
11

CBack
User Guide

Version 1.0 (August 1995)

by
Keld Helsgaun

E-mail: keld@ruc.dk

1. Introduction

Backtrack programming is a well-known technique for solving combinatorial search prob-
lems. The search is organized as a multi-stage decision process where, at each stage, a
choice among a number of alternatives is to be made. Whenever it is found that the previ-
ous choices cannot possibly lead to a solution, the algorithm backtracks, that is to say, re-
establishes its state exactly as it was at the most recent choice point and chooses the next
untried alternative at this point. If all alternatives have been tried, the algorithm backtracks
to the previous choice point.

In addition to the usual depth-first search strategy, CBack provides for the more general
heuristic best-first search strategy.

CBack is a simple tool for backtrack programming in the programming language C. The
tool is a library consisting of a relatively small collection of program components, all writ-
ten in the ANSI standard of C. CBack is highly portable and may easily be ported to most
computer architectures and C compilers.

The tool is described in detail in the paper

K. Helsgaun,
"CBack: A Simple Tool for Backtrack Programming in C",
Softw. pract. exp., Vol. 25, No. 8, 1995 (pp. 905-934).

This paper may be found in pdf-format in the directory DOC.

2

2. Installation

The software is available in two formats:

CBack-1.0.tgz (gzipped tar file, ≈ 100 KB)
CBack-1.0.sit (Stuffit archive, ≈ 100 KB)

If a UNIX machine is used, download the software in the first format. Next execute the fol-
lowing UNIX commands:

gzip -d CBack-1.0.tgz
tar xvf CBack-1.0.tar

If a MacOS or a Windows machine is used, download the software in the second format.
Next unstuff it with StuffIt Expander™ (freeware available at http://www.aladdinsys.com).

The code is distributed for research use. The author reserves all rights to the code.

On a MacOs machine the following files and folders can be found in the folder CBack-1.0.
Similar files and directories can be found on a Windows machine and on a UNIX machine.

The README file contains instructions for installing the software.

The DOC folder contains the following documentation: (1) CBack_GUIDE.pdf, this user
guide, and (2) PAPER.pdf, a paper that describes the use and implementation of the soft-
ware.

The SRC folder contains source code of CBack. The code, as presented in the paper, is
available in the two files CBack.h and CBack.c. In this code the priority queue of pro-
gram states is represented a linear linked list. Three alternative implementations,
CBack.skew.c, CBack.pheap.c and CBack.splay.c, in which the priority queue is

33

represented by a skew heap, a pheap and a splay tree, respectively, are also provided in the
SRC folder.

The EXAMPLES folder contains the following example programs:

8Q1.c, NQ1.c, NQ2.c, NQ3.c, NQ3s.c (in the directory NQUEENS):

These programs solves the 8-queens and N-queens problem as described in the
CBack paper (pp. 907-914).

Syntax.c:

This program performs syntax analysis as described in the paper (pp. 914-915).

Match.c:

The string pattern matching program presented in the paper (pp. 915-916).

Puzzle15.c (in the directory 15PUZZLE):

This program solves the 15-puzzle problem as described in the paper (pp. 921-924).

Puzzle15.Korf.c (in the directory 15PUZZLE):

This program solves the 100 instances of the 15-puzzle problems given in the paper:

R.E. Korf, Depth-First Iterative-Deepening:
"An Optimal Admissible Tree Search",
 Artificial Intelligence 27 (1985) 97-109..

On a 233 MHz G3 Macintosh, using CBack.pheap.c, the program found solutions
to all these problem with an average execution time of 0.15 seconds. The average
number of moves was 76.51 (the average of the shortest possible solutions is 53.05).

The 100 problems can be found in the file KorfProblems.

Puzze15.Korf.IDA.c (in the directory 15PUZZLE):

This program find the shortest possible solutions to Korf's problems using iterative
deepening search. On a 233 MHz G3 Macintosh the program produced optimal solu-
tion with an average execution time of 190 seconds.

4

SENDMOREMONEY1.c, SENDMOREMONEY2.c (in the directory CRYPTARITHM):

In a cryptarithm, numbers are represented by replacing their digits by letters; a given
letter consistently represents the same digit and different letters represent different
digits.

This program solves the following cryptarithm.

 S E N D
 M O R E
 M O N E Y

The second version of these programs is the most efficient (by backtracking earlier
and making use of the NextChoice function).

CRYPTARITHM.c (in the directory CRYPTARITHM):

This program generalizes the two previous programs. It can solve cryptarithms in-
volving sums (as in the SEND-MORE-MONEY problem). For example, the program
can be used to solve the following cryptarithm:

 S I X
 S I X

 S E V E N
T W E N T Y

NQueen.c, NQueen.perm.c (in the directory PASCAL):

These two programs shows how CBack can be used with Pascal. They both solve the
N-queens problem, but in two different ways.

The Pascal interface is provided in the file Backtracking.p.

+

+

55

The software has been written in the ANSI standard for C. If the C compiler concerned
does not fulfil this standard, some simple changes are necessary:

• Replace all occurrences of void* with char*.

• Rewrite all function declarations to the old form (i.e. without prototypes).

• If <stddef.h> is not available, then insert the following line in
 the beginning of CBack.h:

 typedef unsigned long int size_t;

• If <stdlib.h> is not available, then use <malloc.h> instead.

• If the function labs is not available, then use abs instead
 (in the macro definition of StackSize in the beginning of CBack.c).

The code may now be compiled and tested with some simple examples (e.g. program 8Q in
Figure 2). It will, however, be necessary to use the macro Backtracking. In the pro-
gram the function name main is changed, for example to Problem, and the following
line is appended to the program:

main() Backtracking(Problem())

If C’s runtime stack always has its bottom at the same address, then the Backtracking
macro can be made superfluous (in most applications). After having executed the following
small program

 main() Backtracking(printf("%lx\n",StackBottom))

the address written by the program is inserted as the initial value for the variable
StackBottom (in the beginning of CBack.c).

Some C systems do not always keep the runtime stack up-to-date but keep some of the
variable values in registers. This is for example the case for C systems on Sun machines. If
this is the case, the macro Synchronize must be used; the comment characters are sim-
ply removed from the macro definition (in the beginning of CBack.c).

	Introduction
	Installation

