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In this paper we investigate the use of the concept of tree dimension in Horn clause analysis and
verification. The dimension of a tree is a measure of its non-linearity — for example a list of any
length has dimension zero while a complete binary tree has dimension equal to its height. We apply
this concept to trees corresponding to Horn clause derivations. A given set of Horn clauses P can
be transformed into a new set of clauses P=F, whose derivation trees are the subset of P’s deriva-
tion trees with dimension at most k. Similarly, a set of clauses P~ k can be obtained from P whose
derivation trees have dimension at least £+ 1. In order to prove some property of all derivations of P,
we systematically apply these transformations, for various values of k, to decompose the proof into
separate proofs for P<¥ and P~* (which could be executed in parallel). We show some preliminary
results indicating that decomposition by tree dimension is a potentially useful proof technique. We
also investigate the use of existing automatic proof tools to prove some interesting properties about
dimension(s) of feasible derivation trees of a given program.
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1 Introduction

In this paper, we study the role of tree dimension in Horn clause analysis and verification. The dimension
of a tree is a measure of its non-linearity — for example a list of any length has dimension zero while
a complete binary tree has dimension equal to its height. We apply this concept to trees corresponding
to Horn clause derivations. A given set of Horn clauses P can be transformed into a new set of clauses
P=k (whose derivation trees are the subset of P’s derivation trees with dimension at most k) and P~*
(whose derivation trees have dimension at least k +1). Each such set of clauses represents an under-
approximation of the original set of clauses and the proof for the original clauses can be constructed
from their individual proofs. In order to prove some property of all derivations of P, we systematically
apply these transformations, for various values of k, to decompose the proof into separate proofs for
P=F and P>* (which could be executed in parallel). We prove each such set of clauses using abstract
interpretation [4] over the domain of convex polyhedra [5] as described in [18]. Finally, the preliminary
results in a set of Horn clause verification benchmarks show that this is a useful program transformation.
This decomposition can also be viewed as refinement where one eliminates possibly infinite sets of
program traces. As a result of this, the proof for the remaining part becomes simpler. To motivate
readers, we present an example set of constrained Horn clauses (CHCs) P in Figure [I| which defines
the Fibonacci function. This is an interesting problem whose dimension depends on the input number
and its computations are trees rather than linear sequences. The main contributions of this paper are the
following.

*The research leading to these results has been supported by the EU FP7 project 318337, ENTRA - Whole-Systems Energy
Transparency and Danish Research Council grant FNU-10-084290.
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cl. fib(A, A):- A>=0, A=<1.

c2. fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),
Al = A -1, fib(A1, B1), B = Bl + B2.

c3. false:- A>5, fib(A,B), B<A.

Figure 1: Example CHCs Fib: it defines a Fibonacci function.

1. We describe how to generate at-most k-dimension program and at-least k-dimension program from
a given program using the notion of tree dimension (Section [2);

2. We give a verification algorithm for Horn clauses program based on its proof decomposition (Sec-
tion [3);

3. We give an alternative way of generating the at-least k-dimension program using the theory of
finite tree automata (Section [4));

4. We demonstrate the feasibility of our approach in practice applying it to non-linear Horn clause
verification problems (Section [7));

5. We instrument a program with its dimension and use existing automatic verification tools to prove
some interesting properties about its dimension (Section [5).

2 Preliminaries

A constrained Horn clause is a first order formula of the form p(X) < €, p1(X1),...,px(Xx) (k > 0)
(using Constraint Logic Programming (CLP) syntax), where % is a conjunction of constraints with re-
spect to some background theory, X;, X are (possibly empty) vectors of distinct variables, py,...,pi, p
are predicate symbols, p(X) is the head of the clause and €, p1(X1),. .., pr(Xk) is the body. A clause is
called non-linear if it contains more than one atom in the body (k > 1), otherwise it is called linear. A set
of Horn clauses is sometimes called a program.

