
CBack: A Simple Tool
for Backtrack Programming in C

KELD HELSGAUN
Department of Computer Science, Roskilde University,

DK-4000 Roskilde, Denmark
(email: keld@ruc.dk)

1

SUMMARY

Backtrack programming is such a powerful technique for problem solving that a number of
languages, especially in the area of artificial intelligence, have built-in facilities for backtrack
programming. This paper describes CBack, a simple, but general tool for backtrack pro-
gramming in the programming language C. The use of the tool is illustrated through exam-
ples of a tutorial nature. In addition to the usual depth-first search strategy, CBack provides
for the more general heuristic best-first search strategy. The implementation of CBack is de-
scribed in detail. The source code, shown in its full length, is entirely written in ANSI C and
highly portable across diverse computer architectures and C compilers.

KEYWORDS: Backtrack programming, Backtracking, C, Programming languages

2

INTRODUCTION

Backtrack programming is a well-known technique for solving combinatorial search prob-
lems.1-4 The search is organized as a multi-stage decision process where, at each stage, a
choice among a number of alternatives is to be made. Whenever it is found that the previous
choices cannot possibly lead to a solution, the algorithm backtracks, that is to say, re-estab-
lishes its state exactly as it was at the most recent choice point and chooses the next untried
alternative at this point. If all alternatives have been tried, the algorithm backtracks to the pre-
vious choice point.

Backtrack programming is often realized by recursion. A choice is made by calling a recur-
sive procedure. A backtrack is made by returning from the procedure.5 When a backtrack
(return) is made, the programmer must take care that the program’s variables are restored to
their values at the time of choice (call). The programmer must ensure that sufficient informa-
tion is saved in order to make this restoration possible.

Writing programs which explicitly handle their own backtracking can be difficult, tedious
and error-prone. For this reason a number of high-level languages, especially the artificial
intelligence languages, have been supplemented with special facilities for backtrack pro-
gramming.6 Such facilities have played an important part in the success of the logic pro-
gramming language Prolog.7 The advantage is that the programmer does not need to concern
himself with the book-keeping tasks involved in backtracking, but may hand over these tasks
to the underlying system and fully concentrate on solving the actual problem at hand. The
utility and generality of the of the approach is also demonstrated by various efforts to extend
traditional programming languages with facilities for backtrack programming, e.g. Fortran,
Algol, Simula and Pascal.8-11

This paper describes a simple tool, CBack, for backtrack programming in the programming
language C. The tool is a library consisting of a relatively small collection of program com-
ponents, all written in the ANSI standard of C. CBack is highly portable and may easily be
ported to most computer architectures and C compilers. The source code is included in this
paper and should work under any C implementation that uses an ordinary runtime stack.

CBack is general, but at the same time quite simple to use. Depth-first is the default search
strategy. If required, the user may easily obtain best-first search.

This paper demonstrates the use of CBack through examples of a tutorial nature and de-
scribes its implementation. In the Appendix is given a summary of the user facilities together
with a short installation guide and the source code. The reader is assumed to have an ele-
mentary knowledge of C.12

3

The functions Choice and Backtrack

The kernel of CBack is the two functions Choice and Backtrack.

Choice is used when a choice is to be made among a number of alternatives.
Choice(N), where N is a positive integer denoting the number of alternatives, returns suc-
cessive integer. Choice first returns the value 1, and the program continues. The values 2
to N are returned by Choice through subsequent calls of Backtrack.

A call of Backtrack causes the program to backtrack, that is to say, return to the most re-
cent call of Choice, which has not yet returned all its values. The state of the program is re-
established exactly as it was when Choice was called, and the next untried value is re-
turned. All automatic variables of the program, i.e. local variables and register variables, will
be re-established. The remaining variables, the static variables, are not touched. This prop-
erty of static variables makes possible communication between calls of Choice and
Backtrack.

On the other hand, the user may specify that static variables must be re-established too. This
feature, along with other extensions, will be described later in this paper.

Calling Choice with a non-positive argument is equivalent to calling Backtrack.

During program execution several unfinished calls of Choice (calls which have not yet re-
turned all their values) may coexist. Backtrack will always refer to the most recent un-
finished call of Choice. For example, the program fragment

 int i, j;
 i = Choice(3);

j = Choice(2);
printf("i = %d, j = %d\n",i,j);
Backtrack();

produces the following output

i = 1, j = 1
i = 1, j = 2
i = 2, j = 1
i = 2, j = 2
i = 3, j = 1
i = 3, j = 2

If in calling Backtrack, no unfinished call of Choice exists, the program terminates. In
order to let the user decide a course of action in this case, CBack offers the function pointer
Fiasco. By assigning a function (without parameters) to Fiasco, this function will be
called before the program terminates.

In the next section, the use of CBack is illustrated through a few simple examples.

4

ILLUSTRATIVE EXAMPLES

The 8-queens problem

A classical problem used for illustrating the backtrack programming technique is the 8-
queens problem.1-4, 8-10, 13-16 Here the task is to place eight queens on a chessboard so that
no queen is under attack by another; that is, there is at most one queen at each row, column
and diagonal. Figure 1 shows one of the solutions to the problem.

 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 1. One solution of the 8-queens problem.

It is easy to see that in any solution there has to be one and only one queen per row and col-
umn on the board. If rows and columns are numbered from 1 to 8 (as in Figure 1), one may
verify that either the sum or the difference of row and column numbers for all squares in a
diagonal is constant. The sum, respectively the difference, uniquely determines a diagonal.
These facts are exploited in the program Q8 in Figure 2 which solves the 8-queens problem
using Choice and Backtrack.

For each row, r, one of the eight columns, c, is chosen in an attempt to place a queen on
the square (r,c). If a queen has already been placed in the same column or one of the two
diagonals, the program backtracks and the next possible queen placement is examined. Oth-
erwise, the queen is placed on the square by recording its row number in the three arrays R,
S and D. These arrays represent queen placements in columns, “sum diagonals” and “differ-
ence diagonals”, respectively. For example, R[c] contains the row number of the queen
placed in column c. If an array value is zero, no queen has yet been placed in the column or
diagonal in question.

5

 #include "CBack.h"
 main()
 {
 int r, c;
 int R[9]={0}, S[15]={0}, D[15]={0}; /* clear board */

 for (r = 1; r <= 8; r++) { /* for each row, r */
 c = Choice(8); /* choose a column, c */
 if (R[c] || S[r+c-2] || D[r-c+7]) /* if (r,c) under attack */
 Backtrack(); /* then backtrack */
 R[c] = S[r+c-2] = D[r-c+7] = r; /* else place queen */
 }
 for (c = 1; c <= 8; c++) /* print solution */
 printf("(%d,%d) ",R[c],c);
 }

Figure 2. Program 8Q

An execution of the program produced the following output:

(1,1) (7,2) (5,3) (8,4) (2,5) (4,6) (6,7) (3,8)

corresponding to the solution pictured in Figure 1.

