.5.1. Computing thresholds for widening
Recently, a technique for deriving more effective thresholds was developed [21], which we have adapted and

found to be effective in experimental studies. In brief, the method collects constraints by iterating the concrete imme-
11
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Input: CHCs P
Output: a set of constrained facts Zi

i← 0 ;
Z0 ← ⊥ ;
New← ⊥ ;
repeat

forall the p(X)← Body ∈ P do
New← New t solve(p(X), Body,Zi)

end
Zi+1 ← Zi∇(New t Zi) . Upper bound and widen ;
i← i + 1 ;

until Zi v Zi−1;
return Zi ;

Algorithm 3: Algorithm for convex polyhedral abstraction

diate consequence function S D
P three times starting from the “top” interpretation, that is, the interpretation in which

all atomic facts are true. The thresholds are computed by the following method. Let S D
P be the standard imme-

diate consequence operator for CHCs mentioned in Section 4.1. That is, if I is a set of constrained facts, S D
P (I)

is the set of constrained facts that can be derived in one step from I. Given a constrained fact p(Z̄) ← C, define
atomconstraints(p(Z̄)← C) to be the set of constrained facts {p(Z̄)← Ci | C = C1 ∧ . . . ∧Ck, (1 ≤ i ≤ k)}. The func-
tion atomconstraints is extended to interpretations by atomconstraints(I) =

⋃
p(Z̄)←C∈I{atomconstraints(p(Z̄)← C)}.

Let I> be the interpretation consisting of the set of constrained facts p(Z̄)← true for each predicate p. We perform
three iterations of S D

P (represented as S D(3)
P ) starting with I> (the first three elements of a “top-down” Kleene sequence)

and then extract the atomic constraints. That is, thresholds is defined as follows.

thresholds(P) = atomconstraints(S D(3)
P (I>))

A difference from the method in [21] is that we use the concrete semantic function S D
P rather than the abstract semantic

function when computing thresholds. The set of threshold constraints represents an attempt to find useful predicate
properties and when widening they help to preserve invariants that might otherwise be lost during widening. See [21]
for further details. Threshold constraints that are not invariants are simply discarded during widening. Thresholds
constraints are not necessarily over-approximations (invariants).

The operation thresholds(P) can become expensive and generate a very large number of constraints. Alternatively
we can generate more general threshold constraints (called abstract threshold), possibly losing precision while gaining
efficiency, by following more closely the approach defined in [21], using the abstract semantic function FP. Then the
threshold operation P becomes

thresholds(P) = atomconstraints(F(3)
P (I>))

4.5.2. Pre-processing of Horn clauses by specialisation
The effectiveness of abstract interpretation can be improved by combining it with specialisation with respect to

some property. Therefore we specialise (pre-process) the set of clauses with respect to the property to be verified
using the method described in [22]. The method is summarised as follows: the inputs are a set of CHCs P and an
atomic formula A (a property) and the output is PA, a set of specialised clauses.

1. Compute a query-answer transformation [22] of P with respect to A, denoted Pqa, containing predicates pq and
pa representing query and answer predicates for each predicate p in P.

2. Compute an over-approximation M of the model of Pqa using abstract interpretation.
3. Strengthen the constraints in the clauses in P, by adding constraints from the answer predicates in M. That is,

for each clause
p(X)← φ, p1(X1), . . . , pk(Xk)

12
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in P, we construct a clause
p(X)← φ, φ0, φ1, . . . , φn, p1(X1), . . . , pk(Xk)

in PA, where pa(X)← φ0, pa
1(X)← φ1, . . . , pa

n(X)← φn are in M′.

The method propagates constraints globally, both forwards and backwards, and makes explicit constraints from
the original clauses. This allows better analysis of the transformed clauses. Furthermore, the method is independent
of the abstract domain and the constraints theory underlying the clauses.

5. Refinement of Horn clauses using trace automata

If an over-approximation of the clauses derived by polyhedral abstraction does not contain false, the clauses are
safe. However if false is contained in the approximation, we do not know whether the clauses are unsafe or whether
the approximation was too imprecise. In such cases we can produce a trace term t ∈ AP using the clauses in P which
justifies the abstract derivation of false. The feasibility of this trace can be checked by a constraint satisfiability check.
If the trace is feasible, then it corresponds to a proof of unsafety. Otherwise, refinement is considered based on this
trace. In some other approaches, a more precise abstract domain is derived from the trace. In our refinement approach,
which is described next, we aim to generate a modified set of clauses that could yield a better approximation. This is
achieved through the steps shown in Algorithm 4.