A labeled tree c(t1,...,#) is a tree with its nodes labeled, where ¢ is a node label and 71, ... ,#; are
labeled trees rooted at the children of the node and leaf nodes are denoted by c.

Definition 1 (Tree dimension (adapted from [7])) Given a labeled treet = c(t,,...,t;), the tree dimen-
sion of t represented as dim(t) is defined as follows:

0 ifk=0
dim(t) = ¢ maxe(; g dim(t;) if there is a unique maximum
max;c(; g dim(t;) +1  otherwise

Figure 2| (a) shows a derivation tree ¢ for Fibonacci number 3 and Figure [2| (b) shows its tree dimension.
It can be seen that dim(¢t) = 1. This number is a measure of its non-linearity, the smaller the number
the closer the tree is to a list. Since it is not a perfect binary tree, the height of ¢ (3) is greater than its
dimension.

Given a set of CHCs P and k € N, we split each predicate H occurring in P into the predicates H=¢
and H=¢ where d € {0,1,...,k}. Here H=? and H=“ generate trees of dimension at most d and exactly
d respectively.

Definition 2 ( At-most-k-dimension program P=*) It consists of the following clauses (adapted from

[20]):
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Figure 2: (a) derivation tree of Fibonacci 3 and (b) its tree dimension.

ci

%linear clauses

1. £fib(0) (A,A) :- A>=0, A=<1.

2. false(0) :- A>5, B<A, fib(0) (A,B).
%iepsilon-clauses

3. false[0] :- false(0).

4. fib[0](A,B) :- fib(0)(A,B).

Figure 3: Fib=C : at-most 0-dimension program of Fib.

1. Linear clauses:
IfH < € cP,then H « € € Pk,
IfH <+ %,B €Pthen H + € By € P< for0 < d <k
2. Non-linear clauses:
IfH < €¢,B1,By,...,B, € Pwithr > 1:
o forl <d<kand1<j<r:
SetZj =B and Z; =B ' for | <i <rNi# j. Then: H- «+%,2y,...,Z, € P<k.
o For1 <d<k andJ C{l,...,r} with |J| =2:
Set Z; :Bi:d*1 ifieJandZ; :B?d*2 ifie{l,...,r}\J. If all Z; are defined, i.e., d > 2 if
r>2, then: H¢ «— €,7,,...,Z, € Pk,
3. &-clauses:
Hgd%H:eEPSkforogdSk,andeveryOSegd.

The at-most 0-dimension program of Fib in Figure|l|is depicted in Figure [3| (where the numbers on
the first column are not clause identifiers and are there for future reference). In textual form we represent
a predicate p=* by p[k] and a predicate p=* by p(k). Since some programs have derivation trees of
unbounded dimension, trying to verify a property for its increasing dimension separately is not a practical
strategy. To deal with this, we need some construction which characterises derivation trees of at-least
k-dimension. Next we define this construction (at-least k-dimension program). For this, we split each
predicate H occurring in P into the predicates H>¢ and H=° where d € {0, 1...,k}. Here H>? generates
trees of dimension at-least d + 1 and H=" generates trees of any dimension.

Definition 3 (At-least k+1-dimension program P>X) In addition to the linear, non-linear and -clauses
from Definition [2| (with each predicate HS* and H=* from P=* renamed to H>* and H=° respectively),
the at-least k+1-dimension program P~* consists of the following clauses:
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%linear clauses
fib<0>(A,A) :- A>=0, A=<1.
false<0> :- A>5, B<A,fib<0>(A,B).
%epsilon-clauses
false{0} :- false<0>.
fib{0}(A,B) :- fib<0>(A,B).
%link clauses
false<0> :- false.
fib<0>(A,B) :- fib(A,B).
%original clauses (all clauses)
fib(A, A):- A>=0, A=<1.
false:- A>5, fib(A,B), B<A.
fib(A, B) :- A > 1, A2 = A - 2, fib(A2, B2),
Al = A -1, fib(A1, B1), B = Bl + B2.
b>0:

Figure 4: Fi at-least 1-dimension program of Fib.