The program finds only one solution of the problem. All solutions may be found by simply
adding a Backtrack-call at the end of the main program. With this addition the program
will not terminate until all choice possibilities are exhausted.

In this program all variables are automatic and will be re-established when the program
backtracks. It easy to see, that this re-establishment is necessary for the correctness of the
program. The variable c constitutes an exception; it does not need to be re-established,
since, after backtracking, it is assigned a value as the result of Choice. This unnecessary
re-establishment may be avoided just by moving the declaration of c outside main, or by
declaring c static.

All static variables are untouched by the backtracking process. Sometimes, however, it is
necessary for some static variables to be backtracked anyhow. This applies for example to
external variables and variables allocated by the standard library functions calloc,
malloc or realloc. Such variables can be made backtrackable by so-called notification.
A call Notify(V), where V is a static variable, specifies that V must be backtracked. Fur-
thermore, CBack provides the functions Ncalloc, Nmalloc and Nrealloc. They
have the same allocation effect as calloc, malloc and realloc, but in addition notify
the allocated storage.

Figure 3 shows a program, NQ1, which makes use of these possibilities for the solution of
the N-queens problem. The output from the program is the number of solutions. The value
of N (the number of rows or columns) is read from the standard input. The variable Count
represents the number of solutions found. Being external, Count is not backtracked. The
program also demonstrates the use of the function pointer Fiasco for obtaining a desired
program reaction when all choice possibilities are exhausted (here, output of the number of
solutions).

6

#include "CBack.h"
 int N, Count, r, c, *R, *S, *D;

 void PrintCount()
 { printf("The %d-queens problem has %d solutions.\n",N,Count); }

 main() {
 printf("Number of queens: "); scanf("%d",&N);
 Fiasco = PrintCount;
 Notify(r);
 R = (int*) Ncalloc(N+1, sizeof(int));
 S = (int*) Ncalloc(2*N-1, sizeof(int));
 D = (int*) Ncalloc(2*N-1, sizeof(int));
 for (r = 1; r <= N; r++) {
 c = Choice(N);
 if (R[c] || S[r+c-2] || D[r-c+N-1])
 Backtrack();
 R[c] = S[r+c-2] = D[r-c+N-1] = r;
 }
 Count++;
 Backtrack();
 }

Figure 3. Program NQ1.

An execution with N = 8 produced the following (correct) output:

The 8-queens problem has 92 solutions.

The efficiency of the actual implementation of CBack is such that usually the user-program’s
own computation time dominates the administration time involved in calling Choice and
Backtrack. However, in the solution of problems so simple as the N-queens problem, the
administration time dominates. In order to remedy this situation in such cases, the tool pro-
vides two functions: NextChoice and Cut.

NextChoice immediately returns the next untried value of the most recent Choice-call;
but (unlike Backtrack) does not restore the program’s state. If however, the most recent
Choice-call is finished, calling NextChoice is equivalent to calling Backtrack.

For example, consider the following fragment of the last program (Figure 3):

 c = Choice(N);
if (R[c] || S[r+c-2] || D[r-c+N-1])

 Backtrack();

Since the evaluation of the condition does not change the state of the program, it is unneces-
sary to restore the program state by calling Backtrack. Instead the function NextChoice
can be used as follows:

 c = Choice(N);
 while (R[c] || S[r+c-2] || D[r-c+N-1])
 c = NextChoice();

7

The Cut function may be used when an immediate finish of the most recent Choice-call is
wanted, even if there still might be untried alternatives. Cut deletes the most recent
Choice-call and causes a backtrack to the previous Choice-call. For example, the last
Backtrack-call in the N-queens program may be replaced by a call of Cut. There is only
one possible position for the last queen, so it unnecessary to try the remaining alternative
placements for this queen.

By making the efficiency improvements of the N-queens program as mentioned above, the
execution time is typically reduced by more than a factor of 4 (for N = 8).

However, the best way to increase the efficiency of a backtrack program is to make sure that
the program backtracks as soon as possible (i.e. prune the search tree as much as possible).

One of the techniques for achieving this is forward checking.17 Whenever a choice is made,
all future choices are checked; if at any time any future choice has no possibility of leading to
a solution, a backtrack is made immediately. In the solution of the N-queens problem, for
example, information may be stored about which squares are under attack by queens already
placed on the board. Each time a new queen is placed on the board, this information is up-
dated and, if there is no queen in a row, but all squares in this row are under attack, then it is
possible to backtrack at once.

This technique is used in the program NQ2 in Figure 4. The program also exploits a tech-
nique called dynamic search rearrangement18; whenever a new queen is to be placed, an at-
tempt is made to place it in the row which has the lowest number of squares not under attack,
i.e. in the row with the fewest choice alternatives. The program uses two arrays Q and A for
this purpose. A[r] denotes the number of free squares in row r, and Q[r][1:A[r]]
contains their column numbers.

8

 #include "CBack.h"
 #define N 8
 int Count;

 void PrintCount()
 { printf("The %d-queens problem has %d solutions.\n", N, Count); }

 main()
 {
 int r, c, rf, cf, i, j, A[N+1], Q[N+1][N+1];

 Fiasco = PrintCount;
 for (r = 1; r <= N; r++) {
 A[r] = N;
 for (c = 1; c <= N; c++)
 Q[r][c] = c;
 }
 A[0] = N+1;
 for (i = 1; i <= N; i++) {
 for (r = 0, rf = 1; rf <= N; rf++) /* find best row, r */
 if (A[rf] && A[rf] < A[r])
 r = rf;
 c = Q[r][Choice(A[r])]; /* choose c in r */
 A[r] = 0;
 for (rf = 1; rf <= N; rf++) {
 for (j = 1; j <= A[rf];) { /* check (r,c) against */
 cf = Q[rf][j]; /* future (rf,cf) */
 if (cf == c || r + c == rf + cf || r - c == rf - cf) {
 if (A[rf] == 1)
 Backtrack();
 Q[rf][j] = Q[rf][A[rf]--]; /* exclude (rf,cf) */
 }
 else
 j++;
 }
 }
 }
 Count++;
 Backtrack(); /* find next solution */
 }

 Figure 4. Program NQ2.

9

Generation of permutations

Many combinatorial problems consist of determining a permutation which satisfies one or
more given constraints.

For example, a solution of the N-queens problem may be expressed as a permutation P of
integers from 1 to N, where P[i] denotes the column number of the queen placed on row
number i. The condition of P being a solution is that it does not represent a board position
where two queens are in the same diagonal.

CBack makes it easy to write an algorithm that generates all permutations of the elements of a
set. Suppose P is an array of N integers.

int P[N+1]; /* P[0] is not used */

Then all permutations of P[1:N] may be determined by the following very compact algo-
rithm. The idea is for each i< N to swap P[i](= k) with P[j], where P[j] is chosen
systematically among P[i] and its subsequent elements (i<=j<=N).

 for (k = P[i = 1]; i < N; P[j] = k, k = P[++i])
 P[i] = P[j = i-1 + Choice(N-i+1)];

When the loop ends, P contains a permutation of P’s original contents. The next permutation
may be obtained by calling Backtrack.

