
Under consideration for publication in Theory and Practice of Logic Programming 1

Analysis and Transformation Tools for Constrained
Horn Clause Verification∗

John P. Gallagher

Roskilde University, Denmark and IMDEA Software Institute, Madrid, Spain
(e-mail: jpg@ruc.dk)

Bishoksan Kafle

Roskilde University, Denmark
(e-mail: kafle@ruc.dk)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Several techniques and tools have been developed for verification of properties expressed as
Horn clauses with constraints over a background theory (CHC). Current CHC verification tools
implement intricate algorithms and are often limited to certain subclasses of CHC problems.
Our aim in this work is to investigate the use of a combination of off-the-shelf techniques from
the literature in analysis and transformation of Constraint Logic Programs (CLPs) to solve
challenging CHC verification problems. We find that many problems can be solved using a
combination of tools based on well-known techniques from abstract interpretation, semantics-
preserving transformations, program specialisation and query-answer transformations. This gives
insights into the design of automatic, more general CHC verification tools based on a library of
components.

KEYWORDS: Constraint Logic Program, Constrained Horn Clause, Abstract Interpretation,
Software Verification.

1 Introduction

CHCs provide a suitable intermediate form for expressing the semantics of a variety

of programming languages (imperative, functional, concurrent, etc.) and computational

models (state machines, transition systems, big- and small-step operational semantics,

Petri nets, etc.). As a result it has been used as a target language for software verification.

Recently there is a growing interest in CHC verification from both the logic programming

and software verification communities, and several verification techniques and tools have

been developed for CHC.

Pure CLPs are syntactically and semantically the same as CHC. The main differ-

ence is that sets of constrained Horn clauses are not necessarily intended for execution,

∗ The research leading to these results has received funding from the European Union 7th Framework
Programme under grant agreement no. 318337, ENTRA - Whole-Systems Energy Transparency and
the Danish Natural Science Research Council grant NUSA: Numerical and Symbolic Abstractions for
Software Model Checking.

2 John P. Gallagher and Bishoksan Kafle

but rather as specifications. From the point of view of verification, we do not distin-

guish between CHC and pure CLP. Much research has been carried out on the analysis

and transformation of CLP programs, typically for synthesising efficient programs or for

inferring run-time properties of programs for the purpose of debugging, compile-time

optimisations or program understanding. In this paper we investigate the application of

this research to the CHC verification problem.

In Section 2 we define the CHC verification problem. In Section 3 we define basic

transformation and analysis components drawn from or inspired by the CLP literature.

Section 4 discusses the role of these components in verification, illustrating them on an

example problem. In Section 5 we construct a tool-chain out of these components and test

it on a range of CHC verification benchmark problems. The results reported represent

one of the main contributions of this work. In Section 6 we propose possible extensions

of the basic tool-chain and compare them with related work on CHC verification tool

architectures. Finally in Section 7 we summarise the conclusions from this work.

2 Background: The CHC Verification Problem

A CHC is a first order predicate logic formula of the form ∀(φ∧B1(X1)∧ . . .∧Bk(Xk)→
H(X)) (k ≥ 0), where φ is a conjunction of constraints with respect to some background

theory, Xi, X are (possibly empty) vectors of distinct variables, B1, . . . , Bk, H are pred-

icate symbols, H(X) is the head of the clause and φ ∧ B1(X1) ∧ . . . ∧ Bk(Xk) is the

body. Sometimes the clause is written H(X)← φ∧B1(X1), . . . , Bk(Xk) and in concrete

examples it is written in the form H :- φ, B1(X1),. . .,Bk(Xk). In examples, predicate

symbols start with lowercase letters while we use uppercase letters for variables.

