M. Abdel-Basset ,R. Mohamed, K. M. Sallam, and R. K. Chakrabortty,
An Efficient-Assembler Whale Optimization Algorithm for DNA Fragment
Assembly Problem: Analysis and Validations.
IEEE Access, vol. 8, pp. 222144-222167, 2020.
F. Abedi, D. W. Morris, J. Rezaee, and M. R. Salarian,
Cayley graphs of order 8pq are hamiltonian.
arXiv:2304.03348 [math.CO], 2023.
N. Absi and C. Archetti and S. Dauzère-Pérès and D. Feillet, and B. Ahrens,
A two-phase iterative heuristic approach for the Production Routing Problem.
Working Papers, University of Brescia, WPDEM 2013/8, 2013.
L. Accorsi and D. Vigo,
A Fast and Scalable Heuristic for the Solution of Large-Scale Capacitated
Vehicle Routing Problems.
Research report, OR-20-2, University of Bologna, 2020.
L. Accorsi,
Innovative Hybrid Approaches for Vehicle Routing Problems.
Ph.D. thesis, Univesity of Bologna, 2022.
R. Aciu and H. Ciocarlie,
G-code optimization algorithm and its application on printed circuit board drilling.
9th IEEE International Symposium on Applied Computational Intelligence and
Informatics (SACI), pp. 43-47, 2014.
P. Agarwal, D. Bagchi, T. Rambha, and V. Pandey,
A Bi-criterion Steiner Traveling Salesperson Problem with Time Windows
for Last-Mile Electric Vehicle Logistics.
arXiv:2409.14848 [math.OC], 2024.
S. Agarwal and S. Akella,
The Single Robot Line Coverage Problem: Theory, Algorithms and Experiments.
NETWORKS, 2023.
C. Ahmed, A. Forel, A. Parmentier, and T. Vidal
DistrictNet: Decision-aware learning for geographical districting.
arXiv:2412.08287 [cs.LG], 2024.
B. Ahrens,
A tour construction framework for the travelling salesman problem.
Ph.D. thesis, Nova Southeastern University, 2012.
R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen,
A survey of very large scale neighborhood search techniques.
Discrete Applied Mathematics 123, pp. 75-102, 2002.
K. Akbudak, E. Kayaaslan, and C. Aykanat,
Hypergraph-Partitioning-Based Models and Methods for Exploiting Cache Locality in
Sparse-Matrix Vector Multiplication.
Technical Report, BU-CE-1201, Bilkent University, 2012.
F. M. al-Rifaie and M. M. al-Rifaie,
Maximising overlap score in DNA sequence assembly problem by Stochastic
Diffusion Search.
SAI Inteligent Systems Conference, pp. 301-322, 2015.
K. Alexis, C. Papachristos, and R. Siegwart,
Uniform coverage structural inspection path–planning for micro aerial vehicles.
IEEE International Symposium on Intelligent Control, 2015.
K. Alexis, G. Darivianakis, M. Burri, and Roland Siegwart,
Aerial robotic contact-based inspection: planning and control.
Autonomous Robots, Voume 40, Issue 4, pp. 631-655, 2016.
K. Alexis, C. Papachristos, R. Siegwart, and A. Tzes,
Distributed Infrastructure Inspection Path Planning subject to Time Constraints.
arXiv:1612.08245 [cs.RO], 2016.
K. Alexis,
Aerial Drop of Robots and Sensors for Optimal Area Coverage.
arXiv:1711.10159 [cs.RO], 2017.
Z. A. Allen,
Use of traveling salesman problem solvers in the construction of genetic linkage maps.
M.Sc. thesis, Colorado State University, 2015.
M. Allaoui, B. Ahiod, and M. El Yafrani,
A hybrid crow search algorithm for solving the DNA fragment assembly problem.
Expert Systems with Applications, Volume 102, pp. 44-56, 2018.
R. Almadhoun, T. Taha, L. Seneviratne, J. Dias, and G. Cai,
A survey on inspecting structures using robotic systems.
International Journal of Advanced Robotic Systems, November-Dember 2016.
R. Almadhoun, T. Taha, D. Gan, J. Dias, Y. Zweiri, and L. Seneviratne,
Coverage Path Planning with Adaptive Viewpoint Sampling to Construct 3D
Models of Complex Structures for the Purpose of Inspection.
International Conference on Intelligent Robots and Systems, 2018.
R. Almadhoun, T. Taha, J. Dias, L. Seneviratne, and Y. Zweiri,
Coverage Path Planning for Complex Structures Inspection Using Unmanned
Aerial Vehicle (UAV).
ICIRA 2019, Lecture Notes in Computer Science, Vol. 11744, pp 243-266, 2019.
S. C. L. Ammann, B. Ostermann, S. Stiller, and T. de Wolff,
A Speed-up for Helsgaun's TSP Heuristic by Relaxing the Positive Gain Criterion.
arXiv:2401.16149 [math.OC], 2024..
B. Alper, N. H. Riche, G. Ramos, and M. Czerwinski,
Design Study of LineSets, a Novel Set Visualization Technique.
IEEE Transactions on Visualization and Computer Graphics, pp. 2259-2267, 2011.
S. Alshammari, S. Song, and B. -Y. Choi,
HiCARE: Hierarchical Clustering Algorithm for Road Service Routing Enhancement.
IEEE Access, 2023.
M. E. J. Amarel et al.,
A first generation whole genome RH map of the river buffalo with comparison to
domestic cattle.
BMC Genomics 9, No. 1, 2008.
R. P. Anderson and D. Milutinovic,
The Dubins Traveling Salesperson Problem with Stochastic Dynamics.
6th Annual Dynamic Systems and Control Conference, 2013.
C. E. Andrade, F. K. Miyazawa, and M. G. C. Resende,
Evolutionary algorithm for the k-interconnected multi-depot multi-traveling salesmen
problem.
GECCO 2013: 463-470.
D. Apiletti, E. Baralis, and T. Cerquitelli,
Energy-saving models for wireless sensor networks.
Knowledge and Information Systems, pp. 1-30, 2010.
D. L. Applegate, R. E. Bixby, V. Chvatal, W. Cook, D. G. Espinoza,
M. Goycoolea,
and K. Helsgaun,
Certification of an optimal TSP tour through 85,900 cities.
Operations Research Letters, 37, pp. 11-15, 2009.
D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook,
The Traveling Salesman Problem: A Computational Study.
Princeton University Press, 2006.
A. Arbelaez, C. Truchet, B. O'Sullivan,
Learning Sequential and Parallel Runtime Distributions for Randomized Algorithms.
International Conference on Tools with Artificial Intelligence, 2016.
A. Arbelaez and B. O’Sullivan,
Learning a Stopping Criterion for Local Search.
LION 2016, LNCS 10079, pp. 3-16, 2016.
C. Archetti, D. Feillet, A. Mor, and M. G. Speranza,
An iterated local search for the traveling salesman problem with release dates and
completion time minimization.
Computers and Operations Research, doi: 10.1016/j.cor.2018.05.001, 2018.
C. Archetti, E. Fernández, and D. L. Huerta-Muñoz,
A two-phase solution algorithm for the Flexible Periodic Vehicle Routing Problem.
Computers and Operations Research, doi: 10.1016/j.cor.2018.05.021, 2018.
C. Archetti, D. Feillet, A. Mor, and M. G. Speranza,
Dynamic traveling salesman problem with stochastic release dates.
European Journal of Operational Research, In Press, 2019.
F. Arnold,
Efficient heuristics for routing and integrated logistics.
Ph.D thesis, Universiteit Antwerpen, 2018.
F. Arnold, M. Gendreau, K. Sörensen,
Efficiently solving very large-scale routing problems.
Computers and Operations Research, Vol. 107, pp. 32–42, 2019.
S Arshad,
Sequence Based Memetic Algorithms for Static and Dynamic Travelling Salesman
Problems.
Ph.D. thesis, University of Leicester, 2012.
A. B. Asghar, S. L. Smith, and S. Sundaram,
Multi-Robot Routing for Persistent Monitoring with Latency Constraints.
arXiv:1903.06105 [cs.RO], 2019.
A. B. Asghar, S. Sundaram, and S, L. Smith,
Multi-Robot Persistent Monitoring: Minimizing Latency and Number of Robots
with Recharging Constraints.
arXiv:2303.08935 [cs.RO], 2023.
M. Avci, M. G. Avci, and A. Hamzadayı,
A branch-and-cut approach for the distributed no-wait flowshop scheduling problem.
In Press, Computers & Operations Research, 2022.
S. M. Avdoshin and E. N. Beresneva,
The Metric Travelling Salesman Problem: The Experiment On Pareto-optimal Algorithms.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, pp. 123-138, 2017.
L. Babel,
New heuristic algorithms for the Dubins traveling salesman problem.