This algorithm may be used in the construction of a general function for generating permuta-
tions. The function Permute, shown below, generates all permutations of P[1:n]. Its last
parameter, Check, is a pointer to a function for handling partial permutations P[1:i],
where 1<=i<=n. For example, Check may point to a function which calls Backtrack if
a partial permutation does not satisfy some given constraints. The call Check(P,n,i) is
intended to check the last element added, P[i].

 void Permute(int P[], int n, void (*Check) (int*, int, int))
 {
 int i, j, k;

 for (k = P[i = 1]; i <= n; k = P[++i]) {

 P[i] = P[j = i-1 + Choice(n-i+1)];
 P[j] = k;
 if (Check)
 Check(P, n, i);
 }

 }

For example, the N-queens problem may be solved by passing a pointer to the following
function as an argument.

 void CheckDiagonals(int P[], int n, int i)
 {
 int j;

 for (j = 1; j < i; j++)
 if (i + P[i] == j + P[j] || i - P[i] == j - P[j])
 Backtrack();
 }

10

A main program which prints the number of solutions for the N-queens problem using
Permute and CheckDiagonals is shown in Figure 5.

 main()
 {
 int P[N+1], i;

 for (i = 1; i <= N; i++) /* initialize p */
 P[i] = i;
 if (Choice(2) == 1) { /* Choice == 2: all solutions are found */
 Permute(P, N, CheckDiagonals);
 Count++;
 Backtrack();
 }
 printf("The %d-queen problem has %d solutions.\n", N, Count);
 }

Figure 5. Program NQ3.

Just as in the previous versions, all solutions of the problem are determined. However, many
of these solutions are symmetric (two solutions are said to be symmetric if one of them may
be transformed into the other using one or more reflections around the board’s two main di-
agonals and two central axes).

A simple but inefficient method for avoiding symmetric solutions is to record the solutions as
they are found, but discard solutions which are symmetric with any previous solution.

It is not necessary to record solutions, if a precedence relation on the set of solutions can be
defined. Each time a solution is found, it is compared with its 7 symmetric solutions and dis-
carded if any of these precedes it. An example of such a relation is the lexicographic order of
the permutations which represent solutions.

It is even better, if it is possible, to discover that completion of a partial solution eventually
will lead to a solution which is symmetric with a previous or a future solution. Then the par-
tial solution may be abandoned, thus avoiding much fruitless search effort.3,13,19

In the function Check below is shown how this may be achieved. Each partial solution,
P[1:i], is transformed into its 7 symmetric partial solutions. If any one of these constitutes
a partial solution, Q[1:i], which is lexicographically less than P[1:i], then Backtrack is
called.

11

 void Check(int P[], int n, int i)
 {
 int j, k, x, y, *Q;

 for (j = 1; j < i; j++) /* check diagonals */
 if (i + P[i] == j + P[j] || i - P[i] == j - P[j])
 Backtrack();
 Q = (int*) malloc((i+1)*sizeof(int));
 n++;
 for (k = 1; k <= 7; k++) { /* for each transformation */
 for (j = 1; j <= i; j++) {
 switch(k) { /* (j,P[j]) --> (x,y) */
 case 1: x = j; y = n - P[j]; break;
 case 2: x = n - j; y = P[j]; break;
 case 3: x = n - j; y = n - P[j]; break;
 case 4: x = P[j]; y = j; break;
 case 5: x = P[j]; y = n - j; break;
 case 6: x = n - P[j]; y = j; break;
 case 7: x = n - P[j]; y = n - j; break;
 }
 if (x > i)
 break;
 Q[x] = y;
 }
 if (j > i) { /* if Q[1:i] found */
 for (j = 1; j < i && Q[j] == P[j]; j++)
 ;
 if (Q[j] < P[j]) { /* if Q[1:i] < P[1:i] */
 free(Q);
 Backtrack();
 }
 }
 }
 free(Q);
 }

Execution times of some of the versions of the N-queens programs in this paper are tabulated
in Table 1. Time is measured in cpu seconds on a Sun SPARCserver 10/30. The rightmost
column of the table gives both the total number of solutions and the number of non-symmet-
ric solutions.

 N NQ1 NQ1n NQ2 NQ3 NQ3s Solutions
 5 0.02 0.02 0.00 0.00 0.02 10 / 2
 6 0.03 0.02 0.00 0.00 0.02 4 / 1
 7 0.17 0.05 0.02 0.02 0.05 40 / 8
 8 0.67 0.20 0.07 0.13 0.22 92 / 12
 9 3.42 1.00 0.13 2.53 0.57 352 / 46
 10 15.65 3.77 0.72 2.53 4.63 724 / 92
 11 81.40 17.50 3.17 32.27 22.93 2680 / 341
 12 479.25 91.87 14.73 174.55 129.43 14200 / 1787

Table 1. Execution time (in seconds) for the N-queens program versions
NQ1: primitive algorithm
NQ1n: as NQ1; but using NextChoice and Cut
NQ2: forward checking and search rearrangement
NQ3: permutation generation

 NQ3s: as NQ3, but with elimination of symmetric solutions

12

Syntax analysis

Syntax analysis is an area in which backtrack programming often may be used with advan-
tage. Suppose the language S is defined by the following syntax rules:

<S> ::= b<S> | <T>c
<T> ::= a<T> | a<T>b | a

where a, b and c are the terminal symbols and S and T are the non-terminal symbols. S is the
start symbol.

Using CBack it is easy to write a parser program that can decide whether a given text string
is or is not a sentence in the language. The syntax rules may be expressed by two functions S
and T:

 void S()
 {
 switch (Choice(2)) {
 case 1: test('b'); S(); break;
 case 2: T(); test('c'); break;
 }
 }

 void T()
 {
 switch (Choice(3)) {
 case 1: test('a'); T(); test('a'); break;
 case 2: test('a'); T(); test('b'); break;
 case 3: test('a'); break;
 }
 }

The function test is assumed to backtrack if the current character is not the expected one,
but otherwise read the next character from input. If Sym denotes a pointer to the last character
read, then test can be defined by the following macro:

#define test(C) if (*Sym++ != C) Backtrack()

A simple main program which reads a text string and decides whether it is a sentence in the
language is shown below. It is assumed that the string is at most 80 characters in length and
ends with a period.

 char Input[81], *Sym;

 void SyntaxError() { printf("Syntax error\n"); }

 main()
 {
 Fiasco = SyntaxError;
 Notify(Sym); /* Sym must be backtracked */
 fgets(Input,81,stdin); /* read input */
 Sym = Input;
 S(); /* analyse input */
 test('.'); /* a period must end the string */
 printf("No errors\n");
 }

13

String pattern-matching

An algorithm is desired which can decide if a given text string s matches another text string
p.16,20 The string p, the pattern, may contain occurrences of a “don’t care” symbol * which
can match any substring. If, for example, p is the pattern ab*c, then p matches all strings
starting with ab and ending with a c.