1. Link-clauses:
For each H < B € P there is a clause H=° + H € P>,

2. Original clauses:

All clauses in P are also in P~*.

The at-least 1-dimension program of Fib in Figure [T]is depicted in Figure 4] In textual form we
represent a predicate p~* by p{k} and a predicate p=° by p<k>.

3 Procedure for verification

Given a set of CHCs P (including clauses with false head, also known as integrity constraints), the CHC
verification problem is to check whether there exists a model of P. This is equivalent to checking whether
there is any feasible derivation tree for false; if there is such a derivation then there is no model. We say
P is safe if it has a model and unsafe if it has no model. The procedure VERIFY(P) is described in
algorithm (1] VERIFY makes use of the procedure SAFE(P) in the Algorithm I} which is an oracle that
returns safe, unsafe or unknown. The oracle is sound: if SAFE(P) returns safe (unsafe) then P is safe
(unsafe). SAFE could be any existing automatic Horn clause solver [12, 19, (18, [17,6]. When it cannot
verify a program within a given time limit, the unknown answer is emitted. A given set of Horn clauses
P can be transformed into a new set of clauses P= and P>*. In order to prove some property of all
derivations of P, we systematically apply these transformations, for various values of k, to decompose
the proof into separate proofs for P=K (line 4) and P~ (line 9). If both are safe then P is safe. If one of
them is unsafe then P is unsafe. If an oracle cannot prove whether P<* is safe/unsafe then we return an
unknown answer (we assume that the oracle would also return unknown for larger values of k). But if it
cannot prove whether P>¥ is safe/unsafe then we try the while loop in the algorithm with k =k+1.

One possible optimisation that we can make in Algorithm |1|is to consider P~* instead of P in the
next iteration of the while loop if we reach line 14. This is because at this stage we have already proven
the safety of P=,

The soundness of Algorithm|[I]is captured by the following lemma and proposition.
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Algorithm 1: Verification algorithm for Horn clauses

1 Procedure VERIFY (P)
Input: Set of CHCs P
Output: safe, unsafe, unknown
initialization: k < 0
while true do
generate P=
r1 < SAFE(P=)
if 7| # safe then
‘ return ry
end
generate pik
r} < SAFE( P~%)
if | # unknown then
| return |
end
k+—k+1
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Lemma 1 (Decomposition by dimension) For all k, program P is safe if and only if both P<F and P>*
are safe.

Proposition 1 (Soundness) If Algorithm |l| returns safe then the input program is safe. If it returns
unsafe then the program is unsafe.

4 Dimension decomposition using finite tree automata

In this section, we show an alternative method for constructing an at-least k-dimension program, using
operations on finite tree automata (FTAs). We first describe the connection between Horn clauses and
FTAs and show how to construct an FTA from a set of Horn clauses.

4.1 Trace automata for CHCs

We add identifiers to clauses, whose purpose is to act as constructors of trace trees representing deriva-
tions. The identifiers are chosen from a set X of ranked function symbols. If P is a set of CHCs, let
idp : P — X be an assignment of function symbols to clauses, such that for every clause ¢/ € P, the arity
of idp(cl) equals the number of atoms in the body of c¢/. We allow the same symbol to be assigned by
idp to more than one clause. We can also identify the predicates whose derivations are of interest (the
accepting predicates in Definition ).

Definition 4 (Trace FTA for a set of CHCs) Let P be a set of CHCs, ¥ be a set of ranked function
symbols and idp : P — X be a mapping from clauses to function symbols of appropriate arity. Let F be a
set of predicates from P called the accepting predicates. Define the trace FTA for P as </} = (Q,F,X,A)
where

o Q is the set of predicate symbols of P;
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e F C Q is the set of accepting predicate symbols;
o Y is a set of function symbols;

o A={c(p1,....p) > plcl €P cl=pX) <+ C,p1(X1),....rc(Xk), c =idp(c)}.
If F is the set of all predicate symbols occurring in the clauses we omit the superscript F from %If .