Journal of Heuristics, https://doi.org/10.1007/s10732-020-09440-2, 2020.
F. Bachmann, H. Schaeben, and R. Hielscher,
Optimizing the experimental design of texture goniometry.
Journal of Applied Crystallography. Vol. 45, pp. 1173-1181, 2012.
J. Bae and S. Rathinam,
Approximation Algorithm for a Heterogeneous Vehicle Routing Problem.
International Journal of Advanced Robotic Systems, 12:113, DOI: 10.5772/60086, 2015.
J. Bae and W. Chung,
A Heuristic for a Heterogeneous Automated Guided Vehicle Routing Problem.
International Journal of Precision Engineering and Manufacturing, Vol. 18, No. 6,
pp. 795-801, 2017.
J. Bae and W. Chung,
A Heuristic for Path Planning of Multiple Heterogeneous Automated Guided Vehicles.
International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 12,
pp. 1765-1771, 2018.
J. Bae and W. Chung,
Efficient path planning for multiple transportation robots under various loading conditions.
International Journal of Advanced Robotic Systems, DOI: 10.1177/172988, 2019.
J. Bae and W. Chung,
Heuristics for Two Depot Heterogeneous Unmanned Vehicle Path Planning to
Minimize Maximum Travel Cost.
Sensors. Vol. 19,
No. 11, 2019.
D. H. Baik and K. K. Saluja,
Progressive random access scan: a simultaneous solution to test power,
test data volume
and test time.
Proceedings of IEEE International Test Conference, pp. 272-277, 2005.
M. L. Baker, M. R. Baker, C. F. Hryc, T. Ju, and W. Chiu,
Gorgon and pathwalking: Macromolecular modeling tools for subnanometer resolution
density maps.
Biopolymers, 97(9), pp. 655-668, 2012.
M. L. Baker, C. F. Hryc, Q. Zhang, W. Wu, J. Jakana, C. Haase-Pettingell, P. V. Afonine,
P. D. Adams, J. A. King, W. Jiang, and W. Chiu,
Validated near-atomic resolution structure of bacteriophage epsilon15 derived from
cryo-EM and modeling.
Proc. Natl. Acad. Sci. U S A., 110(30), pp.12301-12306, 2013.
M. R. Baker, I. Rees, S. J. Ludtke, W. Chiu.,and M. L. Baker,
Constructing and validating initial Cα models from subnanometer resolution density
maps with pathwalking.
Structure, 20(3), pp. 450-463, 2012.
P. Baniasadi,
Algorithms for Solving Variations of the Traveling Salesman Problem.
Ph.D. thesis, Flinders University, 2019.
P. Baniasadi, M. Foumani, K. Smith-Miles, and V. Ejov,
A transformation technique for the clustered generalized traveling salesman
problem with applications to logistics.
European Journal of Operational Research, Volume 285, Issue 2, p. 444-457, 2020.
P. Baniasadi, V. Ejov, J. A. Filar, M. Haythorpe, and S. Rossomakhine,
Deterministic “Snakes and Ladders” Heuristic for the Hamiltonian cycle problem.
Mathematical Programming Computation, September 2013.
P. Baniasadi, V. Ejov, J. A. Filar, M. Haythorpe, and S. Rossomakhine,
A new benchmark set for Traveling salesman problem and Hamiltonian cycle problem.
arXiv:1806.09285, [cs.DS], 2018.
S. Banik, S. Rathinam, and P. B. Sujit,
Min-Max Path Planning Algorithms for Heterogeneous, Autonomous Underwater Vehicles.
IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pp. 1-6, 2018.
S. Banik, P. B. Sujit, and S. Rathinam,
Multi-AUV Coverage with Functional Constraints and Currents.
2020 IEEE/OES Autonomous Underwater Vehicles Symposium, 2020.
J. Bao J, S. Mamun, J. Bao, W. Zhang, Y. Yang, A. Song,
Combining spatial clustering and tour planning for efficient full area exploration.
Robotica, 2024.
D. Barbucha, I. Czarnowski, P. Jȩdrzejowicz, E. Ratajczak-Ropel, and I. Wierzbowska,
e-JABAT - An Implementation of the Web-Based A-Team.
Intelligent Agents in the Evolution of Web and Applications, pp. 57-86, 2009.
U. Baroudi, M. Alshaboti, A. Koubaa, and S. Trigui,
Dynamic Multi-Objective Auction-Based (DYMO-Auction) Task Allocation.
Applied Scences, 10(9), 2020.
R. Barreira and J. C. Garcia,
Optimal Object Retrieval Paths in Indoor Spaces.
Report, Instituto Superior Técnico Lisboa, Portugal, 2018.
A. Barro,
Pointer Networks with Q-Learning for Combinatorial Optimization.
arXiv:2311.02629 [cs.LG], 2024.
M. Basson and P. Preux,
IDEQ: an improved diffusion model for the TSP.
RR-9558, INRIA, ffhal-04778946f.
S. Basu and M. Sharma,
Preprocessing Schemes for Tabu search on Asymmetric Traveling Salesman Problem.
Working paper, Indian Institute of Management Calcutta, WPS-735,
2013.
S. Basu, M. Sharma, and P. S. Ghosh,
Efficient preprocessing methods for tabu search: an application on asymmetric travelling
salesman problem.
INFOR, Volume 55, Issue 2, pp. 134-158, 2017.
N. T. Bauduin,
Multi-Hybrid Algorithm for Searching Solutions to Optimization Problems:
Case of Traveling Salesman Problem (TSP).
EasyChair, Preprint no. 4491, 2020.
R. Bazylevych, B. Prasad, R. Kutelmakh, R. Dupas, and L. Bazylevych,
Decomposition and Scanning Optimization Algorithms for TSP.
TMFCS, 2008.
R. Bazylevych, B. Prasad, R. Kutelmakh, R. Dupas, and L. Bazylevych,
A Decomposition Algorithm for Uniform Traveling Salesman Problem.
Proceedings of IICAI-09, pp. 47-56, 2009.
R. Bazylevych, R. Dupas, B. Prasad, B. Kuz, R. Kutelmakh, and L. Bazylevych,
A Parallel Approach for Solving a Large-Scale Traveling Salesman Problem.
Proceedings of IICAI-11 pp. 566-579, 2011.
R. Bazylevych, B. Kuz, R. Kutelmakh, R. Dupas, B. Prasad, Y. Haxhimusa, and L, Bazylevych,
A Parallel Ring Method for Solving a Large-scale Traveling Salesman Problem.
International Journal of Information Technology and Computer Science, Vol. 8, No. 5, 2016.
R. Bazylevych, R. Kutelmakh, and B. Prasad,
Software Architecture for Solving Large-scale Traveling Salasmen Problem.
Modern engineering and innovative technologies, No. 26-01, 2023.
R. Bähnemann, N. Lawrance, J. J. Chung, M. Pantic, R. Siegwart, and J. Nieto,
Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling
Salesman Problem.
arXiv:1907.09224 [cs.RO], 2019.
A. Bdeir, S. Boeder, T. Dernedde, K. Tkachuk, J. K. Falkner, and L. Schmidt-Thieme,
RP-DQN: An application of Q-Learning to Vehicle Routing Problems.
arXiv:2104.12226 [cs.LG], 2021.
M. Behroozi and D. Ma,
Crowdsourced Delivery with Drones in Last Mile Logistics.
ATMOS, Article No. 17, pp. 17:1–17:12, 2020.
M. Behroozi and D. Ma,
Last Mile Delivery with Drones and Sharing Economy.
arXiv:2308.16408 [math.OC], 2023.
M. J. Beimers,
Tour merging via tree decomposition.
M.Sc. thesis, Utrecht University, 2015.
R. Bekker, B. Bharti, L. Lan, and M. Mandjes,
A queueing-based approach for integrated routing and appointment scheduling.
arXiv:2312.02715 [math.OC], 2023.
I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio,
Neural Combinatorial Optimization with Reinforcement Learning.
Under review as a conference paper at ICLR, 2017
P. Benchimol, W-J. Hoeve, J-C. Régin, L-M. Rousseau, and M.l Rueher,
Improved filtering for weighted circuit constraints.
Constraints, Vol. 17, Number 3, pp. 1-29, 2012.
A. Benoit and P. Asef,
Navigating Intelligence: A Survey of Google OR-Tools and Machine Learning
for Global Path Planning in Autonomous Vehicles.
Advanced Intelligent Systems,
P. Beraldi and M. E. Bruni,
A stochastic programming approach for the traveling purchaser problem,
IMA Journal of Management Mathematics, pp. 1-23, 2015.
E. Beresneva and S. Avdoshin,
Local search metaheuristics for Capacitated Vehicle Routing Problem:
a comparative study.
Proceedings of SYRCoSE, pp. 109-117, 2019.