CBack makes it relatively simple to write a function which can decide if a string s matches a
given pattern p. Such a function, Match, is shown below.

 int Match(char* s, char *p)
 {
 if (Choice(2) == 2)
 return 0; /* no match, all alternatives exhausted */
 while (*p) { /* while more characters in pattern p */
 if (*p == '*') { /* current character in pattern is * ? */
 p++; /* move to next character in pattern */
 s += Choice(strlen(s)) - 1; /* try to skip in s */
 }
 else if (*p++ != *s++) /* if match, advance p and s */
 Backtrack(); /* otherwise backtrack */
 }
 if (*s) /* if no more characters in s */
 Backtrack(); /* then backtrack */
 ClearChoices(); /* clear all pending Choice-calls */
 return 1; /* and return 1 (a match was found) */
 }

This function exploits the user facility ClearChoices for deleting all unfinished Choice-
calls. In this way the program is prevented from returning to the Match-function in an at-
tempt to find an alternative match in the event that Backtrack is called.

14

IMPLEMENTATION

The central implementation problem is to find a suitable method for re-establishing the pro-
gram state at a Backtrack-call. It must be possible to re-establish the state exactly as it
was at the most recent unfinished Choice-call.

The following three basic methods are available:

 (1) Reverse execution
(2) Recording relative state changes

 (3) Copying of states

In the reverse execution method the Choice-state is re-established by running backwards all
actions executed since the Choice-call and undoing their effects. For example, the effect of
the assignment a = b + 1 may be undone by executing a = b - 1. After that, the exe-
cution continues forwards with a new untried value for the Choice-call.2,4

In the second method, recording relative state changes, all state changes relative to a given
state are recorded. This given state might, for example, be the state at the most recent unfin-
ished Choice-call. When Backtrack is called, it is possible from these recordings to re-
create the program state as it was at the Choice-call.14,21 This method is commonly used in
Prolog implementations where the relative state changes are recorded in the form of variable
bindings.22

Adding backtrack primitives to a programming language by means of these two methods
usually requires either compiler modifications, changes of the runtime system, or the con-
struction of special preprocessor programs.

On the other hand, the third method, copying of states, is very simple to implement. At every
Choice-call, a copy of the program’s state is saved. When Backtrack is called, it is
easy to re-create the program state from the saved copy. The copies are saved in a stack. A
call of Backtrack re-establishes the state exclusively from the top element of the stack.
When a Choice-call returns its last alternative, the corresponding copy is popped from the
stack.

This method forms the basis of the implementation of CBack. As will be described in the
following, it has been possible to achieve a high degree of portability and, at the same time, a
reasonable efficiency regarding both time and space.

The first implementation problem to be discussed is the resumption of Choice at a
Backtrack call. How is control to be transferred from Backtrack to Choice?

Here the standard C library functions setjmp and longjmp may contribute to a solution.
These two functions jointly enable this kind of non-local control transfer.23

Calling setjmp causes sufficient information to be stored so that subsequent longjmp-
calls can transfer the control back to the setjmp-call. The call setjmp(env) saves state
information (the calling environment) in its array argument, env, for later use by longjmp.
The call longjmp(env,val) restores the state saved by the most recent invocation of
setjmp with the corresponding env argument. After longjmp is completed, program
execution continues as if the corresponding invocation of setjmp had just returned the
value specified by val.

15

At first sight these two functions seem to solve the problem: Choice calls setjmp, and
Backtrack calls longjmp. It is necessary, however, to take an important restriction in the
use of setjmp and longjmp into consideration: if the function containing the invocation of
setjmp has terminated, the behaviour of longjmp is undefined. Thus, when a Choice-call
has returned a value, thus leading the C system to believe that it has terminated, it is not pos-
sible for longjmp to return to the setjmp-call in Choice.

This problem may be solved, however, if it is possible to re-establish the program state in
such a way that Choice still seems to be executing when longjmp is called. In this way,
the longjmp-call in Backtrack will apparently be made by Choice. The longjmp-call
is therefore legal and causes a jump to the setjmp-call in Choice, as intended. Suppose all
information about non-terminated functions is available. Then a possible solution is to take a
copy of this information before a setjmp-call, and copy it back before a longjmp-call.
This method has been used in the present implementation.

Below is shown the implementation of the Choice-function. If the number of alternatives,
N, is greater than one, then PushState is called to save information about the actual state
of the program at the top of a stack. Information about the calling environment is saved by
setjmp. When all choice possibilities are exhausted, the saved state is removed from the
stack by a call of PopState.

 unsigned long Choice(const long N)
 {
 if (N <= 0)
 Backtrack();
 LastChoice = 1;
 if (N == 1)
 return 1;
 PushState();
 setjmp(TopState->Environment); /* to be resumed by Backtrack */
 if (LastChoice == N)
 PopState();
 return LastChoice;
 }

Each state element in the stack corresponds to an unfinished Choice-call and is represented
by a structure of the type State.

 typedef struct State {
 struct State *Previous;
 unsigned long LastChoice;
 jmp_buf Environment;
 char *StackTop, *StackBottom;
 } State;

The stack is represented by a one-way list where each element’s Previous refers to its prede-
cessor. LastChoice is used to remember the last value returned by the Choice-call.
Environment is the array used by setjmp for saving information about the calling envi-
ronment. In continuation of the State structure, a copy of C’s runtime stack is saved; the
pointers StackBottom and StackTop are used for remembering the bounds of that area.
The principle is illustrated in Figure 6.

16

 Previous
 LastChoice
 Environment

 StackTop
 StackBottom

Copy of C's
runtime
stack

C's runtime
stack

State

Figure 6. Principle for the use of State.

The state elements are dynamically allocated by PushState in C’s runtime heap (using
malloc), and are deallocated by PopState (using free).

Given the declarations

 State *TopState = 0, *Previous;
 unsigned long LastChoice;
 void (*Fiasco)();

where TopState points to the topmost element of the stack of states, then the functions
Backtrack, PushState and PopState may be sketched as follows.

 void Backtrack(void)
 {
 if (!TopState) {if (Fiasco) Fiasco(); exit(0);}
 LastChoice = ++TopState->LastChoice;
 Restore C's runtime stack from TopState;
 longjmp(TopState->Environment, 1); /* resume Choice */
 }

void PushState(void)
 {
 Previous = TopState;
 TopState = (State*) malloc(sizeof(State) + StackSize);
 TopState->Previous = Previous;
 TopState->LastChoice = LastChoice;
 Store a copy of C's runtime stack in TopState;
 }

 void PopState(void)
 {
 Previous = TopState->Previous;
 free(TopState);
 TopState = Previous;
 }

Here remains only to be specified how the contents of C’s runtime stack are saved and re-
stored by PushState and Backtrack, respectively. Two global pointers,
StackBottom and StackTop, are used for this purpose. They refer to the first and last

17

character, respectively, in that part of C’s runtime stack which is to be saved.
StackBottom is usually determined at the program start, whereas StackTop varies dur-
ing program execution.