The set of trees accepted by &7} is written (/). Elements of £ (<7 are called the trace trees
for P. £ (MPF ) is isomorphic to the set of (successful and unsuccessful) derivation trees (for atomic
formulas with accepting predicates) constructible from P and from now on we identify trace trees with

derivations. We do not define derivation trees formally here, but refer to the notion of an AND-tree in
the literature [22,[10].

Example 1 Let P be the set of CHCs in Figure|l|and let F = {fib,false}. Let idp map the clauses to
c1,c2,c3 respectively. Then <7 = (Q,F,%,A) where:

Q = {fib,false} A = {c¢; — fib,
Y = {c,e2,03} c2(fib,fib) — fib,
c3(fib) — false}

Figure[2(a) shows a trace tree recognised by this FTA. The tree can also be written c3(c2(c2(c1,c1),c1)).

If a mapping idp : P — X assigns a unique identifier to each clause, that is, idp is injective, then there
is an inverse mapping id ! : range(idp) — P.
Definition 5 (chciy(«7)) Given an FTA o = (Q,F,X,A) and an injective mapping id such that ¥ C
range(id), we can construct a set of CHCs from <7, called chciq(«), defined as follows:

cheig() ={q(X) <« C,.q1(X1),...,qn(Xn) | <(q1,---,qn) — q E A,
id (c) =q(X) €, q1(X1),. .., qn(Xn)}

The set of accepting predicates of chc,q( ) is defined to be F.

In the definitions we reuse the states in the FTA as predicate symbols in the constructed clauses. In
practice we use some injective renaming function from states to predicates in the constructed program.
Further discussion of the mappings between CHCs and FTAs can be found in [19]. By construction, the
derivations of chc;q(<7) (for the accepting predicates) correspond to the elements of . (<7 ).

4.2 Construction of the at-least k-dimensional program using FTA operations

In the construction of the at-least k-dimension program P>* in Definition @ the original program clauses
from P are included in the generated clauses. The presence of the original clauses suggests that the
“decomposed” verification problem for P> is as hard as the original problem for P, since it contains the
clauses of P as well as others, and so this form might not lend itself to verification.

Thus in the following construction we build P~* based on FTA language difference, and the original
clauses are not copied to the at-least k-dimension program. We first define a general FTA-difference for
CHC:s.

Definition 6 (FTA-difference for CHCs) Let P and Q be sets of CHCs, Fi and F, their respective ac-
cepting predicates and idp : P — X and idg : Q — X their respective identifier assignments, where idp is
injective. Let gf; "and MQFz be the trace FTAs constructed from P, Q respectively. Then the FTA-difference
of P and Q (with their respective accepting predicates) written PF' — Q™2 is given as chcig P(%PF ! \,52%52)
where \ is the difference of FTAs [3|]. The set of accepting predicates is the set of accepting states for the
difference FTA .
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The set of derivations for P/ — Q2 contains, by construction, those derivations of PF that are not
derivations of Q2. We now apply these notions to the verification procedure based on decomposition.
We are given a set of CHCs P, with accepting predicates F = {false}. In the program P=*, the set of
accepting predicates is F¥ = {falsegk }. Note that we can ignore the derivations for the other predicates
of the form false=/ or false™/ since false=¥ by construction accumulates their derivations, for all j < k.

4.2.1 Assignment of identifiers in the at-most-k-dimension program

Given a program P and the at-most-k-dimension program P=F, we intend to construct the difference
plfalse} _ p<kifalse} yi5ing Definition @ In order to do so, we first need to construct the identifier assign-
ment idp<x SO as to preserve trace trees from P. This requires the modification of P= to eliminate the
e-clauses, as follows.