We assume here that the constraint theory is linear arithmetic with relation symbols

≤, ≥, >, < and = and that there is a distinguished predicate symbol false which is

interpreted as false. In practice the predicate false only occurs in the head of clauses;

we call clauses whose head is false integrity constraints, following the terminology of

deductive databases. Thus the formula φ1 ← φ2 ∧ B1(X1), . . . , Bk(Xk) is equivalent to

the formula false ← ¬φ1 ∧ φ2 ∧ B1(X1), . . . , Bk(Xk). The latter might not be a CHC

but can be converted to an equivalent set of CHCs by transforming the formula ¬φ1 and

distributing any disjunctions that arise over the rest of the body. For example, the formula

X=Y :- p(X,Y) is equivalent to the set of CHCs false :- X>Y, p(X,Y) and false :-

X<Y, p(X,Y). Integrity constraints can be viewed as safety properties. If a set of CHCs

encodes the behaviour of some system, the bodies of integrity constraints represent unsafe

states. Thus proving safety consists of showing that the bodies of integrity constraints

are false in all models of the CHC clauses.

The CHC verification problem. To state this more formally, given a set of CHCs P , the

CHC verification problem is to check whether there exists a model of P . We restate this

property in terms of the derivability of the predicate false.

Lemma 2.1

P has a model if and only if P 6|= false.

Tools for Constrained Horn Clause Verification 3

Proof
Let us write I(F) to mean that interpretation I satisfies F (I is a model of F).

P 6|= false ≡ ∃I.(I(P) and ¬I(false))

≡ ∃I.I(P) (since ¬I(false) is true by defn. of false)

≡ P has a model.

Obviously any model of P assigns false to the bodies of integrity constraints.

The verification problem can be formulated deductively rather than model-theoretically.

Let the relation P ` A denote that A is derivable from P using some proof procedure.

If the proof procedure is sound and complete then P 6|= A if and only if P 6` A. So the

verification problem is to show (using CLP terminology) that the computation of the

goal ← false in program P does not succeed using a complete proof procedure. Although

in this work we follow the model-based formulation of the problem, we exploit the equiv-

alence with the deductive formulation, which underlies, for example, the query-answer

transformation and specialisation techniques to be presented.

2.1 Representation of Interpretations

An interpretation of a set of CHCs is represented as a set of constrained facts of the

form A ← C where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn are distinct

variables and C is a constraint over Z1, . . . , Zn. If C is true we write A ← or just A.

The constrained fact A ← C is shorthand for the set of variable-free facts Aθ such that

Cθ holds in the constraint theory, and an interpretation M denotes the set of all facts

denoted by its elements; M assigns true to exactly those facts. M1 ⊆ M2 if the set of

denoted facts of M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each clause.

There exists a minimal model with respect to the subset ordering, denoted M [[P]] where

P is the set of CHCs. M [[P]] can be computed as the least fixed point (lfp) of an immedi-

ate consequences operator, T CP , which is an extension of the standard TP operator from

logic programming, extended to handle constraints (Jaffar and Maher 1994). Further-

more lfp(T CP) can be computed as the limit of the ascending sequence of interpretations

∅, T CP (∅), T CP (T CP (∅)), For more details, see (Jaffar and Maher 1994). This sequence

provides a basis for abstract interpretation of CHC clauses.

Proof by over-approximation of the minimal model. It is a standard theorem of CLP that

the minimal model M [[P]] is equivalent to the set of atomic consequences of P . That is,

P |= p(v1, . . . , vn) if and only if p(v1, . . . , vn) ∈ M [[P]]. Therefore, the CHC verification

problem for P is equivalent to checking that false 6∈M [[P]]. It is sufficient to find a set of

constrained facts M ′ such that M [[P]] ⊆ M ′, where false 6∈ M ′. This technique is called

proof by over-approximation of the minimal model.

3 Relevant tools for CHC Verification

In this section, we give a brief description of some relevant tools borrowed from the

literature in analysis and transformation of CLP.

4 John P. Gallagher and Bishoksan Kafle

Unfolding. Let P be a set of CHCs and c0 ∈ P be H(X) ← B1, p(Y),B2 where B1,B2

are possibly empty conjunctions of atomic formulas and constraints. Let {c1, . . . , cm} be

the set of clauses of P that have predicate p in the head, that is, ci = p(Zi) ← Di,

where the variables of these clauses are standardised apart from the variables of c0 and

from each other. Then the result of unfolding c0 on p(Y) is the set of CHCs P ′ =

P \ {c0} ∪ {c′1, . . . , c′m} where c′i = H(X) ← B1, Y = Zi,Di,B2. The equality Y = Zi

stands for the conjunction of the equality of the respective elements of the vectors Y

and Zi. It is a standard result that unfolding a clause in P preserves P ’s minimal model

(Pettorossi and Proietti 1999). In particular, P |= false ≡ P ′ |= false.