The present implementation is independent of the orientation of C’s runtime stack. But if it is
assumed here, for the sake of simplicity, that the stack grows from low addresses towards
high addresses (i.e. StackBottom <= StackTop), then PushState may be pro-
grammed as follows.

 #define StackSize (StackTop - StackBottom + 1)

 void PushState(void)
 {
 char Dummy;

 StackTop = &Dummy;
 Previous = TopState;
 TopState = (State*) malloc(sizeof(State) + StackSize);
 TopState->Previous = Previous;
 TopState->LastChoice = LastChoice;
 TopState->StackBottom = StackBottom;
 TopState->StackTop = StackTop;
 memcpy((char*) TopState + sizeof(State), StackBottom, StackSize);
 }

The address of the character Dummy is used to determine the top address of C’s run-time
stack. Whether it actually is the current top address is not important, as long as it is greater
than the top address before the call of PushState. The copying of the stack contents is
done by using the standard C library function memcpy.

The function Backtrack, shown below, determines the current stack top in the same way.
As long as the current top address is lower than the stack top address for the program state to
be re-established, Backtrack is called recursively. This prevents the restored stack con-
tents from being destroyed by the subsequent call of longjmp.

 void Backtrack(void)
 {
 char Dummy;

 if (!TopState) {if (Fiasco) Fiasco(); exit(0);}
 if (TopState->StackTop > &Dummy)
 Backtrack();
 LastChoice = ++TopState->LastChoice;
 StackBottom = TopState->StackBottom;
 StackTop = TopState->StackTop;
 memcpy(StackBottom, (char*) TopState + sizeof(State), StackSize);
 longjmp(TopState->Environment, 1);
 }

The present implementation of the tool also provides facilities for “notification” of variables.
Notified variables have to be saved when Choice is called, and restored when
Backtrack is called. The implementation of this feature is quite simple. Notifications are
recorded in a list of structures of the type Notification:

18

 typedef struct Notification {
 void *Base;
 size_t Size;
 struct Notification *Next;
 } Notification;

where Base denotes the start address of the notified variable, Size its size measured in
number of characters, and Next points to the next notification in the list.

Let FirstNotification point to the first notification of the list. Then the contents of
notified variables can be saved by PushState as follows:

 B = (char*) TopState + sizeof(State);
 for (N = FirstNotification; N; B += N->Size, N = N->Next)
 memcpy(B, N->Base, N->Size);

and restored by Backtrack:

 B = (char*) TopState + sizeof(State);
 for (N = FirstNotification; N; B += N->Size, N = N->Next)
 memcpy(N-Base, B, N->Size);

The last implementation problem to be mentioned has to do with the determination of
StackBottom, the address of the first character in that part of C’s runtime stack which is
saved when Choice is called.

In some C systems the stack bottom is always placed at the same storage address, independ-
ently of the program to be executed. In such systems StackBottom may be initialized with
this address. This initialization can be done once and for all when CBack is installed.

In order to make the software independent of any assumptions about the stack bottom, the
user is offered the macro Backtracking with the following definition:

#define Backtracking(S) {char Dummy; StackBottom = &Dummy; S;}

Backtracking(S), where S is a sentence, determines the value of StackBottom before S
is executed. Suppose, for example, that all automatic variables in a program are to be back-
tracked. In this case, the function main is given a new name, for example Problem, and
Backtracking is called as shown below.

main() Backtracking(Problem())

19

GENERALIZED BACTRACKING

So far in this description of CBack, the basic search method has been depth-first search. At
each Choice-call the program completes the exploration of an alternative before the next
alternative is tried.

One danger of this search method is that the program may waste a lot of time in making ex-
tensive investigations in directions which turn out to be blind alleys. Therefore there is a need
for a means of directing the search away from such futile explorations. A means of achieving
this is best-first search. Here the search process focuses on those alternatives which seem to
be the most promising in order to solve the problem. That alternative which currently seems
to be the most promising, is examined first.

The tool may easily be extended with facilities for best-first search. To each Choice-call the
user may attach a heuristic value, Merit, which expresses how promising the current state
seems to be. The greater the Merit-value is, the closer the solution seems to be.

The Merit-value is given before the call of Choice, for example

 Merit = value;
 i = Choice(N);

Choice and Backtrack work, as described earlier; but with the change that program
execution no longer proceeds with the last unfinished Choice-call, but with the best one,
i.e. that unfinished Choice-call which currently has the greatest Merit-value attached. In
case of more than one Choice-call having the same greatest Merit-value, the program
continues with the most recent one of these calls.

This extension is simple to implement. Instead of saving copies of the program state in a
stack, as described in the previous section, they are saved in a priority queue. Since this may
be done with a few lines of code (in Choice), and the extension in no way affects the usual
backtrack programs, the generalized backtrack facilities have been included in the actual im-
plementation.

In the following a simple example is given of the application of the tool for best-first search,
namely the so-called 15-puzzle. Fifteen numbered pieces have been placed on a quadratic
board, for example as shown below.

11 9 4 15

 1 3 12

 7 5 8 6

13 2 10 14

0

20

One of the squares is empty (the hatched square containing a zero). In each move it is per-
mitted to move a piece to the empty square from one of the neighbouring squares in the same
row or column. The problem is to find a sequence of legal moves that leads from the initial
board position to a goal position, for example to

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 00

A program which solves this problem is sketched in Figure 7. The program uses a structure
type, Position, for representing positions which arise during the search. The positions
with their piece placements, Piece, are saved in a tree; the pointer Dad refers to the previ-
ous position. The saved positions are used for printing the intervening positions between the
start position and the goal position if a solution is found. And, they are used to prevent the
same position from being analysed more than once. In this program, however, the search for
such possible duplicate positions is confined to the ancestors of the current position.

Initialisation of the start position and the goal position might be made as follows

 for (r = 1; r <= 4; r++) {
 for (c = 1; c <= 4; c++) {
 scanf("%d",&P[r][c]);
 if (!P[r][c]) {X = r; Y = c;}
 G[r][c] = (r != 4 || c != 4 ? (r-1)*4 + c : 0);
 }
 }

21

 #include "CBack.h"
 #define P CurrentPosition.Piece
 #define G GoalPosition.Piece

 typedef struct Position {
 int Piece[5][5]; /* Piece[r][c]: number of piece on (r,c) */
 struct Position *Dad; /* points to previous position */
 } Position;

 Position GoalPosition;

 main()
 {
 Position CurrentPosition = {0}, *s;
 int r, c, X, Y; /* (X,Y): the empty square */

 Initialize CurrentPosition, GoalPosition and (X,Y);

 while (memcmp(P, G, sizeof(P))) { /* while solution not found */
 Merit = merit value; /* compute Merit */
 switch(Choice(4)) { /* choose a move */
 case 1: r = X; c = Y + 1; break;
 case 2: r = X + 1; c = Y; break;
 case 3: r = X; c = Y - 1; break;
 case 4: r = X - 1; c = Y; break;
 }
 if (r < 1 || r > 4 || c < 1 || c > 4) /* outside board ? */
 Backtrack();
 P[X][Y] = P[r][c]; /* make move */
 P[X = r][Y = c] = 0;
 for (s = CurrentPosition.Dad; s; s = s->Dad)
 if (!memcmp(P, s->Piece, sizeof(P))) /* duplicate? */
 Backtrack();
 s = (Position*) malloc(sizeof(Position));
 s = CurrentPosition; / copy CurrentPosition */
 CurrentPosition.Dad = s;
 }
 Print Solution;
 }

Figure 7. Program for solving the 15-puzzle.