E. Beresneva and S. Avdoshin,
Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem
and Methods for their Solution.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, pp. 233-250, 2018.
E. N. Beresneva and S. M. Avdoshin,
Pareto-optimal Algorithms for Metric TSP: Experimental Research.
International Journal of Open Information Technologiesm vol. 5, no .5, 2017.
J. A. Bernal-Moyano, J. W. Escobar, C. Marín-Moreno, R. Linfati, and G. Gatica,
A Computational Comparision of Heuristic Algorithmsfor the Location-Routing Problem
with Heterogenous Fleet (LRPH).
DYNA, vol. 84, no. 200, pp. 193-201, 2017.
J. A. Bernal-Moyano, J. W. Escobar, C. Marín-Moreno, R. Linfati, and G. Gatica,
A comparison of trajectory granular based algorithms for the location-routing problem
with heterogeneous fleet (LRPH).
DYNA, Volume 84, Issue 200, pp. 193-201, 2017.
A. Bertagnon and M. Gavanelli,
Improved Filtering for the Euclidean Traveling Salesperson Problem in CLP(FD).
Proceedings of the AAAI Conference on Artificial Intelligence 34(02), pp. 1412-1419, 2020.
A. Bertagnon,
Constraint Programming Algorithms for Route Planning Exploiting Geometrical Information.
arXiv:2009.10253 [cs.AI], 2020.
L. Bertazzi, G. O. Chagas, L. C. Coelho, D. Laganà, and F. Vocaturo,
Online algorithms for the multi-vehicle inventory-routing problem with real-time demands.
Transportation Research Part C: Emerging Technologies,Volume 170, 104892, 2025.
A. Bevilaqua, D. Bevilaqua, and K. Yamanaka,
Parallel island based memetic algorithm with Lin-Kernighan local search for a real-life
Two-Echelon heterogeneous vehicle routing problem based on brazilian wholesale companies.
Applied Soft Computing, Volume 56, pp. 697-711, 2019.
L. A. Bewoor, V. Chandraprakash, and S. U. Sapkal,
Evolutionary hybrid particle swarm optimization algorithm to minimize makespan to schedule
a flow shop with no wait.
Journal of Engineering Science and Technology, Vol. 14, Issue2, pp. 609-628, 2019.
J. Bi, Y. Ma, J. Wang, Z. Cao, J. Chen, Y. Sun, and Y. M. Chee,
Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation.
arXiv:2210.07686 [cs.LG], 2022.
J. Bi, Y. Ma, J. Zhou, W. Song, Z. Cao, Y. Wu, and J. Zhang,
Learning to Handle Complex Constraints for Vehicle Routing Problems.
arXiv:2410.21066 [cs.AI], 2024.
Y. Bian, H. Zhu, and Z. Lou,
Online Large-scale Garbage Collection Scheduling: A Divide-and-conquer Approach.
ICPADS, pp. 395-402, 2023.
A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, and R. Siegwart,
Structural Inspection Path Planning via Iterative Viewpoint Resampling with Application
to Aerial Robotics.
IEEE International Conference on Robotics & Automation, 2015.
A. Bircher, M. Kamel, K. Alexis, M. Burri1, P. Oettershage, S. Omari, T. Mantel , and R. Siegwart,
Three-dimensional coverage path planning via viewpoint resampling and tour optimization
for aerial robots.
Autonomous Robots, pp. 1-20, 2015.
A. Blazinskas and A. Misevicius,
Generating High Quality Candidate Sets by Tour Merging for the Traveling Salesman Problem.
Communications in Computer and Information Science, Volume 319, Part 1, pp. 62-73, 2012.
A. Blazinskas, A. Misevicius, and A. Lenkevicius,
Modified Local Search Heuristics for the Symmetric Traveling Salesman Problem.
Information Technology and Control, Vol.42, No.3, pp. 218-230, 2013.
S. Bochkarev and S. L. Smith,
On Minimizing Turns in Robot Coverage Path Planning.
IEEE Conference on Automation Science and Engineering, 2016.
S. Bochkarev,
Minimizing Turns in Single and Multi Robot Coverage Path Planning.
Ph.D. thesis,
University of Waterloo, 2017.
S. Bock, N. Boysen, R. Braken, and T. Kroll,
The price of safety: Order picking in warehouses with in-house traffic regulations.
IISETransactions, 1–24, 2024.
F. Bohnen, M. Buhl, and J, Deuse,
Systematic procedure for leveling of low volume and high mix production.
CIRP Journal of Manufacturing Science and Technology, Volume 6, Issue 1, pp. 53-58, 2013.
R. I. Bolaños,
Un algoritmo metaheurístico para la solución del problema de ruteo de vehículos con
múltiples depósitos y flota heterogénea.
Thesis, Universidad Tecnológica de Pereira, 2014.
R. I. Bolaños, J. W. Escobar, and M. G. Echeverri,
A metaheuristic algorithm for the multi-depot vehicle routing problem with
heterogeneous fleet.
International Journal of Industrial Engineering Computations, Vol. 9, pp. 461-478, 2018.
P. Bollweg, D. Hasanbegovic, H. Müller, and M. Stöneberg,
Surface-adaptive and Collision-avoiding Path Planning for Five-axis Milling.
Universität Dortmund, Forshungsberict Nr. 808, 2006.
M. Bolognini, L. Fagiano, and M. P. Limongelli,
A fault-tolerant automatic mission planner for a fleet of aerial vehicles.
Control Engineering Practice, Volume 135, 2023.
M. Bolognini and L. Fagiano,
A Scalable Hierarchical Path Planning technique for Autonomous Inspections
with multicopter drones.
European Control Conference, pp. 787-792, 2021.
M. Bolognini, L. Fagiano, and M. P. Limongelli,
An autonomous, multi-agent UAV platform for inspection of civil infrastructure.
Proceedings of the Internaltional Conference on Structural Health Mononitoron of
Intelligent Infrastructure, 2022.
T. Bonny and J. Henkel,
Using Lin-Kernighan algorithm for look-up table compression to improve code density.
Proceedings of the 16th ACM Great Lakes symposium on VLSI, pp. 259-265, 2006.
T. Bonny and J. Henkel,
Efficient code density through look-up table compression.
Proceedings of the conference on Design, automation and test in Europe, pp. 809-814, 2007.
T. Bonny and J. Henkel,
Instruction Re-encoding Facilitating Dense Embedded Code.
IEEE/ACM Proc. of Design, Automation and Test in Europe Conference, pp. 770-775, 2008.
T. Bonny and J. Henkel,
Huffman-based code compression techniques for embedded processors.
ACM Transactions on Design Automation of Electronic Systems, 15(4), Article 31, 2010.
G. Bono,
Deep multi-agent reinforcement learning for dynamic and stochastic vehicle routing problems.
Networking and Internet Architecture.
Ph.D thesis, Université de Lyon, 2020.
G. Bono, J. S. Dibangoye, O. Simonin, L. Matignon, and F. Pereyron,
Solving Multi-Agent Routing Problems Using Deep Attention Mechanisms.
IEEE Transactions on Intelligent Transportation Systems, pp.1-10, 2020.
G. Bono, J. S. Dibangoye, O. Simonin, L. Matignon, and F. Pereyron,
Solving Multi-Agent Routing Problems Using Deep Attention Mechanisms.
IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 12, pp. 7804-7813, 2021.
U. Boryczka and Ł. Strąk,
Efficient DPSO Neighbourhood for Dynamic Traveling Salesman Problem.
Proceedings of the 5th International Conference on Computational Collective Intelligence,
pp. 721-730, 2016.
J. Bossek and H. Trautmann,
Understanding Characteristics of Evolved Instances for State-of-the-Art Inexact TSP
Solvers with Maximum Performance Difference.
Conference of the Italian Association for Artificial Intelligence, pp. 3-12, 2016.
J. Bossek and H. Trautmann,
Evolving Instances for Maximizing Performance Differences of State-of-the-Art
Inexact TSP Solvers.
International Conference on Learning and Intelligent Optimization, pp. 48-59, 2016.
J. Bossek, C. Grimme, S. Meisel, G. Rudolph, and H. Trautmann,
Local Search Effects in Bi-Objective Orienteering.
Proceedings of GECCO '18, pp. 585-592, 2018.
J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, and H. Trautmann,
Evolving diverse TSP instances by means of novel and creative mutation operators.
Proceedings of FOGA, 2019.
J. Bossek, P. Kerschke, and H. Trautmann,
A multi-objective perspective on performance assessment and automated selection
of single-objective optimization algorithms.
Applied Soft Computing Journal, Vol. 88,
2020.
J. Bossek, P. Kerschke, and H. Trautmann,
Anytime Behavior
of Inexact TSP Solvers and Prespectives for Automated Algorithm
Selection.
arXiv:2005.13489v1 [cs.AI], 2020.