Input: A set of Horn clauses P and an infeasible trace t ∈ AP

Output: A set of refined Horn clauses P′

1. construct the trace FTAAP (Definition 7);
2. construct an FTAAt such that L(At) = {t} (Definition 11);
3. compute the difference FTAAP \ At (Definition 5);
4. generate P′ fromAP \ At and P (Algorithm 2) ;
return P′;

Algorithm 4: Algorithm for clause refinement using FTA operations

Both AP and At in Algorithm 4 are deterministic FTAs by construction, however their union is not. Determini-
sation is used to generate the difference FTA (step 3) and its result is in product form. The program P′ has the same
model (modulo predicate renaming) as P, since the steps result in the removal of an infeasible trace but all other traces
are preserved.

Removal of one trace from the clauses might not seem much of a refinement. However, modifying the clauses
to remove a single trace can result in significant restructuring, which arises as a side-effect of determinisation which
isolates the infeasible trace. This in turn can induce a more precise abstract interpretation, with less precision loss due
to convex hull operations and widening.

The correctness of this refinement follows from Proposition 3. In particular false ∈ M[[P]] if and only if false ∈
M[[P′]] (assuming that the predicate renaming at least preserves the predicate name false).

Example 5. Consider again the FTA shown in Example 4. This is in fact the determinisation of AP ∪ At where
P is the set of clauses in Figure 1 and At where t is the infeasible trace c3(c1). The only accepting state of At

is e; thus to construct the difference AP \ At we need only to remove from the automaton the states containing e,
namely [mc91,e]. We can also remove any transitions containing this state in the right hand side. This leaves the
following FTA and refined program in Figure 2, using the same renaming function as in Example 4. In this program,
the infeasible trace corresponding to c3(c1) cannot be constructed.

c1 -> [mc91, e1].

c2([mc91, e1],[mc91, e1]) -> [mc91].

c2([mc91],[mc91]) -> [mc91].

c2([mc91, e1],[mc91]) -> [mc91].

c2([mc91],[mc91, e1]) -> [mc91].

13
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c3([mc91]) -> [false].

c4([mc91]) -> [false].

c4([mc91, e1]) -> [false].

It can be seen that although the infeasible trace was very simple, its removal led to a considerably restructured
set of clauses. We have not shown the product form here, which is in fact somewhat more compact.

The refinement process guarantees progress; that is, the infeasible computation once eliminated never arises again.
Due to the construction of the id mapping for P′ the traces in the languages of the FTAs of P and P′ are preserved,
apart from the eliminated trace.

Proposition 4 (Progress). Let P be a set of CHCs, and t be a trace in P. Let P′ be a refined set of CHCs obtained
from P after the removal of t. Then t cannot be generated in any approximation of P′.

Proof. The proof of this proposition follows from the following points:
1. AP recognizes all syntactically possible traces of P, which is an over-approximation of the traces of P since the

constraints in P are not taken in account while constructingAP.
2. After the removal of the trace t from all possible traces of P (step 3 of Algorithm 4) the language of AP \ At

does not contain t (difference automata).
3. Then using Algorithm 2 to generate P′ from AP \ At and P, t will be syntactically impossible trace in P′

(follows from Proposition 3).
4. Since t is syntactically impossible trace in P′, there is no constrained fact associated with it in any abstract

domain using P′ (see Section 4.5).

Progress is an interesting and relevant refinement property but it gives no guarantees that a proof will eventually
be found if such exists. In the worst case the algorithm will just eliminate longer and longer infeasible traces. Even
if there exists some convex polyhedral approximation that establishes P’s satisfiability, the abstract interpretation
algorithm involving the widening heuristic cannot guarantee to find it.

5.1. Further refinement: splitting a state in the trace FTA
We also apply a tree-automata-based transformation to split states representing predicates where convex hull

operations have lost precision. A typical case is where a number of clauses with the same head predicate contain
disjoint constraints, such as a predicate representing an if-then-else statement in an imperative program. The clauses
defining the statement will have a clause for the then branch and a clause for the else branch. The respective constraints
in these clauses are disjoint since one is the negation of the other. The convex hull will thus contain the whole space
for the variables involved in these constraints.