Specialisation. A set of CHCs P can be specialised with respect to a query. Assume A is

an atomic formula; then we can derive a set PA such that P |= A ≡ PA |= A. PA could

be simpler than P , for instance, parts of P that are irrelevant to A could be omitted in

PA. In particular, the CHC verification problem for Pfalse and P are equivalent. There

are many techniques in the CLP literature for deriving a specialised program PA. Partial

evaluation is a well-developed method (Gallagher 1993; Leuschel 1999).

We make use a form of specialisation know as forward slicing, more specifically redun-

dant argument filtering (Leuschel and Sørensen 1996), in which predicate arguments can

be removed if they do not affect a computation. Given a set of CHCs P and a query A,

denote by P raf
A the program obtained by applying the RAF algorithm from (Leuschel and

Sørensen 1996) with respect to the goal A. We have the property that P |= A ≡ P raf
A |= A

and in particular that P |= false ≡ P raf
false |= false.

Query-answer transformation. Given a set of CHCs P and an atomic query A, the query-

answer transformation of P with respect to A is a set of CHCs which simulates the

computation of the goal ← A in P , using a left-to-right computation rule. Query-answer

transformation is a generalisation of the magic set transformations for Datalog. For each

predicate p, two new predicates pans and pquery are defined. For an atomic formula A,

Aans and Aquery denote the replacement of A’s predicate symbol p by pans and pquery
respectively. Given a program P and query A, the idea is to derive a program P qa

A with

the following property P |= A iff P qa
A |= Aans. The Aquery predicates represent calls in the

computation tree generated during the execution of the goal. For more details see (Debray

and Ramakrishnan 1994; Gallagher and de Waal 1993; Codish and Demoen 1993). In

particular, P qa
false |= falseans ≡ P |= false, so we can transform a CHC verification problem

to an equivalent CHC verification problem on the query-answer program generated with

respect to the goal ← false.

Predicate splitting. Let P be a set of CHCs and let {c1, . . . , cm} be the set of clauses in P

having some given predicate p in the head, where ci = p(X)← Di. Let C1, . . . , Ck be some

partition of {c1, . . . , cm}, where Cj = {cj1 , . . . , cjnj
}. Define k new predicates p1 . . . pk,

where pj is defined by the bodies of clauses in partition Cj , namely Qj = {pj(X) ←
Dj1 , . . . , pj(X) ← Djnj

}. Finally, define k clauses Cp = {p(X) ← p1(X), . . . , p(X) ←
pk(X)}. Then we define a splitting transformation as follows.

1. Let P ′ = P \ {c1, . . . , cm} ∪ Cp ∪Q1 ∪ . . . ∪Qk.
2. Let P split be the result of unfolding every clause in P ′ whose body contains p(Y)

with the clauses Cp.

Tools for Constrained Horn Clause Verification 5

In our applications, we use splitting to create separate predicates for clauses for a

given predicate whose constraints are mutually exclusive. For example, given the clauses

new3(A,B) :- A=<99, new4(A,B) and new3(A,B) :- A>=100, new5(A,B), we produce

two new predicates, since the constraints A=<99 and A>=100 are disjoint. The new pred-

icates are defined by clauses new31(A,B) :- A=<99, new4(A,B) and new32(A,B) :-

A>=100, new5(A,B), and all calls to new3 throughout the program are unfolded using

these new clauses. Splitting has been used in the CLP literature to improve the precision

of program analyses, for example in (Serebrenik and De Schreye 2001). In our case it

improves the precision of the convex polyhedron analysis discussed below, since separate

polyhedra will be maintained for each of the disjoint cases. The correctness of splitting can

be shown using standard transformations that preserve the minimal model of the program

(with respect to the predicates of the original program) (Pettorossi and Proietti 1999).