J. Bossek and F. Neumann,
Exploring the Feature Space of TSP Instances Using Quality Diversity.
arXiv:2202.02077 [cs.NE], 2022.
A. Botros, B. Gilhuly, N. Wilde, A. Sadeghi, J. Alonso-Mora, and S. L. Smith,
Optimizing Task Waiting Times in Dynamic Vehicle Routing.
arXiv:2307.03984 [cs.RO eess.SY], 2023.
W. Bouarroudj, Z. Boufaida, and L. Bellatreche,
Named entity disambiguation in short texts over knowledge graphs.
Knowledge and Information Systems, 2022.
R. Boudreault and C.-G. Quimper,
Improved CP-Based Lagrangian Relaxation Approach with an Application to the TSP.
Proceedings of IJCAI-21, 2021.
S. Brown,
Coverage Path Planning and Room Segmentation in Indoor Environments using the
Constriction Decomposition Method.
M.Sc. thesis, University of Waterloo, 2017.
S. I. Brown, R. G. McGarvey, and J. A. Ventura,
Total flowtime and makespan for a no-wait m-machine flowshop with set-up times separated.
Journal of the Operational Research Society, Volume 55, Number 6, pp. 614-621, 2004.
V. Bui, and T. Mai,
Imitation Improvement Learning for Large-Scale Capacitated Vehicle Routing Problems.
Proceedings of the International Conference on Automated Planning and Scheduling,
33(1), pp. 551-559., 2023.
L. P. Buriol, França, and P. Moscato,
A New Memetic Algorithm for the Asymmetric Traveling Salesman Problem.
Journal of Heuristics, 10, pp. 483-506, 2004.
R. Bähnemann, N. Lawrance, J. J. Chung, M. Pantic, R. Siegwart, and J. Nieto,
Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling
Salesman Problem.
In: Ishigami G., Yoshida K. (eds) Field and Service Robotics, pp. 277-290, 2021.
L. P. Cáceres, F. Pagnozzi, A. Franzin, and T. Stützle,
Automatic configuration of GCC using irace.
IRIDIA - Technical Report Series, TR/IRIDIA/2017-008, 2017.
H. Cai, P. Xu, X. Tang, and G. Lin,
Solving the Vehicle Routing Problem with Stochastic Travel Cost
Using Deep Reinforcement Learning.
Electronics,13(16):3242, 2024.
H. I. Calvete, C. Galé, and J. A. Iranzo,.
An efficient evolutionary algorithm for the ring star problem.
European Journal of Operational Research, Volume 231, Issue 1, pp. 22-33, 2013.
H. I. Calvete, C. Galé, and J. A. Iranzo,
MEALS: A Multiobjective Evolutionary Algorithm with Local Search for solving the
bi-objective ring star problem.
European Journal of Operational Research, Vol. 250, Issue 2, pp. 377-388, 2016.
Y. Cao, Z. Sun, and G. Sartoretti.
DAN: Decentralized Attention-based Neural Network for the MinMax Multiple
Traveling Salesman Problem.
arXiv:2109.04205v2 [cs.RO] , 2022.
Z. Cao, Z. Du, and J. Yang,
Topological Map-Based Autonomous Exploration in Large-Scale Scenes
for Unmanned Vehicles.
Drones, 8(4): 124, 2024.
F. Carrabs, R. Cerulli, and A. Raiconi,
A reduction heuristic for the all-colors shortest path problem.
RAIRO Operations Research, Volume 55, 2021.
D. Carrara,
Graph-based Word Sense Disambiguation.
Bachelor thesis, University of Milan, 2018.
K. Castelino, R. D’Souza, and P. K. Wright,
Tool-path Optimization for Minimizing Airtime during Machining.
Journal of Manufacturing Systems, Volume 22, part 3, pp 173-180, 2003.
A. V. de Carvalho, M. C. Goldbarg, and E. F. G. Goldbarg,
O problema do caixeiro viajante com vários passageiros, cota de bônus opcional e tempo.
Brazilian Journal of Development, 7(2), pp. 20493-20514, 2021
M. A. Carvalhosa, M. T. Pereira, M. G. Pereira, E. e Oliveira, and F. R. Ramos,
Enhancing last-mile delivery: a hybrid approach with machine learning techniques
that captures drivers’ knowledge.
International Journal of Logistics Research and Applications, 1–27, 2024.
F. Cavaliere, E. Bendotti, and M. Fischetti,
An integrated local-search/set-partitioning refinement heuristic for
the Capacitated Vehicle Routing Problem.
Mathematical Programming Computation, Vol. 14, pp. 749-779, 2022.
F. Cavaliere, M. Fischetti, and K. Helsgaun,
A Vehicle Routing heuristic based on accelerated LKH-3 coupled with Set Partitioning.
12th DIMACS Implementation Challenge, 2020.
A. Cerdeira-Pena, L. Carpente, and C. Amiama,
Optimised forage harvester routes as solutions to a traveling salesman problem with
clusters and time windows.
Biosystems Engineering, Violume 164, pp. 110-123, 2017.
J. B. C. Chagas, J. Blank, M. Wagner, M. J. F. Souza, and K. Deb,
A Non-Dominated Sorting Based Customized Random-Key Genetic Algorithm for the
Bi-Objective Traveling Thief Problem.
arXiv:2002.04303 [cs.NE] , 2020.
K. Chakrabarty and J. E. Chen,
A cocktail approach on random access scan toward low power and high efficiency test.
Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design,
pp. 94-99, 2005.
F. Chalumeau, S. Surana, C. Bonnet, N. Grinsztajn, A. Pretorius, A. Laterre,
and T.D. Barrett,
Combinatorial Optimization with Policy Adaptation using Latent Space Search.
ArXiv:2311.13569 [cs.LG], 2023.
F. Chalumeau, R. Shabe, N. de Nicola, A. Pretorius, T. D. Barrett, N. Grinsztajn,
Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization.
arXiv:2406.16424 [cs.AI], 2024.
A. Chanson, V. t’Kindt, N. Labroche, P. Marcel,
Matheuristics to solve the Traveling Analyst Problem.
hal-04125805, 2023.
S. Charaf, D. Tas, S. P. Flapper, and T. V. Woensel,
A matheuristic for the two-echelon inventory-routing problem.
Computers & Operations Research, Volume 171, 2024.
D. Chaudhuri,
Enriching Text-Based Human-Machine Interactions with Additional World Knowledge.
Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2022.
D. Chen and Z. Wang,
Control System and Routing Network under Vehicle-to-Vehicle Communication.
Highlights in Science, Engineering and Technology, 27, pp. 25-32, 2022.
J. Chen, Z. Zhang, Z. Cao, Z. Cao, Y. Wu, Y. Max T. Ye, and J. Wand,
Neural Multi-Objective Combinatorial Optimization with Diversity Enhancement.
arXiv:2310.15195 [cs.LG], 2023.
J. Chen, J. Wang, Z. Zhang, Z. Cao, T.Ye, and S. Chen,
Efficient Meta Neural Heuristic for Multi-Objective Combinatorial Optimization.
arXiv:2310.15196 [cs.LG], 2023.
J. Chen, Z. Gong, M. Liu, J. Wang, Y. Yu, and W. Zhang,
Looking Ahead to Avoid Being Late: Solving Hard-Constrained
Traveling Salesman Problem.
arXiv:2403.05318 [cs.AI], 2024.
M. Chen, P. R. Baldwin, S. J. Ludtke, and M. L. Baker,
De Novo Modeling in Cryo-EM Density Maps with Pathwalking.
Journal of Structural Biology, Accepted manuscript, 2016.
W. Chen, Y. Zhang, and Y. Zhou,
Integrated Scheduling of Zone Picking and Vehicle Routing Problem with
Time Windows in the Front Warehouse Mode.
Computers & Industrial Engineering, 107823, 2021.
X. Chen,
5-Axis Coverage Path Planning with Deep Reinforcement Learning and Fast Parallel
Collision Detection.
Ph.D.
thesis, Georgia Institute of Technology, 2020.
X. Chen, Y. Li, Y. Yang, L. Zhang, S. Li, Shijian, and G. Pan,
ExtNCO: A Fine-Grained Divide-and-Conquer Approach for Extending NCO to
Solve Large-Scale Traveling Salesman Problem.
Preprint, Avaiable at SSRN, 2023.
H. Cheng, H. Zheng, Y. Cong, W. Jiang, and S. Pu,
Select and Optimize: Learning to solve large-scale TSP instances.
Proceedings of AISTATS, 2023.
S. J. K. Chin, M. Winkenbach, and A. Srivastava,
Learning to Deliver: a Foundation Model for the Montreal Capacitated
Vehicle Routing Problem.
arXiv:2403.00026 [cs.LG].