It is difficult to specify a heuristic value, Merit, which gives a good estimate of how close a
given position is to the goal position. Below is shown a computational method which, in
practice, has given reasonable execution times. The sum of squared Manhattan distances
between the current and desired positions of the pieces is computed, and 100 is added for
each pair of neighbouring pieces which have been exchanged in relation to their desired
placements. This computed value is used with an opposite sign as the Merit-value.

22

 Merit = 0;
 for (r = 1; r <= 4; r++) {
 for (c = 1; c <= 4; c++) {
 if (P[r][c] && P[r][c] != G[r][c]) { /* if P[r][c] misplaced */
 d = abs(1+(P[r][c]-1)/4 - r) + /* d = Manhattan */
 abs(1+(P[r][c]-1)%4 - c); /* distance to goal */
 Merit -= d*d;
 if (G[r][c]) {
 if (r < 4 && P[r][c] == G[r+1][c]
 && P[r+1][c] == G[r][c])
 Merit -= 100; /* exchanged pair */
 if (c < 4 && P[r][c] == G[r][c+1]
 && P[r][c+1] == G[r][c])
 Merit -= 100; /* exchanged pair */
 }
 }
 }
 }

Execution of the program with this heuristic value resulted in a solution of 111 moves. On a
Sun SPARCserver 10/30 the execution time was only 0.22 cpu seconds. The computation of
Merit may be changed to implicate the number of moves. By replacing the first statement,
Merit = 0, by Merit = -Moves, where Moves denotes the number of moves, a much
shorter solution was obtained, namely 63 moves. The execution time was measured as 0.33
seconds.

23

EVALUATION

Ease of use

CBack appears to be very easy to use. Having knowledge of only two primitives, Choice
and Backtrack, the user may solve many problems of a combinatorial nature in a simple
manner. A contributory reason for this simplicity is a clear and natural distinction between
variables to be backtracked and variables which are not backtracked. The default is that all
automatic variables (including variables in the runtime stack) are backtracked. The remaining
variables are usually not backtracked, but may be made backtrackable by means of “notifica-
tion”.

The standard search method is depth-first search. Best-first search may be achieved just by
assigning the variable Merit a value before calling Choice. This extension of the possi-
bilities of backtracking has no influence whatsoever on programs that use depth-first search.

In the case of an error in the use of the tool, the program is terminated with a brief explana-
tory error message. A call of Backtrack when there is no unfinished Choice-call to re-
turn to, also causes program termination. The function pointer Fiasco may conveniently be
used in this case to cause a desired reaction.

Extensibility

The present version of CBack contains few, but general facilities. An extension with extra
facilities may be made, if required. In many cases the extension can be made by simple addi-
tion. Suppose for example that there is a need of a function, Select, which corresponds to
Choice but returns integer values from any interval [a;b]. Select can easily be imple-
mented by the following macro definition:

#define Select(a, b) ((a) - 1 + Choice((b) - (a) + 1))

Another example is a function, Pick, for the systematic choice of the elements of a one-way
list. If each element is a structure of type Element having a pointer, Next, to the next ele-
ment in the list, a possible, but somewhat inefficient implementation of Pick could be

 Element *Pick(Element *L)
 {
 return (!L->Next || Choice(2) == 1 ? L : Pick(L->Next));
 }

Other extensions may require a certain knowledge of the implemented code. If, for example,
statistics about the stack of program states are desired, it is necessary to know the internal
data structure (State). However, the clear code makes it practicable to make such exten-
sions, if required.

Efficiency

The efficiency of CBack is reasonably good. The execution time bottleneck arises when
saving and restoring the program state (i.e. call of memcpy). If the program state is changed
relatively little between calls of Choice and subsequent calls of Backtrack, then an ordi-
nary recursive function which explicitly saves and restores the values of the variables may be
somewhat faster. This is the case for several of the examples used in this paper.

The power of the tool is particularly apparent when implementing algorithms in which back-
tracking is an extensive and complicated matter. For example, in algorithms using dynamic

24

data structures. What is also important is that the tool greatly simplifies the programming
process. The user may concentrate on solving the actual problem at hand and focus on
achieving the best possible pruning of the search tree. Moreover, it is a great advantage that
the depth-first search strategy can easily be replaced by best-first search (as opposed to an
algorithm based on recursion).

In connection with best-first search it should be noted that the priority queue has been im-
plemented as an ordered one-way list. An efficiency improvement might be obtained by us-
ing a heap instead.

Another aspect is the demand on storage space. At each call of Choice a copy of the current
program state is saved in a list. The copy remains in that list until the Choice-call in ques-
tion has returned all its values. How much space each copy takes up depends on the user-
program and the C compiler. Using the GNU C compiler on Sun SPARCserver 10/30, the
fixed part (the State part) of each copy occupies 60 bytes. The remaining part (runtime
stack and notification part) varies of course from program to program. For the program NQ1
(Figure 3) with N = 8 this part occupies 388 bytes. Thus the total storage requirement for
each copy is 448 bytes. The requirement may be lowered to 332 bytes by replacing the int-
type specification in the program with a char-type specification.

The storage requirement may be a problem in certain applications; but usually it is of decisive
significance only when best-first search is used.

Portability

In the implementation of CBack, great emphasis has been put on its portability. In spite of its
interference with C’s runtime stack, the software may be ported without any changes to most
C compilers. CBack has been installed and tested successfully with several C compilers, for
instance Sun C, GNU C, Metrowerks C, MPW C, THINK C, VAX ULTRIX and Borland
C. The code should work under any C implementation that uses an ordinary runtime stack
(as opposed to a linked list of frames). A short guide in the Appendix describes how CBack
is installed.

25

REFERENCES

 1. S. W. Golomb and L. D. Baumert,
 Backtrack programming.
 Journal ACM 12(4), 516-524 (1965).

 2. R. W. Floyd,
 Nondeterministic algorithms.
 Journal ACM 14(4), 636-644 (1967).

 3. J. R. Bitner and E. M. Reingold,
 Backtrack Programming Techniques.
 Commun. ACM 18(11), 651-656 (1975).

 4. J. Cohen,
 Non-deterministic algorithms.
 Computing Surveys 11(2), 79-94 (1979).

 5. N. Wirth,
 Algorithms and Data Structures.
 Prentice Hall, 1986.

 6. O. G. Bobrow and R. Raphael,
 New programming languages for artificial intelligence research.
 Computing Surveys 6(3), 155-174 (1974).