Assuming that the predicate false is not split, we have that P |= false ≡ P split |= false.

Convex polyhedron approximation. Convex polyhedron analysis (Cousot and Halbwachs

1978) is a program analysis technique based on abstract interpretation (Cousot and

Cousot 1977). When applied to a set of CHCs P it constructs an over-approximation M ′

of the minimal model of P , where M ′ contains at most one constrained fact p(X) ← C
for each predicate p. The constraint C is a conjunction of linear inequalities, representing

a convex polyhedron. The first application of convex polyhedron analysis to CLP was

by Benoy and King (1996). Since the domain of convex polyhedra contains infinite in-

creasing chains, the use of a widening operator is needed to ensure convergence of the

abstract interpretation. Furthermore much research has been done on improving the pre-

cision of widening operators. One technique is known as widening-upto, or widening with

thresholds (Halbwachs et al. 1994).

Recently, a technique for deriving more effective thresholds was developed (Lakhdar-

Chaouch et al. 2011), which we have adapted and found to be effective in experimental

studies. The thresholds are computed by the following method. Let T CP be the standard

immediate consequence operator for CHCs, that is, T CP (I) is the set of constrained facts

that can be derived in one step from a set of constrained facts I. Given a constrained

fact p(Z̄) ← C, define atomconstraints(p(Z̄) ← C) to be the set of constrained facts

{p(Z̄)← Ci | C = C1 ∧ . . .∧Ck, 1 ≤ i ≤ k)}. The function atomconstraints is extended to

interpretations by atomconstraints(I) =
⋃

p(Z̄)←C∈I{atomconstraints(p(Z̄)← C)}.
Let I> be the interpretation consisting of the set of constrained facts p(Z̄) ← true

for each predicate p. We perform three iterations of T CP starting with I> (the first three

elements of a “top-down” Kleene sequence) and then extract the atomic constraints.

That is, thresholds is defined as follows.

thresholds(P) = atomconstraints(T
C(3)
P (I>))

A difference from the method in (Lakhdar-Chaouch et al. 2011) is that we use the con-

crete semantic function T CP rather than the abstract semantic function when computing

thresholds. The set of threshold constraints represents an attempt to find useful predicate

properties and when widening they help to preserve invariants that might otherwise be

lost during widening. See (Lakhdar-Chaouch et al. 2011) for further details. Threshold

constraints that are not invariants are simply discarded during widening.

6 John P. Gallagher and Bishoksan Kafle

new6(A,B) :- B=<99. new4(A,B) :- C=1+A,D=1+B,A>=50,new3(C,D).

new5(A,B) :- B>=101. new3(A,B) :- A=<99, new4(A,B).

new5(A,B) :- B=<100, new6(A,B). new3(A,B) :- A>=100, new5(A,B).

new4(A,B) :- C=1+A, A=<49, new3(C,B). false :- A=0, B=50, new3(A,B).

Fig. 1. The example program MAP-disj.c.map.pl

4 The role of CLP tools in verification

The techniques discussed in the previous section play various roles. The convex polyhe-

dron analysis, together with the helper tool to derive threshold constraints, constructs

an approximation of the minimal model of a CHC theory. If false (or falseans) is not in

the approximate model, then the verification problem is solved. Otherwise the problem is

not solved; in effect a “don’t know” answer is returned. We have found that polyhedron

analysis alone is seldom precise enough to solve non-trivial CHC verification problems;

in combination with the other tools, it is very effective.

Unfolding can improve the structure of a program, removing some cases of mutual

recursion, or propagating constraints upwards towards the integrity constraints, and can

improve the precision and performance of convex polyhedron analysis.

Specialisation can remove parts of theories not relevant to the verification problem,

and can also propagate constraint downwards from the integrity constraints. Both of

these have a beneficial effect on performance and precision of polyhedron analysis.

Analysis of a query-answer program (with respect to false) is in effect the search for a

derivation tree for false. Its effectiveness in CHC verification problems is variable. It can

sometimes worsen performance since the query-answer transformed program is larger and

contains more recursive dependencies than the original. On the other hand, one seldom

loses precision and it is often more effective in allowing constraints to be propagated

upwards (through the ans predicates) and downwards (through the query predicates).