As defined in Definition 6, the FTA state corresponding to such a predicate can be split. We partition the transitions
corresponding to the clauses according to the disjoint groups of constraints and apply the procedure in Definition 6,
preserving the set of traces. Thus the feasible traces and the model of the resulting clauses is preserved. This enhances
precision of polyhedral analysis [23].

Splitting has to be carried out in a controlled manner to prevent blow up in the size of FTA and hence on the size
of the clauses generated. With this in mind we split only those states appearing in a counterexample trace, but this is
not necessary in our approach to avoid a counterexample.

It would have been possible to formulate the splitting operation directly on CHCs, without any reference to FTAs.
However, since the whole procedure is based on transformations that preserve the set of feasible traces, we preferred
to present splitting as a language-preserving operation on FTAs.

6. Experiments on CHC benchmark problems

6.1. Experimental settings
Our tool consists of an implementation of a convex polyhedra analyser for CLP written in Ciao Prolog1 interfaced

to the Parma Polyhedra Library [20] as well as an implementation of an FTA determiniser written in Java. It takes as

1http://ciao-lang.org/
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CPA CPA+R CPA+R+Split QARMC VeriMAP (GenPH) TRACER-SPost TRACER-WPre ELDARICA
solved (safe/unsafe) 160 (142/18) 182 (160/22) 195 (164/31) 178 (141/37) 185 (154/31) 91 (74/17) 103 (85/18) 159(135/24)

timeout or errors 56 34 22 38 38 125 113 57
average time (secs.) 5.98 51.66 50.08 59.1 57.93 305.03 225.82 50.02

Figure 4. Experimental results on 216 (179 safe / 37 unsafe) CHC verification problems with a timeout of five minutes

input a CLP program and returns “safe”, “unsafe” or “unknown” (after resources are exhausted). The input is first pre-
processed using the method described in 4.5.2. The benchmark set contains 216 CHCs verification problems (179 safe
and 37 unsafe problems), taken mainly from the repositories of several state-of-the-art software verification tools such
as DAGGER [24] (21 problems), TRACER [25] (66 problems), InvGen [26] (68 problems), and also from the TACAS
2013 Software Verification Competition [27] (52 problems). These problems are also available in C (http://akira.
ruc.dk/~kafle/comlan-vmcai15-benchmarks.zip) and they were first translated to CLP form2. The chosen
problems are representatives of different categories of the Software Verification Competition (loops, control flow and
integer, SystemC etc.) as well as specific problems used to demonstrate the strength of different verification tools.
The benchmarks in CLP form are available from http://akira.ruc.dk/~kafle/VMCAI15-Benchmarks.zip.
The experiments were carried out on an Intel(R) computer with a 2.66GHz processor running Debian 5 in 6 GB
memory.

6.2. Summary of results

The results of our experiments are summarised in Table 4. Column CPA summarises the results using our own con-
vex polyhedra analyser (Section 4.5) with no refinement step. Column CPA+R shows the results obtained by iterating
the CPA algorithm with the refinement step described in Section 5, Algorithm 4. Column CPA+R+Split incorporates
the FTA-based state splitting into the refinement step (Section 5.1). In all the above cases, we used a concrete thresh-
old generation as described in 4.5.1. Column QARMC shows the results obtained on the same problems using the
QARMC tool [28, 29]. The columns VeriMAP(GenPH), TRACER-SPost, TRACER-WPre respectively report results
using the VeriMAP system implementing Iterated Specialization method with the generalization operator GenPH [30],
TRACER [25] using the strongest postcondition (SPost) and the weakest precondition (WPre) options. The results in
these three columns are taken from [30] since we couldn’t run these tools. We used the same set of benchmarks as
in [30]. The last column ELDARICA reports results using Eldarica tool3 which uses disjunctive interpolants for the
Horn clause verification purpose [31].

6.3. Discussion of results

The results show that CPA is reasonably effective on its own, solving 74% (160/216) of the problems. When
combined with a refinement phase we can solve further 22 problems. Although only one infeasible trace is eliminated
in each refinement step, the refined program splits some of the predicates appearing in the trace, which we noted to
be a crucial point of precision for polyhedral analysis [23]. When adding the state splitting refinement we solve an
additional 13 problems. Further splitting would solve more problems but we are unwilling to introduce uncontrolled
splitting due to the blow up in program size that could result. The maximum number of iterations required to solve a
problem was 8. Although the timeout limit was five minutes, only 5% of the solved problems required more than one
minute.