T. Chin, P. Ramanathan, and K. K. Saluja,
Collaborative patrolling for target detection using mobile sensor networks.
Proceedings of the IEEE Internatioanl Conference on Wireless Communications
and Signal Processing (WCSP), 2010.
V. S. Chirala, K. Sundar, S. Venkatachalam, J. M. Smereka, and S. Kassoumeh,
Heuristics for Multi-Vehicle Routing Problem Considering Human-Robot Interactions.
arXiv:2208.09607 [math.OC], 2022.
V .S. Chirala, S. Venkatachalam, and J. M. Smereka,
UV Mission Planning Under Uncertainty in Vehicles.
Journal of Intelligent & Robotic Systems ,Volume 108, Article number 6 , 2023.
D.-H. Cho, D-S. Jang, and H.-L. Choi,
Heterogeneous, Multiple Depot Multi-UAV Path Planning for Remote Sensing Tasks.
AIAA SciTech Forum (AIAA 2018-0894), 2018.
D.-H. Cho, D-S. Jang, and H.-L. Choi,
Sampling-Based Tour Generation of Arbitrarily Oriented Dubins Sensor Platforms.
Journal of Aerospace Information Systems, Vol. 16, Issue ,. pp. 168-186, 2019.
D.-H. Cho, D-S. Jang, and H.-L. Choi,
Memetic Algorithm-Based Path Generation for Multiple Dubins Vehicles
Performing Remote Tasks.
arXiv:1808.02720 [cs.MA], 2018.
D.-H. Cho, and H.-L. Choi,
A Traveling Salesman Problem-Based Approach to Observation Scheduling for
Satellite Constellation.
International Journal of Aeronautical and Space Sciences,
doi.org/10.1007/s42405-019-00151-y, 2019.
D.-H. Cho,
Tour generation of heterogeneous nonholonomic sensor platforms.
Ph.D. thesis, College of Engineering, 2019.
M. Cho,
Physical Synthesis for Nanometer VLSI and Emerging Technologies.
Ph.D. thesis, University of Texas at Austin, 2008.
M. Cho, H. Xiang, R. Puri, and D. Z. Pan,
Track Routing and Optimization for Yield.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(5), pp. 872-882, 2008.
J. Choo, Y.-D. Kwon, J. Kim, J. Jae, A. Hottung, K. Tierney, and Y. Gwon,
Simulation-guided Beam Search for Neural Combinatorial Optimization.
arXiv:2207.06190 [cs.LG], 2022.
S. Choudhary,
M-Crawler: Crawling Rich Internet Applications Using Menu Meta-Model.
Thesis, University of Ottawa, 2012.
J. Chu, X. Lai, and Z. Wang,
A Randomized Variable Neighborhood Search Algorithm for solving the
Capacitated Vehicle Routing Problem.
2022 China Automation Congress (CAC), pp. 2028-2032, 2022.
Chung-Cheng, Shih-Wei Lin, and Kuo-Ching Ying,
Minimizing worst-case regret of makespan on a single machine with uncertain
processing and setup times.
Applied Soft Computing, Volume 23, pp. 144-151, 2014.
L. Chunli and M. Ke,
The Disk Covering Tour Problem in the Wireless Sensor Network.
The Open Automation and Control Systems Journal, 6, pp. 1169-1175, 2014.
E. Cohen and J. C. Beck,
Heavy-Tails and Randomized Restarting Beam Search in Goal-Oriented
Neural Sequence Decoding.
CPAIOR, 2021.
W. Cook and P. Seymour,
Tour Merging via Branch-Decomposition.
INFORMS Journal on Computing 15(3), pp. 233-248, 2003.
W. Cook, D. G. Espinoza, and M. Goycoolea,
Computing with Domino-Parity Inequalities for the Traveling Salesman Problem (TSP).
INFORMS Journal on Computing, Vol. 19, No. 3, pp. 356–365, 2007.
W. Cook,
In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.
Princeton University Press, 2012.
W. Cook, S. Held, and K. Helsgaun,
Local Search with Learned Constraints for Last Mile Routing.
In Technical Proceedings of the Amazon Last Mile Routing Research Challenge, 2021.
(Eds.): M. Winkenbach, S. Parks, and J. Noszek.
W. Cook, S. Held, and K. Helsgaun,
Constrained Local Search for Last-Mile Routing.
Transportation Science, november 8, 2022.
W. Cook,
Computing in Combinatorial Optimization.
In: Steffen, B., Woeginger, G. (eds) Computing and Software Science.
Lecture Notes in Computer Science, vol 10000., pp. 27-47, 2019.
W. Cook, K. Helsgaun, S. Hougardy, and R. T.Schroeder,
Local elimination in the traveling salesman problem.
Mathematical Programming Computation, 2024.
J.-F. Cordeau, D. Laganà, D., R. Musmanno, and F. Vocaturo,
A Decomposition-Based Heuristic for a Multiple-Product Inventory Routing Problem.
Computers & Operations Research, November 2013.
M. Cornu,
Local Search, data structures and Monte Carlo Search for Multi-Objective Combinatorial
Optimization Problems.
PSL Research University, 2017.
A. H. C. Correia, D. E. Worrall, and R. Bondesan,
Neural Simulated Annealing.
arXiv:2203.02201 [cs.LG]. 2022.
J. G. C. Costa, Y. Mei, and M. Zhang,
Guided local search with an adaptive neighbourhood size heuristic for
large scale vehicle routing problems.
GECCO '22, pp. 213-221, 2022.
J. G. C. Costa,
Hyper-Heuristics for Automatic Configuration of Local Search-based Heuristics
for the Large-Scale Vehicle Routing Problem.
Ph.D. thesis, Victoria University of Wellington, 2023.
P. da Costa,
Data-driven prognostics and logistics optimisation: A deep learning yourney.
PhD. thesis, Endhoven University of Tehchnoligy,
SIKS Dissertation Series No. 2022-2, 2022.
P. da Costa, J. Rhuggenaath, Y. Zhang, A. Akcay, and U. Kaymak,
Learning 2-Opt Heuristics for Routing Problems via Deep Reinforcement Learning.
SN Computer Science volume 2, Article number: 388, 2021.
A. Cristian, L. Marshall, M. Negrea, F. Stoichescu, P. Cao, and I, Menach,
Multi-Itinerary Optimizationas Cloud Service.
Communications of the ACM, Volume 64, Issue 11, pp. 121–129, 2021.
T. T. Dam, D. T. Nguyen , Q. T. Bui, and T. K. Do,
On the Traveling Salesman Problem with Hierarchical Objective Function.
International Conference on Knowledge and Systems Engineering, 2019.
H. Das and S. Kumar,
A Parallel TSP-Based Algorithm for Balanced Graph Partitioning.
46th International Conference on Parallel Processing, 2017.
A. Dasgupta, V. ZopeAsrul, and H. Ismail,
Implementation of the Bees Algorithm for UAV Mission Plan.
14th International Seminar on Industrial Engineering and Management, 2025.
O. Davtalab, A. Kazemian, and B. Khoshnevis,
Perspectives on a BIM-integrated software platform for robotic construction through
Contour Crafting.
Automation in Construction, Volume 89, pp. 13–23, 2018.
P. Debus and V. Rodehorst,
Multi-scale Flight Path Planning for UAS Building Inspection.
Proceedings of the 18th International Conference on Computing in Civil and
Building Engineering, pp. 1069-1085, 2021.
J. Deckerová, J. Faigl, and V. Krátký,
Traveling Salesman Problem with neighborhoods on a sphere in reflectance
transformation imaging scenarios.
Expert Systems with Applications, Volume 198, 2022.
J. Deckerová, K. Kucerováa, and J. Faigl,
On Improvement Heuristic to Solutions of the Close Enough
Traveling Salesman Problem in Environments with Obstacles.
Report, Czech Technical University in Prague, 2023.
A. Delaet, K. Ramaekers, P. Hirsch, Y. Molenbruch, and K. Braekers,
A matheuristic for integrated medium-term home healthcare planning.
European Journal of Operational Research, 2024.
G. Delazeri and M. Ritt,
Fast Heuristics for Traveling Salesman Problems with Multiple Flying Sidekicks.
Congress on Evolutionary Computation (CEC), pp. 1365-1371, 2021.
G. Delazeri, M. Ritt, M. de Souza,
Comparing Surrogate Models for Tuning Optimization Algorithms.
In: D. E. Simos, V. A. Rasskazova, F. Archetti, I. S. Kotsireas, P. M. Pardalos, (eds),
Learning and Intelligent Optimization.
Lecture Notes in Computer Science, vol 13621.,2022 .
M. Dell’Amico, R. Montemanni, and S. Novellani,
Matheuristic algorithms for the parallel drone scheduling traveling salesman problem.
arXiv:1906.02962 [math.OC], 2019.