4.1 Application of the tools

We illustrate the tools on a running example (Figure 1), one of the benchmark suite of the

VeriMAP system De Angelis et al. (2014). The result of applying unfolding is shown in

Figure 2 (omitting the definitions of the unfolded predicates new4, new5 and new6, which

are no longer reachable from false). The unfolding strategy we adopt is the following:

the predicate dependency graph of a program consists of the set of edges (p, q) such that

there is clause where p is the predicate of the head and q is a predicate occurring in the

body. We perform a depth-first search of the predicate dependency graph, starting from

false, and identify the backward edges, namely those edges (p, q) where q is an ancestor

of p in the depth-first search. We then unfold every body call whose predicate is not at

the end of a backward edge. In Figure 1, we thus unfold calls to new4, new5 and new6.

The query-answer transformation is applied to the program in Figure 2, with respect

to the goal false resulting in the program shown in Figure 3. The model of the predicate

new3 query corresponds to those calls to new3 that are reachable from the call in the

integrity constraint. Explicit representation of the query predicates permits more effective

propagation of constraints from the integrity clauses during model approximation.

The splitting transformation is now applied to the program in Figure 3. We do not

Tools for Constrained Horn Clause Verification 7

false :- A=0, B=50, new3(A,B).

new3(A,B) :- A=<99, C = 1+A, A=<49, new3(C,B).

new3(A,B) :- A=<99, C = 1+A, D = 1+B, A>=50, new3(C,D).

new3(A,B) :- A>=100, B>=101.

new3(A,B) :- A>=100, B=<100, B=<99.

Fig. 2. Result of unfolding MAP-disj.c.map.pl

false ans :- false query, A=0, B=50, new3 ans(A,B).

new3 ans(A,B) :- new3 query(A,B), A=<99, C = 1+A, A=<49, new3 ans(C,B).

new3 ans(A,B) :- new3 query(A,B),A=<99,C is 1+A,D is 1+B, A>=50, new3 ans(C,D).

new3 ans(A,B) :- new3 query(A,B), A>=100, B>=101.

new3 ans(A,B) :- new3 query(A,B), A>=100, B=<100, B=<99.

new3 query(A,B) :- false query, A=0, B=50.

new3 query(A,B) :- new3 query(C,B), C=<99, A = 1+C, C=<49.

new3 query(A,B) :- new3 query(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

false query.

Fig. 3. The query-answer transformed program for program of Figure 2

show the complete program, which contains 30 clauses. Figure 4 shows the split definition

of new3 query, which is split since the last two clauses for new3 query in Figure 3 have

mutually disjoint constraints, when projected onto the head variables.

A convex polyhedron approximation is then computed for the split program, after

computing threshold constraints for the predicates. The resulting approximate model is

shown in Figure 5 as a set of constrained facts. Since the model does not contain any

constrained fact for false ans we conclude that false ans is not a consequence of the

split program. Hence, applying the various correctness results for the unfolding, query-

answer and splitting transformations, false is not a consequence of the original program.

Discussion of the example. Application of the convex polyhedron tool to the original, or

the intermediate programs, does not solve the problem; all the transformations are needed

in this case, apart from redundant argument filtering, which only affects efficiency. The

ordering of the tool-chain can be varied somewhat, for instance switching query-answer

transformation with splitting or unfolding. In our experiments we found the ordering in

Figure 6 to be the most effective.

The model of the query-answer program is finite for this example. However, the problem

is essentially the same if the constants are scaled; for instance we could replace 50 by 5000,

49 by 4999, 100 by 10000 and 101 by 10001, and the problem is essentially unchanged.