Definition 7 (Unfolding of e-clauses in P<X) Let P<¥ be the at-most-k-dimension program obtained from
P using Definition|2| Replace each €-clause of form H=¢ < H=¢ by the set of clauses H=¢ < B, where
H=¢ < B is either a linear or non-linear clause in P=*.

The elimination of &-clauses is an instance of the well-known unfolding transformation which preserves
the derivability of atomic formulas. In other words an atom A is derivable from a program P if and only
if it is derivable after applying the unfolding transformation [21].

In the following definition, the clause identifiers are chosen for clauses in P<F Informally, every
clause of P=* inherits the clause identifier for the clause in P from which it originates. More precisely
we define the clause identifiers for P<¥ as follows.

Definition 8 (Assignment of clause identifiers in P=*) Let P<K be the at-most-k-dimension program
obtained from P using Definition 2] with €-clauses eliminated according to Definition [/} Each clause
of P=¥ is a linear, non-linear or an e-unfolded-clause. The clause identifiers are assigned in two steps as
follows.

1. Assign to each linear or non-linear clause the clause identifier from the clause in P from which it
is derived in Definition

2. Assign to each each unfolded €-clause the clause identifier for the linear or non-linear clause used
to unfold it using Definition[/]

We are now in a position to compare the sets of trace trees for P and P=F using their respective FTAs.

Lemma 2 Let P be a set of CHCs and let idp : P — ¥ be an injective function assigning clause identifiers
to P. Let F; = {false}. Let k > 0 and let P< be the at-most-k-dimension program obtained from P using
Deﬁnitionwith e-clauses unfolded using Deﬁnition@and let F> = {false=*}. Then g(ﬂfék) ={t|te
ZL(ALY, dim(1) < k}.

The proof is by induction on derivations in P=* and uses the correspondence of the clause identifiers as
set up in Definition

Theorem 1 Let P be a set of CHCs and let idp : P — X be an injective function assigning clause identi-
fiers to P. Let k > 0 and let P=* be the at-most-k-dimension program obtained from P using Definition E]
with €-clauses unfolded using Definition @ Then false is derivable from P — P=* if and only if false™* is
derivable from P>,
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cl. £fib(0) (A,A) :- A>=0, A=<1.
c3. false(0) :- A>5, B<A, fib(0)(A,B).
c3. false[0] :- A>5, B<A, fib(0)(A,B).
cl. £ib[0](A,B) :-A>=0, A=<1.

Figure 5: Fib=Y after unfolding £-clauses and assigning clause identifiers.

Thus we have shown a different method of constructing the at-least k-dimension program P~*, namely
by taking the difference of P with P=¥, which contains only derivations (for its accepting predicates) that
have dimension greater than k.

Details on difference construction can be found in [[19]. We construct the difference of two FTAs by
(1) standardising apart the predicate names; (2) forming the union of the two FTAs; (3) determinising the
union; (4) removing from the determinised FTA all states (and transitions that contain them) that contain
an accepting state of the second FTA. Note that the set of states of the determinised FTA is a subset of
the powerset of the original states. Note that determinisation of FTAs is often considered prohibitively
complex even for small FTAs. We use a recent optimised FTA determinisation algorithm [9]], returning
a compact form of the determinised called product form, which can be used directly in constructing the
resulting clauses.

Example 2 We illustrate this through an example using Fib=C (Figure . The clauses 1 and 2 in Fib=°,
will have ¢ and c3 as identifiers since they were derived respectively from the clauses ci and c3 in Fib
(Figure[l). By unfolding €-clauses (clauses 3 and 4) using respectively clauses 2 and 1 in Figure[3] we
obtain false[0] :- A>5, B<A, fib(0) (A,B) and fib[0] (A,B) :-A>=0, A=<1. They will have
identifiers c3 and ci respectively. Therefore, the clauses in Fib=C will have the identifiers assigned as
shown in Figure[3

After assigning identifiers to each of the clauses in Fib=", we can construct an FTA corresponding to
it using Definition |4, and obtain the FTA shown in Figure @ as before we represent a predicate p=* by
p[k] and a predicate p=* by p (k).