Our implementation uses the product form for DFTAs produced by the determinisation algorithm, although the
formalisation of refinement in Section 5 uses only standard FTA transitions. Although the traces for clauses with
predicates produced from product states differ from the original clauses, they can be regarded as representing the
original traces, by unfolding the clauses resulting from ε-transitions. Product form adds to the scalability of the
approach, especially for Horn clauses with more than one body atom. Empirically we have not shown this here but
this is due to the scalability of the product form during determinisation of FTAs (see [11]).

2Thanks to Emanuele De Angelis for the translation
3http://lara.epfl.ch/w/eldarica
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CPA+R+Split CPA+R+Split+AT QARMC
solved (safe/unsafe) 114 (54/60) 114 (54/60) 110 (42/68)
timeout or errors 18 18 22
average time (secs.) 72.92 66.28 52.4

Table 1. Experimental results on 132 CHC verification problems with a timeout of five minutes

6.4. Comparison with other tools
On the set of verification problems considered, our results (CPA+R+Split) improve on other tools both in average

time and the number of instances solved. The results of VeriMAP and QARMC are close to ours while results of
TRACER is bit far. This is due to the fact that TRACER uses symbolic execution and does not scale well. Out of
216 problems QARMC solves 178 problems with an average time of 59 seconds whereas we can solve 195 problems
with an average time of 50 seconds. However, all unsafe programs in the benchmark set are solved by QARMC in
contrast to ours. Surprisingly enough, the number of unsafe problems solved by VeriMAP and our tool is the same.
Since both of our tool use convex hull and widening, the precision lost due to these operators in the rest of the unsafe
programs cannot be recovered. The model checking algorithm implemented in Eldarica for Horn solving is similar in
spirit as the one described in [29] but uses disjunctive interpolation for counterexamples generalization instead of tree
interpolation which is strictly more general than tree interpolation [31]. We suspect that it is due to this, the average
time taken by Eldarica is slightly less than that of QARMC though it solves lesser number of instance than QARMC.
Our results show that for these set of examples, tools using polyhedral abstraction seems more powerful than the
others.

Convex polyhedral analysis is good at finding the required invariants to prove the safety of a program and due
to this our tool and VeriMAP solved more safe problems than QARMC. On the other hand, QARMC seems to be
more effective at finding bugs. Most of the problems challenging to us come from some particular categories e.g.
SystemC (modeled over fixed size integers) and Control Flow and Integer Variables of [27] which requires some
specific techniques to solve. Safe problems challenging to us are also challenging to QARMC though this is not the
case for unsafe problems.

6.5. Additional experiments on SV-COMP-15
We chose a subset of 132 problems from SV-COMP 20154 [32]. This set contains benchmarks from the categories

which were not reported in our experiments before such as recursive benchmarks which needs recursive analysis.
Additionally it contains some benchmarks from Loop category such as loop-acceleration, loop-lit, loop-new. We used
SeaHorn [33, 5], a verification framework based on LLVM, for Horn clause generation. SeaHorn first compiles C to
LLVM intermediate representation (LLVM IR), also known as bitcode using clang, a C-family front-end for LLVM5.
The bitcode is further simplified and optimized reusing the vast amount of work done on LLVM (e.g. function
inlining, dead code elimination, CFG simplifications etc.) whose purpose is to make the verification task easier. The
resulting bitcode is translated to Horn clauses using different semantics for example small step, large block encoding
etc. More details can be found in [33, 5]. These benchmarks are available in C as well as in Horn clause form from
http://akira.ruc.dk/~kafle/comlan-vmcai15-benchmarks.zip. The results are summarised in the Table
6.5. The column CPA+R+Split+AT reports results using our tool described above which now uses abstract threshold
as described in 4.5.1 rather than the concrete one. The results show that our tool with the option abstract threshold
(column 2) scales more than the concrete one (column 1) though the number of instances solved are the same. In these
benchmarks, though we solve a few more problems than QARMC, it is much faster than our tool.

7. Related Work

The work by Heizmann et al. [7, 34] uses nested word automata to construct a framework for abstraction refine-
ment. Our work could certainly be regarded as extending that framework to tree-structured computations, using tree

4http://sv-comp.sosy-lab.org/2015/benchmarks.php
5http://clang.llvm.org/
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automata instead of (nested) word automata. However our aim is somewhat different. We use automata techniques to
perform the refinement whereas in [7] automata notation is only used to re-express the verification problem, shifting
the verification problem to the construction of “interpolant automata”, without providing any automata-based algo-
rithms to do this. On the other hand we discuss the practicality of the automata-based approach on a set of challenging
problems.