We noted that some CHC verification tools applied to this example solve the problem,

but essentially by enumeration of the finite set of values encountered in the search. Such

new3 query 1(A,B) :- false query 1, A=0, B=50.

new3 query 1(A,B) :- new3 query 1(C,B), C=<99, A = 1+C, C=<49.

new3 query 1(A,B) :- new3 query 2(C,B), C=<99, A = 1+C, C=<49.

new3 query 2(A,B) :- new3 query 1(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

new3 query 2(A,B) :- new3 query 2(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

Fig. 4. Part of the split program for the program in Figure 3

8 John P. Gallagher and Bishoksan Kafle

false query 1 :- []

new3 query 1(A,B) :- [1*A>=0,-1*A>= -50,1*B=50]

new3 query 2(A,B) :- [1*A>=51,-1*A>= -100,1*A+ -1*B=0]

Fig. 5. The convex polyhedral approximate model for the split program

a solution does not scale well. On the other hand the polyhedral abstraction shown above

is not an enumeration; an essentially similar polyhedron abstraction is generated for the

scaled version of the example, in the same time. The VeriMAP tool (De Angelis et al.

2014) also handles the original and scaled versions of the example in the same time.

RAF – Redundant Argument Filtering

FU – Forward Unfolding

QA – Query Answer Transformation

PS – Predicate Splitting

TC – Threshold Constraint
CHA – Convex Hull Analyzer

CHC Program P

RAF FU QA PS TC
Safe

unknown

CHA

Fig. 6. The basic tool chain for CHC verification.

5 Combining off-the-shelf tools: Experiments

The motivation for our tool-chain, summarised in Figure 6, comes from our example pro-

gram, which is a simple yet challenging program. We applied the tool-chain to a number of

benchmarks from the literature, taken mainly from the repository of Horn clause bench-

marks in SMT-LIB2 (https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/)

and other sources including (Gange et al. 2013) and some of the VeriMap benchmarks

(De Angelis et al. 2014). We selected these examples because many of them are consid-

ered challenging because they cannot be solved by one or more of the state-of-the-art-

verification tools discussed below. Programs taken from the SMT-LIB2 repository are

first translated to CHC form. The results are summarised in Table 1.

In Table 1, columns Program and Result respectively represent the benchmark pro-

gram and the results of verification using our tool combination. Problems marked with

(*) could not be handled by our tool-chain since they contain numbers which do not

fit in 32 bits, the limit of our Ciao Prolog implementation. whereas problems marked

with (**) are solvable by simple ad hoc modification of the tool-chain, which we are

currently investigating (see Section 7). Problems such as systemc-token-ring.01-safeil.c

contain complicated loop structure with large strongly connected components in the pred-

icate dependency graph and our convex polyhedron analysis tool is unable to derive the

required invariant. However overall results show that our simple tool-chain begins to com-

pete with advanced tools like HSF (Grebenshchikov et al. 2012), VeriMAP (De Angelis

et al. 2014), TRACER (Jaffar et al. 2012), etc. We do not report timings, though all these

Tools for Constrained Horn Clause Verification 9

results are obtained in a matter of seconds, since our tool-chain is not at all optimised,

relying on file input-output and the individual components are often prototypes.

Table 1. Experiments results on CHC benchmark program

SN Program Result SN Program Result

1 MAP-disj.c.map.pl verified 17 MAP-forward.c.map.pl verified
2 MAP-disj.c.map-scaled.pl verified 18 tridag.smt2 verified
3 t1.pl verified 19 qrdcmp.smt2 verified
4 t1-a.pl verified 20 choldc.smt2 verified
5 t2.pl verified 21 lop.smt2 verified
6 t3.pl verified 22 pzextr.smt2 verified
7 t4.pl verified 23 qrsolv.smt2 verified
8 t5.pl verified 24 INVGEN-apache-escape-absolute verified
9 pldi12.pl verified 25 TRACER-testabs15 verified
10 INVGEN-id-build verified 26** amebsa.smt2 verified
11 INVGEN-nested5 verified 27** DAGGER-barbr.map.c verified
12 INVGEN-nested6 verified 28* sshsimpl-s3-srvr-1a-safeil.c NOT
13 INVGEN-nested8 verified 29 sshsimpl-s3-srvr-1b-safeil.c NOT
14 INVGEN-svd-some-loop verified 30* bandec.smt2 NOT
15 INVGEN-svd1 verified 31 systemc-token-ring.01-safeil.c NOT
16 INVGEN-svd4 verified 32* crank.smt2 NOT

PA – Predicate AbstractionCHC Program P

RAF

FU QA PS TC CHA
Safe

CEx.

props

unknown

PA

Fig. 7. Future extension of our tool-chain.