M. Dell’Amico, R. Montemanni, and S. Novellani,
Models and algorithms for the Flying Sidekick Traveling Salesman Problem.
arXiv:1910.02559 [math.OC], 2019.
M. Dell’Amico, R. Montemanni, and S. Novellani,
Algorithms based on Branch and Bound for the Flying Sidekick Traveling
Salesman Problem.
Omega, In Press, Available online 18 May 2021.
M. Dell’Amico, R. Montemanni, and S. Novellani,
Exact models for the flying sidekick traveling salesman problem.
International Transactions in Operational Research, 2021.
M. Dell’Amico, R. Montemanni, and S. Novellani,
A Random Restart Local Search Matheuristic for the Flying Sidekick Traveling
Salesman Problem.
The 8th International Conference on Industrial Engineering and Applications, 2021.
G. Delazeri and M. Ritt,
Fast Heuristics for Traveling Salesman Problems with Multiple Flying Sidekicks.
IEEE Congress on Evolutionary Computation, pp. 1365-1371, 2021.
F. Delazeri, M. Ritt, and M. de Souza,
Comparing Surrogate Models for Tuning Optimization Algorithms.
Lecture Notes in Computer Science, vol 13621, pp. 347–360, 2023.
M. Deng, J. Zhang, Y. Liang, G. Lin, and W. Liu,
A Novel Simple Candidate Set Method for Symmetric TSP and Its Application in
MAX-MIN Ant System.
Lecture Notes in Computer Science, vol 7331, pp. 173-181, 2012.
T. Dernedde, D. Thyssens, S. Dittrich, M. Stubbemann, and L. Schmidt-Thieme,
Moco: A Learnable Meta Optimizer for Combinatorial Optimization.
arXiv:2402.04915 [cs.LG], 2024.
I. Derpich, and C. Rey,
Drone Optimization in Factory: Exploring the Minimal Level Vehicle Routing
Problem for Efficient Material Distribution.
Drones, 7(7), 435, 2023.
A. Devari,
Crowdsourced last mile delivery using social network.
M.Sc. thesis, State University of New York, 2016.
A. Devari, G. A, G. Nikolaev, and Q. He,
Crowdsourcing the last mile delivery of online orders by exploiting the social networks
of retail store customers.
Transportation Research Part E: Logistics and Transportation,
Volume 105, pp.105-122, 2017.
R. Dewil, P. Vansteenwegen, and D. Cattrysse,
Construction heuristics for generating tool paths for laser cutters.
Submtted to International Journal of Production Research, 2014.
R. Dewil, P. Vansteenwegen, D. Cattrysse, M. Laguna, and T. Vossen,
An improvement heuristic framework for the laser cutting tool path problem.
International Journal of Production Research, pp. 1-18, 2014.
R. D'Haen, K. Ramaekers, S. Moons, and K. Braekers,
A real-life study on the value of integrated optimization in order picking
operations under dynamic order arrivals.
NETWORKS, 2024.
M. Dharmadhikari and K. Alexis,
Semantics-aware Exploration and Inspection Path Planning.
arXiv:2303.07236 [cs.RO], 2023.
M. Dharmadhikari, P. De Petris, M. Kulkarni, N.Khedekar, H. Nguyen,
A. E. Stene, E. Sjøvold, Kr.Solheim, B. Gussiaas, and K. Alexis,
Autonomous Exploration and General Visual Inspection of Ship Ballast
Water Tanks using Aerial Robots.
arXiv:2311.03838 [cs.RO], 2023.
E. V. K. Dhulipala and D. Patil,
Angle Bisector Algorithm and Modified Dynamic Programming Algorithm
for Dubins Traveling Salesman Problem.
TechRxiv, Preprint, 2021.
O, Dib,
Novel hybrid evolutionary algorithm for bi-objective optimization problems.
Sciientific Repoirts, , 13, 4267, 2023.
J. Diller and Q. Han,
Energy-Aware Drone Path Finding with a Fixed-Trajectory Ground Vehicle.
Preprint, Research Square, 2023.
H. Ding and D. Castañón,
Fast Algorithms for UAV Tasking and Routing.
IEEE Multi-Conference on Systems and Control, 2016.
J. Diller and Q. Han,
Energy-Aware UAV Path Planning with Adaptive Speed.
AAMAS '23, pp. 923–931, 2023.
H. Ding, E. Cristofalo, J. Wang, D. Castañón, E. Montijano, V. Saligrama,
and M. Schwager,
A multi-resolution approach for discovery and 3-D modeling of archaeological
sites using satellite imagery and a UAV-borne camera.
Proceedings of the American Control Conference, 2016.
Y. Ding, W. Luo, and K. P. Sycara,
Decentralized Multiple Mobile Depots Route Planning for Replenishing
Persistent Surveillance Robots.
Proceedings of MRS, 2019.
Y. Ding, W. Luo, and K. P. Sycara,
Heuristic-Based Multiple Mobile Depots Route Planning for Recharging
Persistent Surveillance Robots.
International Conference on Intelligent Robots and Systems (IROS), 2019.
Y. Ding, B. Xin, and J. Chen,
Precedence-constrained path planning of messenger UAV for air-ground coordination.
Control Theory and Technology, Vol. 17, No. 1, pp. 13–23, 2019.
Y. Ding, B. Xin, and J. Chen,
A Heuristic Route Planning Algorithm for Air-Ground Collaborative Surveillance.
Workshop paper, IWACIII2021, 2021.
Y. Ding,
Decentralized Multiple Mobile Depots Route Planning for Replenishing Persistent
Surveillance Robots.
M.Sc. thesis, Carnegie Mellon University, CMU-RI-TR-19-17, 2019.
R. Dobai and M. Balaz,
SAT-based generation of compressed skewed-load tests for transition delay faults.
Microprocessors and Microsystems, article in press, 2012.
R. D'Haen, K. Braekers, and K. Ramaekers,
Integrated scheduling of order picking operations under dynamic order arrivals.
International Journal of Production Research, 2022.
W. Dobrautz, V. M. Katukuri, N. A. Bogdanov, D.l Kats, G. Li Manni, and A. Alavi,
Combined unitary and symmetric group approach applied to low-dimensional
spin systems.
arXiv:2112.09594 [cond-mat.str-el], 2021.
C. Dong, G. Jäger, D. Richter, and P. Molitor,
Effective Tour Searching for TSP by Contraction of Pseudo Backbone Edges,
University Halle-Wittenberg, Institute of Computer Science, Technical Report 2008/4.
M. Dontas,G.Sideris, E. G. Manousakis ,and E. E. Zachariadis,
An adaptive memory matheuristic for the Set Orienteering Problem.
In Press, European Journal of Operational Research, 2023.
C. Dornhege, A. Kleiner, and A. Kolling,
Coverage Search in 3D.
11th IEEE International Symposium on Safety, Security, and Rescue Robotics, 2013.
C. Dornhege, A. Kleiner, A. Hertie, and A. Kolling,
Multirobot Coverage Search in Three Dimensions.
Journal of Field Robotics, Online ISSN: 1556-4967, 2015.
R. Doshi, S. Yadlapalli, S. Rathinam, and S. Darbha,
Approximation algorithms and heuristics for a 2-depot, heterogeneous Hamiltonian
path problem.
International Journal of Robust and Nonlinear Control, DOI 10.1002/rnc.1701, 2011.
D. Drakulic, S. Michel, F. Mai, A. Sors, and J.-M. Andreoli,
BQ-NCO: Bisimulation Quotienting for Generalizable Neural Combinatorial Optimization.
arXiv:2301.03313 [cs.LG], Conference paper at ICLR, 2023.
D. Drakulic, S. Michel, and J.-M Andreoli,
GOAL: A Generalist Combinatorial Optimization Agent Learner.
arXiv:2406.15079 [cs.LG], 2024.
J. Drchal, J. Faigl, and P Váňa,
WiSM: Windowing Surrogate Model for Evaluation of Curvature-Constrained Tours
with Dubins vehicle.
Under review, IEEE Transactions on Cybernetics, 2020.
X. Du, B. Servin, J. E. Womack, J. Cao, M. Yu, Y. Dong, W. Wang, and S. Zhao,
An update of the goat genome assembly using dense radiation hybrid maps allows
detailed analysis of evolutionary rearrangements in Bovidae.
BMC Genomics, pp.15-625, 2014.
M. Dubey, D. Banerjee, D. Chaudhuri, and J. Lehmann,
EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs.
arXiv:1801.03825 [cs.AI], 2018.
J. Dubois-Lacoste, H. H. Hoos, and T. Stützle,
On the Empirical Scaling Behaviour of State-of-the-art Local Search Algorithms for
the Euclidean TSP.
Proceedings of GECCO '15, pp. 377-384, 2015.