While we eliminate only one trace at a time in the described procedure, the FTA difference algorithm extends
naturally to eliminating (infinite) sets of traces. This is a goal that is well worth pursuing – although to find an
interpolant automaton describing an infinite set of infeasible traces is sometimes as difficult as solving the original
problem.

Verification of CLP programs using abstract interpretation and specialisation has been studied for some time. The
use of an over-approximation of the semantics of a program can be used to establish safety properties – if a state or
property does not appear in an over-approximation, it certainly does not appear in the actual program behaviour. A
general framework for logic program verification through abstraction was described by Levi [35]. Peralta et al. [1]
introduced the idea of using a Horn clause representation of imperative languages and a convex polyhedral analyser
to discover invariants of a program. Another approach is taken in the work of De Angelis et al. [36, 37] on applying
program specialisation to achieve verification. Unfolding and folding operations play a vital role in that approach, and
hence the program structure is changed much more fundamentally than in our approach.

CEGAR [8] has been successfully used in verification to automatically refine (predicate) abstractions [38, 39] to
reduce false alarms but not much has been explored in refining abstractions in the convex polyhedral domain. Some
work on this (with progress guarantee) has been done in [40] and [24]. [40] uses the powerset domain, while [24]
uses a Hint DAG to gain precision lost during the convex hull operation. Both make use of interpolation. The use
of interpolation in refinement in verification of Horn clauses is explored in [41, 42]. In our approach we guarantee
elimination of only one trace and elimination of others depends on properties of the abstract interpretation techniques.
One drawback of our approach is that we cannot characterize what other infeasible traces are removed by the refine-
ment if there is any. By contrast in interpolation-based techniques the refinement introduces new properties which
guarantee progress and the elimination of all counterexamples covered by those properties. However the effectiveness
of interpolation-based refinement depends on the generation of “good” interpolants, which is a matter of continuing
research, for example by Rümmer et al. [31]. There is no generalisation of counterexamples currently since we re-
move a single counterexample in each iteration. In this sense our refinement approach is weak. The ideas developed
in [31] are certainly useful to extend our refinement approach. A number of tools implementing predicate abstraction
and refinement are available, such as HSF [29] and BLAST [43]. TRACER [44] is a verification tool based on CLP
that uses symbolic execution.

A point of contrast is that in our approach, the refinements are embedded in the clauses whereas in CEGAR they
are accumulated in the set of properties used for property-based abstraction. Also we rely on the abstraction using
convex polyhedral analysis to discover invariants whereas CEGAR-based approaches rely on interpolation in the re-
finement stage to perform generalisation, this discovering useful properties. A weakness of invariant generation using
interpolation is that the interpolants must share variables with the unsatisfiable part of the constraints, typically those
in the integrity constraints, which can be insufficient for finding invariants of inner recursive predicates.Polyhedral
analysis is more expensive, yet seems (along with the threshold assertions, see Section 4.5) to be very effective at
finding invariants even on the first iteration.

Informally one can say that approaches differ in where the “hard work” is performed. In the CEGAR approaches
and in [7] the refinement step is crucial, and interpolation plays a central role. In our approach, by contrast, most of
the hard work is done by the abstract interpretation, which finds useful invariants. Finding the most effective balance
between abstraction and refinement techniques is a matter of ongoing research.

8. Conclusion and Future work

In this paper we presented a procedure for abstraction refinement in Horn clause verification based on tree au-
tomata. This was achieved through a combination of abstraction (using abstraction interpretation) followed by a trace
refinement (using finite tree automata). The refinement is independent of the abstract domain used. The practicality
of our approach was demonstrated on a set of Horn clause verification problems.
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In the future, we will investigate the elimination of a larger set of infeasible traces in each refinement step, possibly
by generalising a trace using interpolation or by discovering a set of infeasible traces. At the moment, a new program
is generated after refinement and the analysis is restarted from the scratch. In the future, we would like to reuse the
result of analysis from the previous iterations and build on this instead of starting the analysis from the scratch. The
optimisation of our tool chain is also an important topic for future work as it is clear that our prototype, built by
chaining together tools using shell scripts, contains much redundancy.
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