6 Discussion and Related Work

The most similar work to ours is by De Angelis et al. (2013) which is also based on CLP

program transformation and specialisation. They construct a sequence of transformations

of P , say, P, P1, P2, . . . , Pk; if Pk contains no clause with head false then the verification

problem is solved. A proof of unsafety is obtained if Pk contains a clause false ←. Both

our approach and theirs repeatedly apply specialisations preserving the property to be

proved. However the difference is that their specialisation techniques are based on unfold-

fold transformations, with a sophisticated control procedure controlling unfolding and

10 John P. Gallagher and Bishoksan Kafle

generalisation. Our specialisations are restricted to redundant argument filtering and the

query-answer transformation, which specialises predicate answers with respect to a goal.

Their test for success or failure is a simple syntactic check, whereas ours is based on an

abstract interpretation to derive an over-approximation. Informally one can say that the

hard work in their approach is performed by the specialisation procedure, whereas the

hard work in our approach is done by the abstract interpretation. We believe that our

tool-chain-based approach gives more insight into the role of each transformation.

Work by Gange et al. (2013) is a top-town evaluation of CLP programs which records

certain derivations and learns only from failed derivations. This helps to prune further

derivations and helps to achieve termination in the presence of infinite executions. Duality

(http://research.microsoft.com/en-us/projects/duality/) and HSF(C) (Grebenshchikov

et al. 2012) are examples of the CEGAR approach (Counter-Example-Guided Abstrac-

tion Refinement). This approach can be viewed as property-based abstract interpretation

based on a set of properties that is refined on each iteration. The refinement of the prop-

erties is the key problem in CEGAR; an abstract proof of unsafety is used to generate

properties (often using interpolation) that prevent that proof from arising again. Thus,

abstract counter-examples are successively eliminated. The relatively good performance

of our tool-chain, without any refinement step at all, suggests that finding the right in-

variants is aided by a tool such as the convex polyhedron solver and the pre-processing

steps we applied. In Figure 7 we sketch possible extensions of our basic tool-chain, in-

corporating a refinement loop and property-based abstraction.

It should be noted that the query-answer transformation, predicate splitting and un-

folding may all cause an blow-up in the program size. The convex polyhedron analysis

becomes more effective as a result, but for scalability we need more sophisticated heuris-

tics controlling these transformations, especially unfolding and splitting, as well as lazy or

implicit generation of transformed programs, using techniques such as a fixpoint engine

that simulates query-answer programs (Codish 1999).

7 Concluding remarks and future work

We have shown that a combination of off-the-shelf tools from CLP transformation and

analysis, combined in a sensible way, is surprisingly effective in CHC verification. The

component-based approach allowed us to experiment with the tool-chain until we found

an effective combination. This experimentation is continuing and we are confident of

making improvements by incorporating other standard techniques and by finding bet-

ter heuristics for applying the tools. Further we would like to investigate the choice of

chain suitable for each example since more complicated problems can be handled just

by altering the chain. We also suspect from initial experiments that an advanced partial

evaluator such as ECCE (Leuschel et al. 2006) will play a useful role. Our results give

insights for further development of automatic CHC verification tools. We would like to

combine our program transformation techniques with abstraction refinement techniques

and experiment with the combination.

Tools for Constrained Horn Clause Verification 11

References

Benoy, F. and King, A. 1996. Inferring argument size relationships with CLP(R). In Logic-
Based Program Synthesis and Transformation (LOPSTR’96), J. P. Gallagher, Ed. Lecture
Notes in Computer Science, vol. 1207. Springer, 204–223.

Codish, M. 1999. Efficient goal directed bottom-up evaluation of logic programs. J. Log.
Program. 38, 3, 355–370.