Q= {£ib(0), false(0), false[0], fib[0]} A={c; — £ib(0)

F = {false[0]} c3( £ib(0)) — false(0),
L ={c1,c3} c3( £ib(0)) — false[0],
cp — fib[0]}

Figure 6: FTA (Q,F,%,A) corresponding to Fib=0.

The difference FTA between szf’F{Else} and ,Q/Pl{i;a;ego} accepts trees rooted at false which have di-
mension greater than 0. The determinised FTA (DFTA) constructed as explained above is shown in the
Figure[7| DFTA states are sets of predicates, and we represent a set using square brackets instead of curly
brackets in the code, e.g. [£ib(0), fib[0], fib]. Furthermore the product form referred to above
contains set of DFTA states, such as [[fib(0), fib[0], fib], [fib]].

We can generate a new program from this DFTA together with the original program Fib following
the approach taken in [[19] obtaining the program in Figure[§] It should be noted that the derivation trees
rooted at false have dimension at-least 1. Now verification of the original program Fib is decomposed
into verifying the program in Figure[3|(where false [0] is replaced by false and the program in Figure

8
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cl -> [fib(0), fib[0], fib].
c2([[£fib(0), fib[0], fibl, [fibl],

[[£fib(0), fib[0], fibl, [fib]]) -> [fib].
c3([[fib]l]) -> [false].

Figure 7: Transitions of the determinised FTA.

fib_0(A,A) :- A>=0, A=<1.

fib(A,B) :- A>1,C=A-2,D=A-1,B=E+F,fib_1(C,F), fib_1(D,E).
false :- A>5, B<A, fib(A,B).

fib_1(A,B) :- fib_0(A,B).

fib_1(A,B) :- fib(A,B).

Figure 8: At-least 1-dimension program of Fib produced using the difference of FTAs

S Program instrumentation with dimension

The dimension of successful derivations in a set of CHCs is not always obvious from the text of the
clauses. In some cases a bound on the dimension is clear from the form of the clauses; for instance
all derivations using a set of linear clauses clearly have dimension zero. But consider the well known
91-function of McCarth represented in Figure@ using Horn clauses.

Although it is possible to construct derivation trees of arbitrary dimension using the clauses in Figure
O the dependencies between the two recursive calls to mc91 imply that no successful derivation has
dimension greater than 2. We now show how to establish this using a transformation to instrument the
clauses with dimension information, and then use automatic verification tools to establish properties of
the dimension.

Definition 9 (Dimension-instrumented clauses) Let P be a set of CHCs. Define the set Py, of CHC as
follows.

e For each predicate p of arity m define a predicate p' of arity m+ 1.
e For each clause in P of the form
p(X) <€, pi1(X1),...,pn(Xn)
construct a clause
P(X,K) €, p1(X1,K1), - .., po(Xn, ) dimy (K1, ..., Ky, K)

in Py, where K1, ...,K,,K are variables added as the final argument for their respective predi-
cates, and dimy, (K, ..., K,,K) is defined according to the rules in Definition|I|for determining the
dimension of a tree.

Uhttp://en.wikipedia.org/wiki/McCarthy_91_function

mc91(N,X) :- N > 100, X = N-10.
mc91(N,X) :- N =< 100, Y = N+i1,
mc91(Y,Y2), mc91(Y2,X).

Figure 9: McCarthy’s 91-function defined as Horn clauses
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fib(A, A, K):- A>=0, A=<1, dim0(X).
fib(A, B, K) :- A > 1, A2 = A - 2, fib(A2, B2, K1),
Al = A -1, fib(A1l, B1l, K2), B = B1 + B2, dim2(K1, K2, K).
dimO(K) : -K=0.
dim2 (K1, K2, K3):-K1>=K2+1, K3=Ki1.
dim2 (K1, K2, K3):-K2>=K1+1, K3=K2.
dim2 (K1, K2, K3):- Ki1=K2, K3 = Ki+1.