E. Duchenne, G. Laporte and F. Semet,
Heuristiques pour le problème du vendeur m-péripatétique.
RAIRO-Operations Research, Vol. 43, pp. 13-26, 2009.
V. Dzyura, P. Maruschak, S. Slavov, and D. Dimitrov,
Applying regular relief onto conical surfaces of continuously
variable transmission to enhance its wear resistance.
Transport 38(3), pp. 178-189, 2023.
S. Edelkamp, M. Pomarlan, and E. Plaku,
Multiregion Inspection by Combining Clustered Traveling Salesman Tours With
Sampling-Based Motion Planning.
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 428-435, 2017.
G. Eder, M. Held, S. Jasonarson, P. Mayer, and P. Palfrader,
2-Opt Moves and Flips for Area-optimal Polygonizations.
ACM Journal of Experimental Algorithmics, Vol. 27, Article No.: 2.7, pp. 1-12, 2022.
D. Eichhorn, M. Schweikart, N. Poser, F. Fiand, B. Poggel, and J. M. Lorenz,
Hybrid Meta-Solving for Practical Quantum Computing.
arXiv:2405.09115 [quant-ph], 2024.
J. G. Eisele, C. Yolanda, C. Roldán,
Mauricio Osorio Galindo, and Ma. del Pilar Gómez Gil,
Usefulness of Solution Algorithms of the Traveling Salesman Problem in the
Typing of Biological Sequences in a Clinical Laboratory Setting.
14th International Conference on Electronics, Communications and Computers, p. 264, 2004.
V. Ejov, J. A. Filar, M. Haythorpe, J. F. Roddick, and S. Rossomakhine,
A note on using the resistance-distance matrix to solve Hamiltonian cycle problem.
Annals of Operations Research, doi:10.1007/s10479-017-2571-7, 2017.
S. Emde, N. Tahirov, M. Gendreau, and C. H. Glock,
Routing Automated Lane-Guided Transport Vehicles in a Warehouse Handling Returns.
Technical report, CIRRELT-2020-07, 2020.
B. Englot, T. Sahai, and I. Cohen,
Efficient Tracking and Pursuit of Moving Targets by Heuristic Solution of the
Traveling Salesman Problem.
52nd IEEE Conference on Decision and Control, pp. 3433-3438, 2013.
J. Erné,
Automated Detection and Closing of Holes in Point Clouds Using
Unmanned Aerial Vehicles.
Bachelor's thesis, Czech Technical University in Prague, 2023.
E. Ergüven and F. Polat,
Relative distances approach for multi-traveling salesmen problem.
Knowledge-Based Systems, 2024,
C. Ernst, C. Dong, D. Richter, G. Jäger, and P. Molitor,
Finding Good Tours for Huge Euclidean TSP Instances by Iterative Backbone Contraction:
First Results.
University Halle-Wittenberg, Institute of Computer Science, Technical Report 2009/05.
J. W. Escobar, R. Linfati, and P. Toth,
A two-phase hybrid heuristic algorithm for the capacitated location-routing problem.
Computers & Operations Research, Volume 40, Issue1, pp. 70-79, 2013.
J. W. Escobar, R. Linfati, P. Toth, and M. G. Baldoquin,
A hybrid Granular Tabu Search algorithm for the Multi-Depot Vehicle Routing Problem.
Journal of Heuristics, pp. 1-27, 2014.
J. W. Escobar, R. Linfati, M. G. Baldoquin, and P. Toth,
A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem.
Transportation Research Part B: Methodological., Vol,. 67, pp. 344-256, 2014.
J. W. Escobar,
A computational comparison of heuristic algorithms for the Location-Routing Problem
with Heterogeneous Fleet (LRPH).
RESEARCH , 2015.
C. Expósito-Izquierdo, A. Rossi, and M. Sevaux,
A Two-Level solution approach to solve the Clustered Capacitated Vehicle Routing Problem.
Computers & Industrial Engineering, Vol. 91, pp. 274-289, 2016.
A. Expósito-Márquez, C. Expósito-Izquierdo, J. Brito-Santana, and J. A. Moreno-Pérez,
Solving an Eco-efficient Vehicle Routing Problem for Waste Collection with GRASP.
Studies in Computational Intelligence, Vol. 798, pp. 215-224, 2018.
A. Expósito-Márquez, C. Expósito-Izquierdo, and J. Brito-Santana, and J. A. Moreno-Pérez,
Greedy Randomized Adaptive Search Procedure to Design Waste Collection Routes
in La Palma.
To appear in Computers & Industrial Engineering, 2019.
A. B. Ezzeddine, S. Kasala, and Pavol Navrat,
Applying the firefly approach to the DNA fragments assembly problem.
Annales Univ. Sci. Budapest., Sect. Comp. 42, pp. 69-81, 2014.
J-G. Fages, X. Lorca, and L-M Rousseau,
The Salesman and the Tree: the importance of search in CP.
Constraints, 21, 2, pp. 145-162, 2016.
J. Faigl,
GSOA: Growing Self-Organizing Array – Unsupervised Learning for the Close-Enough
Traveling Salesman Problem and Other Routing Problems.
Neurocomputing, Volume 312, pp. 120-134, 2018.
J. Faigl, P. Vána, and J. Drchal,
Fast Sequence Rejection for Multi-Goal Planning with Dubins Vehicle.
International Conference on Intelligent Robots and Systems, 2020.
J. Faigl, P. Váňa, and J. Deckerová,
Fast Heuristics for the 3-D Multi-Goal Path Planning Based on the
Generalized Traveling Salesman Problem With Neighborhoods.
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2439-2446, July 2019.
J. K. Falkner and L. Schmidt-Thieme,
Learning to Solve Vehicle Routing Problems with Time Windows through Joint Attention.
arXiv:1006.09100v1 [cs.LG], 2020.
J. K. Falkner and L. Schmidt-Thieme,
Too Big, so Fail? -- Enabling Neural Construction Methods to Solve
Large-Scale Routing Problems.
arXiv:2309.17089 [cs.LG], 2023.
S. Fallahpour and M. R. Salarian,
A survey on Hamiltonian Cycle in Cayley graphs.
Research paper, Kharazmi University, 2024.
B. Fang, X. Chen, and X. Di,
Learn to Tour: Operator Design For Solution Feasibility Mapping
in Pickup-and-delivery Traveling Salesman Problem.
arXiv:2404.11458 [cs.AI], 2024.
H. Fang, Z. Song, P. Weng, and Y. Ban,
INViT: A Generalizable Routing Problem Solver with Invariant Nested View Transformer.
arXiv:2402.02317 [cs.LG], 2024.
X. Fang, Y. Du, and Y. Qiu,
Reducing Carbon Emissions in a Closed-Loop Production Routing Problem with
Simultaneous Pickups and Deliveries under Carbon Cap-and-Trade.
Sustainability, 9(12), 2017.
T. Faraut, S. de Givry, P. Chabrier, T. Derrien, F. Galibert, Christophe Hitte,
and Thomas Schiex,
A comparative genome approach to marker ordering.
In Proc. of ECCB-06, Eilat, Israel, 2006.
S. S. Fazeli, S. Venkatachalam, and J. M. Smereka,
Efficient algorithms for autonomous electric vehicles' min-max routing problem.
arXiv:2008.03333v1 [cs.AI], 2020.
G. Fellek, G. Gebreyesus, A. Farid, S. Fujimura, and O. Yoshie,
Edge Encoded Attention Mechanism to Solve Capacitated Vehicle Routing Problem
with Reinforcement Learning.
IEEM, pp. 576-582, 2022.
G. Fellek, A. Farid, G. Gebreyesus, S. Fujimura, and O. Yoshie,
Graph Transformer with Reinforcement Learning for Vehicle Routing Problem.
IEEJ Transactions on Electrical and Electronic Engineering, 2023.
G. Fellek, A. Farid, G. Gebreyesus, S. Fujimura, and O. Yoshie,
Deep Graph Representation Learning to Solve Vehicle Routing Problem.
ICMLC, pp. 172-180, 2023.
G. T. Fellek, D. M. Sime, A. Farid, S. Fujimura, O. Yoshie, Osamu K. Sheng,
Rl-Stam: Reinforcement Learning-Based Spatio-Temporal Attention Model
for Solving Vehicle Routing Problems.
Preprint, Available at SSRN, 2024.
C. Feng, H. Li, F. Gao, B. Zhou, and S. Shen,
PredRecon: A Prediction-boosted Planning Framework for Fast and High-quality
Autonomous Aerial Reconstruction.
arXiv:2302.04488 [cs.RO], 2023.
C. Feng, H. Li, J. Jiang, X. Chen, S. Shen, and B. Zhou,
FC-Planner: A Skeleton-guided Planning Framework for Fast Aerial Coverage of
Complex 3D Scenes.
arXiv:2309.13882 [cs.RO], 2023.