 7. I. Bratko,
 Prolog programming for artificial intelligence.
 2nd edn, Addison-Wesley,1990.

8. J. Cohen and E. Carton,
 Non-deterministic Fortran.
 Computer Journal 17(1), 44-51 (1974).

 9. P. Johansen,
 Non-deterministic programming.
 BIT 7 , 289-304 (1967).

10. K. Helsgaun,
 Backtrack Programming with SIMULA.
 Computer Journal 27(2), 151-158 (1984).

11. G. Lindstrom,
 Backtracking in a generalized control setting.
 ACM Trans. Prog. Lang. Sys. 1(1) 8-26 (1979).

12 . B. W. Kernighan and D. M. Ritchie,
 The C Programming Language.
 2nd edn, Prentice Hall,1988.

13. J. P. Fillmore and S. G. Williamson,
 On Backtracking: A Combinatorial Description of the Algorithm.
 SIAM J. Comput. 3(1), 41-55 (1974).

14. J. A. Self,
 Embedding non-determinism.
 Software-Practice and Experience 5 , 221-227 (1975).

26

15. D. R. Hanson,
 A Procedure Mechanism for Backtrack Programming.
 ACM Proc. annual conf., 401-405 (1976).

16. C. Montangero, G. Pacini and F. Turini,
 Two-level Control Structure for Nondeterministic Programming.
 Comm. ACM 20(10), 725-730 (1977).

17. R. M. Haralick and G. L. Elliot,
 Increasing tree search efficiency for constraint satisfaction problems.
 Artificial Intelligence 14 , 263-313 (1980).

18. P. W. Purdom, Jr.,
 Search rearrangement backtracking and polynomial average time.
 Artificial Intelligence 21(1-2), 117-133 (1983).

19. C. A. Brown, L. Finkelstein and P. W. Purdom, Jr.,
 Backtrack Searching in the Presence of Symmetry.
 Lecture Notes in Computer Science 357 , 99-110 (1989).

20. R. E. Griswold and D. R. Hanson,
 Language facilities for programmable backtracking.
 SIGPLAN Not. 12(8), 94-99 (1977).

21. C. Prenner, J. Spitzen and B. Wegbreit,
 An implementation of backtracking for programming languages.
 Proc. 27th Nat. Conf. ACM, 763-771 (1972).

22. J. A. Campbell (ed.),
 Implementations of Prolog.
 Halsted Press, 1985.

23. P. J. Plauger,
 The Standard C Library.
 Prentice Hall,1992.

27

APPENDIX

Summary of the user facilities

unsigned long Choice(const long N)
generates successive integer values from 1 to N. Calling Choice returns the value 1. The
values 2 to N are returned through subsequent calls of Backtrack. Calling Choice with a
non-positive argument is equivalent to calling Backtrack. If more than one Choice-call
simultaneously may return a value, then the call having the greatest value of Merit will re-
turn first (in case of equality, the most recent call). After such a return, all automatic and noti-
fied variables have the same values as at the time of the initiation of the Choice-call in ques-
tion.

void Backtrack(void)
causes the program execution to continue at the unfinished call of Choice having the great-
est Merit-value (in case of equality, the most recent call). If in calling Backtrack, no
unfinished call of Choice exists, then Fiasco is called after which the program termi-
nates.

void (*Fiasco)(void)
is a pointer to a parameter free function. In case Backtrack is called in a situation where all
Choice-calls are finished, the program terminates. If Fiasco points to a function, it is
called immediately before the termination. Fiasco has the value zero at program start, but
may be assigned a value by the user.

long Merit
Each call of Choice may be given a heuristic value by assigning the variable Merit a
value before the call. When Choice and Backtrack are called, the program continues
with the Choice-call having the greatest Merit-value (in case of equality, the most recent
one). Merit is backtracked. Its value is zero at program start.

unsigned long NextChoice(void)
immediately returns the next value for the most recent Choice-call; but (unlike
Backtrack) does not restore the program’s state. The return value is excluded as a possi-
ble future return value for the Choice-call. If however, the most recent Choice-call is fin-
ished, calling NextChoice is equivalent to calling Backtrack.

void Cut(void)
deletes the most recent Choice-call and causes a Backtrack to the Choice-call having
the greatest Merit-value.

void ClearChoices(void)
deletes all unfinished Choice-calls.

void *NotifyStorage(void *Base, size_t Size)
“notifies” a storage area, where Base is its start address and Size denotes its size (meas-
ured in characters). This causes the area to have its contents re-established each time
Backtrack is called. By the resumption of Choice the area is restored to its contents at
the time of call. Notification is only allowed when there are no unfinished Choice-calls.

In order to make it easy for the user to make notifications the macros Notify, Ncalloc,
Nmalloc and Nrealloc are offered.

void *Notify(V)
is equivalent to the call NotifyStorage(&V,sizeof(V)).

28

void *Ncalloc(size_t N, size_t Size)
void *Nmalloc(size_t Size)
void *Nrealloc(void *P, size_t Size)
correspond to the standard C library functions calloc, malloc and realloc; but with
the addition that the allocated storage is notified.

void RemoveNotification(void *Base)
deletes a possible notification of the storage pointed to by Base. Notifications may be de-
leted only if there are no unfinished Choice-calls.

void Nfree(void *P)
corresponds to the standard C library function free; but with the addition that a possible
notification of the storage area is cleared.

void ClearNotifications(void)
deletes all notifications.

void ClearAll(void)
deletes all notifications as well as all unfinished Choice-calls.

void Backtracking(S)
For some C systems it is necessary to use the macro Backtracking in order to achieve
correct execution. Backtracking(S), where S is a statement, ensures that S is executed
with the correct effect of the backtrack facilities. Generally the call of Backtracking is the
only statement in main, while S is merely a function call which causes the rest of the pro-
gram to be executed.

29

Installation guide

The software has been written in the ANSI standard for C. If the C compiler concerned does
not fulfil this standard, some simple changes are necessary:

• Replace all occurrences of void* with char*.

• Rewrite all function declarations to the old form
 (i.e. without prototypes).

• If <stddef.h> is not available, then insert the following line in
 the beginning of CBack.h:

 typedef unsigned long int size_t;

• If <stdlib.h> is not available, then use <malloc.h> instead.

• If the function labs is not available, then use abs instead
 (in the macro definition of StackSize in the beginning of CBack.c).