Figure 10: Fib program instrumented with its dimension

Example 3 The dimension-instrumented version of the McCarthy 91-function contains the following

clauses.

mc91 (N,X,K) :- N > 100, X = N-10, dimO(K).

mc91(N,X,K) :- N =< 100, Y = N+11,
mc91(Y,Y2,K1), mc91(Y2,X,K2), dim2(K1,K2,K).

dimO (K) : -K=0.

dim2 (K1, K2, K3):-K1>=K2+1, K3=K1.
dim2(K1, K2, K3):-K2>=K1+1, K3=K2.
dim2(K1, K2, K3):- K1=K2, K3 = K1+1.

Using the instrumented program we can try to prove information about the dimension, such as upper or
lower bounds or other relationships between the dimension and other predicate arguments. It follows
from the undecidability result of Gruska [14] on context-free grammars, that the problem of determining
whether the dimension of set of CHC is bounded by a constant is, in general, undecidable.

Example 4 To establish that the upper bound of successful derivations is 2, for facts mc91(X,Y), we
add the following integrity constraint to the dimension-instrumented clauses.

false :- K > 2, mc91(X,Y,K).

The clauses together with the integrity constraint are given to an automatic solver for Horn clauses
(121 |19)], which are able to prove the safety of the clauses and thus establish the upper bound of 2.

In the next example, we show that the dimension can depend on the values of other predicate argu-
ments.

Example 5 The dimension-instrumented version of the Fib clauses is shown in Figure The property
to be proved is that the dimension of Fib is lesser or equal to the half of its input value, expressed by
the integrity constraint false:- fib(A,B, K), 2*K -1>=A. Again, this property is established by
applying a Horn clause solver to prove the safety of the clauses together with the integrity constraint.

Example 6 We present the well known counting change example taken from [I\ Chapter 1]. The Figure
[[1] shows its CLP encoding and the Figure [I2] shows the dimension-instrumented version in CLP. The
property of interest is to relate the number of different coins (counts) with the program dimension. We
can establish that the dimension is at most the number of different coins as expressed by the integrity
constraint false :- B>=1, K > B, cc(A, B, C, K).

In general, verifying whether a program has a certain dimension is as challenging as proving any
other properties of the program. But in some cases the knowledge of program dimension is useful for
proving other program properties. For instance, using the knowledge that the McCarthy 91-function has
dimension at most 2 would allow us to restrict the proof of any program property relating to successful
derivations to the program P2 where P is the set of clauses for the McCarthy 91-function.
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% base case: that is a hit
cc(0, Y, 1) :- Y>0.
% base case: that is a miss
cc(X, _, 0) :- X<O.
cc(_, Y, 0) :- Y=<0.
J%inductive case
cc(X, Y, Z) :- X>0, kinds_of_coins(Y,A),
X1 X-A, cc(X1, Y, Z1),
Y1 Y-1, cc(X, Y1, Z2), Z = Z1 + Z2.
kinds_of_coins(A,B) :- A >= 1, B >= 1.

Figure 11: Counting change example encoded as CLP clauses

cc(0, Y, 1,K)
cc(X, _, 0,K)
cc(_, Y, 0,K)
ccX, Y, Z,K) :-

X>0, kinds_of_coins(Y,A, KO), X1 = X-A,

cc(X1, Y, Z1,K1), Y1 = Y-1, cc(X, Y1, Z2,K2),

Z = 71 + Z2, dim3(KO, K1,K2,K).
kinds_of_coins(A,B, K) :- A >= 1, B >= 1, dim0(K).
dim3(K0, K1,K2,K):-

dim2(KO, K1, K3), dim2(K3,K2, ).
%predicates dimO(K) and dim2(K1, K2, K) are defined as above

Y>0, dim0(K).
X<0, dimO(K) .
Y=<0, dimO(K).