Codish, M. and Demoen, B. 1993. Analysing logic programs using “Prop”-ositional logic
programs and a magic wand. In Proceedings of the 1993 International Symposium on Logic
Programming, Vancouver, D. Miller, Ed. MIT Press.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, R. M. Graham,
M. A. Harrison, and R. Sethi, Eds. ACM, 238–252.

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among vari-
ables of a program. In Proceedings of the 5th Annual ACM Symposium on Principles of
Programming Languages. ACM Press, 84–96.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2013. Verifying programs
via iterated specialization. In PEPM, E. Albert and S.-C. Mu, Eds. ACM, 43–52.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014. Verimap: A tool
for verifying programs through transformations. In TACAS, E. Ábrahám and K. Havelund,
Eds. Lecture Notes in Computer Science, vol. 8413. Springer, 568–574.

Debray, S. and Ramakrishnan, R. 1994. Abstract Interpretation of Logic Programs Using
Magic Transformations. Journal of Logic Programming 18, 149–176.

Gallagher, J. P. 1993. Specialisation of logic programs: A tutorial. In Proceedings PEPM’93,
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion. ACM Press, Copenhagen, 88–98.

Gallagher, J. P. and de Waal, D. 1993. Deletion of redundant unary type predicates from
logic programs. In Logic Program Synthesis and Transformation, K. Lau and T. Clement,
Eds. Workshops in Computing. Springer-Verlag, 151–167.

Gange, G., Navas, J. A., Schachte, P., Søndergaard, H., and Stuckey, P. J. 2013.
Failure tabled constraint logic programming by interpolation. TPLP 13, 4-5, 593–607.

Grebenshchikov, S., Gupta, A., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012.
HSF(C): A software verifier based on Horn clauses - (competition contribution). In TACAS,
C. Flanagan and B. König, Eds. LNCS, vol. 7214. Springer, 549–551.

Halbwachs, N., Proy, Y. E., and Raymound, P. 1994. Verification of linear hybrid systems
by means of convex approximations. In Proceedings of the First Symposium on Static Analysis.
Lecture Notes in Computer Science, vol. 864. Springer, 223–237.

Jaffar, J. and Maher, M. 1994. Constraint Logic Programming: A Survey. Journal of Logic
Programming 19/20, 503–581.

Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. 2012. TRACER: A symbolic
execution tool for verification. In CAV, P. Madhusudan and S. A. Seshia, Eds. Lecture Notes
in Computer Science, vol. 7358. Springer, 758–766.

Lakhdar-Chaouch, L., Jeannet, B., and Girault, A. 2011. Widening with thresholds for
programs with complex control graphs. In ATVA 2011, T. Bultan and P.-A. Hsiung, Eds.
Lecture Notes in Computer Science, vol. 6996. Springer, 492–502.

Leuschel, M. 1999. Advanced logic program specialisation. In Partial Evaluation - Practice
and Theory, J. Hatcliff, T. Æ. Mogensen, and P. Thiemann, Eds. Lecture Notes in Computer
Science, vol. 1706. Springer, 271–292.

Leuschel, M., Elphick, D., Varea, M., Craig, S.-J., and Fontaine, M. 2006. The Ecce
and Logen partial evaluators and their web interfaces. In PEPM 2006, J. Hatcliff and F. Tip,
Eds. ACM, 88–94.

12 John P. Gallagher and Bishoksan Kafle

Leuschel, M. and Sørensen, M. H. 1996. Redundant argument filtering of logic programs. In
Logic Programming Synthesis and Transformation, 6th International Workshop, LOPSTR’96,
Stockholm, Sweden, August 28-30, 1996, Proceedings, J. P. Gallagher, Ed. Lecture Notes in
Computer Science, vol. 1207. Springer, 83–103.

Pettorossi, A. and Proietti, M. 1999. Synthesis and transformation of logic programs using
unfold/fold proofs. J. Log. Program. 41, 2-3, 197–230.

Serebrenik, A. and De Schreye, D. 2001. Inference of termination conditions for numerical
loops in Prolog. In LPAR 2001, R. Nieuwenhuis and A. Voronkov, Eds. Lecture Notes in
Computer Science, vol. 2250. Springer, 654–668.