The code may now be compiled and tested with some simple examples (e.g. program 8Q in
Figure 2). It will, however, be necessary to use the macro Backtracking. In the program
the function name main is changed, for example to Problem, and the following line is ap-
pended to the program:

main() Backtracking(Problem())

If C’s runtime stack always has its bottom at the same address, then the Backtracking
macro can be made superfluous (in most applications). After having executed the following
small program

 main() Backtracking(printf("%lx\n",StackBottom))

the address written by the program is inserted as the initial value for the variable
StackBottom (in the beginning of CBack.c).

Some C systems do not always keep the runtime stack up-to-date but keep some of the vari-
able values in registers. This is for example the case for C systems on Sun machines. If this
is the case, the macro Synchronize must be used; the comment characters are simply re-
moved from the macro definition (in the beginning of CBack.c).

30

Source code of CBack.h

#ifndef Backtracking
#define Backtracking(S) {char Dummy; StackBottom = &Dummy; S;}
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <setjmp.h>

#define Notify(V) NotifyStorage(&V, sizeof(V))
#define Nmalloc(Size) NotifyStorage(malloc(Size), Size)
#define Ncalloc(N, Size) NotifyStorage(calloc(N,Size), (N)*(Size))
#define Nrealloc(P, Size)\
 (RemoveNotification(P),\
 NotifyStorage(realloc(P, Size), Size))
#define Nfree(P) (RemoveNotification(P), free(P))
#define ClearAll() (ClearChoices(), ClearNotifications())

unsigned long Choice(const long N);
void Backtrack(void);
unsigned long NextChoice(void);
void Cut(void);
void ClearChoices(void);

void *NotifyStorage(void *Base, size_t Size);
void RemoveNotification(void *Base);
void ClearNotifications(void);

extern void (*Fiasco)();
extern long Merit;
extern char *StackBottom;
#endif

31

Source code of CBack.c

#include "CBack.h"
char *StackBottom = (char*) 0xeffff347;
long Merit;
void (*Fiasco)(void);

#define StackSize labs(StackBottom - StackTop)
#define Synchronize /* {jmp_buf E; if (!setjmp(E)) longjmp(E,1);} */

typedef struct State {
 struct State *Previous;
 unsigned long LastChoice, Alternatives;
 long Merit;
 char *StackBottom, *StackTop;
 jmp_buf Environment;
} State;

typedef struct Notification {
 void *Base;
 size_t Size;
 struct Notification *Next;
} Notification;

static State *TopState = 0, *Previous, *S;
static unsigned long LastChoice = 0, Alternatives = 0;
static char *StackTop;
static Notification *FirstNotification = 0;
static size_t NotifiedSpace = 0;

static void Error(char *Msg)
{
 fprintf(stderr,"Error: %s\n",Msg);
 exit(0);
}

static void PopState(void)
{
 Previous = TopState->Previous;
 free(TopState);
 TopState = Previous;
}

32

static void PushState(void)
{
 char *B;
 Notification *N;

 StackTop = (char*) &N;
 Previous = TopState;
 TopState = (State*) malloc(sizeof(State)+NotifiedSpace+StackSize);
 if (!TopState)
 Error("No more space available for Choice");
 TopState->Previous = Previous;
 TopState->LastChoice = LastChoice;
 TopState->Alternatives = Alternatives;
 TopState->Merit = Merit;
 TopState->StackBottom = StackBottom;
 TopState->StackTop = StackTop;
 B = (char*) TopState + sizeof(State);
 for (N = FirstNotification; N; B += N->Size, N = N->Next)
 memcpy(B, N->Base, N->Size);
 Synchronize;
 memcpy(B,StackBottom < StackTop ? StackBottom : StackTop, StackSize);
}

unsigned long Choice(const long N)
{
 if (N <= 0)
 Backtrack();
 LastChoice = 1;
 Alternatives = N;
 if (N == 1 && (!TopState || TopState->Merit <= Merit))
 return 1;
 PushState();
 if (!setjmp(TopState->Environment)) {
 if (Previous && Previous->Merit > Merit) {
 for (S = Previous; S->Previous; S = S->Previous)
 if (S->Previous->Merit <= Merit)
 break;
 TopState->Previous = S->Previous;
 S->Previous = TopState;
 TopState->LastChoice = 0;
 TopState = Previous;
 Backtrack();
 }
 }
 if (LastChoice == Alternatives)
 PopState();
 return LastChoice;
}

33

void Backtrack(void)
{
 char *B;
 Notification *N;

 if (!TopState) {
 if (Fiasco)
 Fiasco();
 exit(0);
 }
 StackTop = (char*) &N;
 if ((StackBottom < StackTop) == (StackTop < TopState->StackTop))
 Backtrack();
 LastChoice = ++TopState->LastChoice;
 Alternatives = TopState->Alternatives;
 Merit = TopState->Merit;
 StackBottom = TopState->StackBottom;
 StackTop = TopState->StackTop;
 B = (char*) TopState + sizeof(State);
 for (N = FirstNotification; N; B += N->Size, N = N->Next)
 memcpy(N->Base, B, N->Size);
 Synchronize;
 memcpy(StackBottom < StackTop ? StackBottom : StackTop,B, StackSize);
 longjmp(TopState->Environment, 1);
}

unsigned long NextChoice(void)
{
 if (++LastChoice > Alternatives)
 Backtrack();
 if (LastChoice == Alternatives)
 PopState();
 else
 TopState->LastChoice = LastChoice;
 return LastChoice;
}

void Cut(void)
{
 if (LastChoice < Alternatives)
 PopState();
 Backtrack();
}

void *NotifyStorage(void *Base, size_t Size)
{
 Notification *N;

 if (TopState)
 Error("Notification (unfinished Choice-calls)");
 for (N = FirstNotification; N; N = N->Next)
 if (N->Base == Base)
 return 0;
 N = (Notification*) malloc(sizeof(Notification));
 if (!N)
 Error("No more space for notification");
 N->Base = Base;
 N->Size = Size;
 NotifiedSpace += Size;
 N->Next = FirstNotification;
 FirstNotification = N;
 return Base;
}

34

void RemoveNotification(void *Base)
{
 Notification *N, *Prev = 0;

 if (TopState)
 Error("RemoveNotification (unfinished Choice-calls)");
 for (N = FirstNotification; N; Prev = N, N = N->Next) {
 if (N->Base == Base) {
 NotifiedSpace -= N->Size;
 if (!Prev)
 FirstNotification = N->Next;
 else
 Prev->Next = N->Next;
 free(N);
 }
 }
}

void ClearChoices(void)
{
 while (TopState)
 PopState();
 LastChoice = Alternatives = 0;
}

void ClearNotifications(void)
{
 while (FirstNotification)
 RemoveNotification(FirstNotification->Base);
}

	SUMMARY
	INTRODUCTION
	ILLUSTRATIVE EXAMPLES
	The 8-queens problem
	Generation of permutations
	Syntax analysis
	String pattern-matching

	IMPLEMENTATION
	GENERALIZED BACKTRACKING
	EVALUATION
	REFERENCES
	APPENDIX
	Summary of the user facilities
	Installation guide
	Source code of CBack.h
	Source code of CBack.c