Figure 12: Counting change example instrumented with its dimension

6 Related Work

The notion of dimension of a tree has a long history in science (starting with Geology) which has been
detailed by Esparza et al. [8]. However, the use of dimension for program verification is more recent.
Ganty and losif used it [[11] for computing summaries of programs with procedures whose variables
(global, local and parameters) take their value from the set of integers. Roughly speaking, the method
they define first computes procedure summaries for all derivation trees of dimension 0, then they compute
summaries for derivation trees of dimension 1 reusing the summaries computed for dimension 0 and so
on.

Decomposition can be compared to refinement techniques based on automata [15, [16) [19] in which
the aim is to eliminate sets of program traces that have been shown to be safe. Proof of the safety of a
given dimension or dimensions of a set of clauses allows those dimensions to be eliminated, focusing
the proof on the remaining dimensions. Our decomposition technique offers a very precise and practical
approach to checking and eliminating infinite sets of traces.
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7 Experimental results

We carried out an experiment on a set of 16 non-linear CHC verification problems taken from the repos-
itoryE] of software verification benchmarks. Our aim in the current paper is not to make a systematic
comparison with other verification techniques; these are exploratory experiments to establish whether
dimension-based decomposition is practical. The results are summarized in Table
Columns Program, Result, Time and dim(k) respec-
tively represent a program, its verification result using

our approach, time in seconds taken to generate the pro- Table 1: Experimental results on non-linear

CHC verification problems

grams and solve it and a value of a proof decomposition

parameter k. Program Result | Time(s) | dim(k)

For the safety check (the procedure SAFE in Algo- addition safe 4 0
rithm [I) we use the verification procedure described in bfprt safe 4 0
[L8]] which uses abstract interpretation over the domain binarysearch | safe 4 0
of convex polyhedra, with a timeout of 5 minutes. The | SOUntZero safe 3 0
symbol “-” in Table [T] denotes that we were unable to floodfill safe 3 0
solve these problems within the given time. Our ap- | identity safe 4 0
proach solves 14 out of 16 problems with an average | MC€rge safe 5 0
time of 4 seconds (over the solved problems). Our pre- palindrome | safe 3 0
vious approach based on refinement with finite tree au- | fib safe 4 0
tomata described in [[19] solves 1 more additional prob- mc91 safe 4 0
lem, that is, triple than our current approach. These ex- | revlen safe 4 0
amples were also run on QARMC [[13]] which solves all | running unsafe | 6 1
the problems (much faster). Most of the problems are | triple unsafe | - -
solved when we decompose the proof with the value of | buildheap unsafe | - -
k = 0. This indicates that separating the proofs for lin- | parity unsafe | 4 0
ear programs eases the verification task. The splitting | remainder unsafe | 4 0
induced as a result of separating a set of traces has an | avg. time(s) 4

effect on delaying join and widening operations during

convex polyhedra analysis which increases its precision. In addition to this, some of the case base proofs
(for example conditionals) becomes a normal proof without conditionals due to proof separation and the
process of finding invariants becomes easier.

8 Conclusion and future work

We presented a program transformation approach to Horn clause verification using the notion of tree di-
mension to decompose the verification problem by separating dimensions. We presented one algorithm
based on this idea which yielded preliminary results on set of non-linear Horn clause verification bench-
marks, showing that the approach is feasible and this transformation is useful both for proving safety of
a program as well as for finding bugs.

Other ideas of program verification based on tree-dimension are worth investigating, including proof
by induction based on tree dimension, and further investigation of proof strategies that could exploit
knowledge of dimension bounds (such as those discussed in Section [5).

Zhttps://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/RECUR/
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Although it is formulated in the context of Datalog, it is known from Afrati ef al. [2] that a set of

CHC of bounded dimension can be turned into an equivalent set of linear CHC. The exact complexity of
their procedure is still open.
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