I. Ferdi and A. Layeb,
A Novel Heuristic Based Simulated Annealing for the Capacitated Location
Routing Problem.
Proceedings of MedPRAI-2016, pp. 17-24, 2016.
I. Ferdi and A. Layeb,
A GRASP algorithm based new heuristic for the capacitated location routing problem.
Journal of Experimental & Theoretical Artificial Intelligence, 30(3), pp. 369-387, 2018.
T. S. Fernandes,
Planeamento de Trajetoria para Operacões de Busca e Salvamento com UAVs.
Thesis,
Instituto Superior de Engenharia do Porto, 2016.
P. Ferragina. T. Gagie. D. Köppl G. Manzini, G. Navarro, M. Striani, and F. Tosoni,
Improving Matrix-vector Multiplication via Lossless Grammar-Compressed Matrices.
arXiv:2203.14540 [cs.DS], 2022.
K. M. Ferreira and T. A. de Queiroz,
Two effective simulated annealing algorithms for the location-routing problem.
Applied Soft Computing, doi: 10.1016/j.asoc.2018.05.024, 2018.
J. G. L. Filho, M. C. Goldbarg, E. F. G. Goldbarg, and V. A. Petch,
Traveling Salesman Problem with Optional Bonus Collection,
Pickup Time and Passengers.
Revista de Informática Teórica e Aplicada, Vol. 27, Num. 1, pp. 62-82, 2020.
C. Filippi and E. Stevanato,
A two-phase method for bi-objective combinatorial optimization and its application to the
TSP with profits.
Algorithmic Operations Research, Vol. 7, No. 2, 2012.
T. Fischer and P. Merz,
Embedding a Chained Lin-Kernighan Algorithm into a Distributed Algorithm.
MIC'2005 - 6th Metaheuristics International Conference, 2005.
T. Fischer, T. Stützle, H. H. Hoos, and P. Merz,
An Analysis of the Hardness of TSP Instances for Two High-performance Algorithms.
MIC2005. The 6th Metaheuristics International Conference, pp. 361-317,
Vienna, Austria, August 22-26, 2005.
T. Fischer and P. Merz,
A Distributed Chained Lin-Kernighan Algorithm for TSP Problems.
Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium, 2005.
T. Fischer and P. Merz,
Reducing the Size of Traveling Salesman Problem Instances by Fixing Edges.
Lecture Notes In Computer Science, volume 4446, pp. 7283, 2007.
K. Florios and G. Mavrotas,
Generation of the exact Pareto set in Multi-Objective Traveling Salesman and Set
Covering Problems.
Applied Mathematics and Computation, Volume 237, pp. 1-19, 2014.
G. Fogarasi, B. Tüü-Szabó, P. Földesi, and L. T. Kóczy,
Comparison of Discrete Memetic Evolutionary Metaheuristics for TSP.
Studies in Computational Intelligence, Vol. 955, pp. 29-37, 2022.
H. Freitas, B. S.Faiçal, A. V. Cardoso e Silva, and J. Ueyama,
Use of UAVs for an efficient capsule distribution and smart path planning for
biological pest control.
Computers and Electronics in Agriculture, Volume 173, 105387, 2020.
L. M. Froeb, M. Lane, E. Powell, M. Shor, and S.Tschantz,
Big is Green, Procompetitive, and Saves Lives:
The Economics of Route Consolidation.
Preprint, Available at SSRN, 2023.
G. Fu, L. Zhang, J. Fu, H. Gao, and Y. Jin,
F test-based automatic modeling of single geometric error component for error
compensation of five-axis machine tools.
International Journal of Advanced Manufacturing Technology, October 2017.
G. Fu, P. Zhang, D. Lei, W. Qi, Wei, and Z.-J. M. Shen,
Learning for Guiding: A Framework for Unlocking Trust and Improving
Performance in Last-Mile Delivery.
SSRN, 2023.
J. Fu, G. Sun, J. Liu, W. Yao, and L. Wu,
On Hierarchical Multi-UAV Dubins Traveling Salesman Problem Paths
in a Complex Obstacle Environment.
IEEE Transactions on Cybernetics, PP(99), 2023.
G. Fu, P. Zhang, D. Lei, W. Qi, and Z.-J. M. Shen,
Learning for Guiding: A Framework for Unlocking Trust and
Improving Performance in Last-Mile Delivery.
Preprint, Available at SSRN, 2023.
G. Fu, P.Chang, D. Lei, D. Lei, W. Qi, and Z.-J. M. Shen,
Balancing Algorithmic Clairvoyance with Human Preferences:
An Inverse Reinforcement Learning Approach for Last-Mile Deliveries.
SSRN Electronic Journal, 2023.
Z.-H. Fu, K.-B. Qiu, and H. Zha,
Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances.
arXiv:2012.10658 [cs.LG], 2020.
Z.-H. Fu, S. Sun, J. Ren, T. Yu, H. Zhang, Y. Liu, L. Huang, X. Yan, and P. Lu,
A Hierarchical Destroy and Repair Approach for Solving Very Large-Scale
Travelling Salesman Problem.
arXiv:2308.04639v1 [cs.AI], 2023.
C. Gahm, C. Brabänderb, and A. Tuma,
Vehicle routing with private fleet, multiple common carriers offering volume discounts,
and rental options.
Transportation Research Part E: Logistics and Transportation Review,
Volume 97, pp. 192-216, 2017.
N. Gale,
Theoretical investigations into principles of topographic map formation and applications.
Ph.D .thesis, University of Cambridge, 2022.
D. Gamboa, C. Osterman, C. Rego, and F. Glover,
An Experimental Evaluation of Ejection Chain Algorithms for the Traveling Salesman
Problem.
School of Business Administration, University of Mississippi, 2006.
C. Gao, H. Shang, K. Xue, D. Li, and C, Qian,
Towards Generalizable Neural Solvers for Vehicle Routing Problems via Ensemble with
Transferrable Local Policy.
arXiv:2308.14104 [cs], 2023.
J. Gao, P. Xie, X. Gao, Z. Sun, J. Wang, and M. Q.-H. Meng,
Indoor Exploration and Simultaneous Trolley Collection Through Task-Oriented
Environment Partitioning.
arXiv:2309.11107 [cs.RO], 2023.
W. Gao, J. Luo, W. Zhang, W. Yan, and Z. Liao,
Commanding Cooperative UGV-UAV with Nested Vehicle Routing for Emergency
Resource Delivery.
IEEE Access, Volume 4, 2020.
W. Gao, J. Luo., Y. Zhanet. Y. Luo, Y. Lan, S. Li, and M. Tang,
Automatic task scheduling optimization and collision-free path planning for
multi-areas problem.
Intelligent Service Robotics, 2021.
Y. Gao, Z. Wang, L. Gao, X. Li,
A Matheuristic Approach for the No-Wait Flowshop Scheduling
Problem
with Makespan Criterion.
Symmetry, 14, 913, 2022.
Z. Gao, Q. Zhang, Q. Gao, Y. Zhao, and H.-C. Wu,
Directional WPT Charging for Routing-Asymmetric WRSNs with a Mobile Charger.
arXiv:2409.07994 [cs.NI], 2024.
L. García, P. M. Talaván, and J. Yáñez,
The 2‐opt behavior of the Hopfield Network applied to the TSP.
Operational Research International Journal, 2020.
R. García-Torres, A. A. Macias-Infante, S. E. Conant-Pablos, J. C. Ortiz-Bayliss,
and H. Terashima-Marín,
Combining Constructive and Perturbative Deep Learning Algorithms for the
Capacitated Vehicle Routing Problem.
arXiv:2211.13922 [cs.LG], 2022.
D. Gasset, F. Paillalef, S. Payacán, and G. Gatica, G. Herrera-Vidal,
R. Linfati, and J. R. Coronado-Hernández,
Route Optimization for Open Vehicle Routing Problem (OVRP): A Mathematical and Solution Approach.
Applied Sciences 2024.
G.. Gatica, J. W. Escobar, and R. Linfati,
Heuristic algorithm based on Ant Colony Optimization for the Capacitated
Location-Routing problem with Homogeneous Fleet.
Revista ESPACIOS, Vol. 42(16), Art.1, 2021.
D. Gavalas, M. Kenteris, C. Konstantopoulos, and G. Pantziou,
An Efficient Algorithm for Recommending Personalized Mobile Tourist Routes.
IET Software, 2012.
T. Gellert, W. Höhn, and R. H. Möhring,
Sequencing and scheduling for filling lines in dairy production.
Optimization Letters, pp. 1-14, 2011.
M. Gendreau, D. Manerba, and R, Mansini,
The multi-vehicle traveling purchaser problem with pairwise incompatibility
constraints and unitary demands: A branch-and-price approach.
European Journal of Operational Research, Vol. 248, Issue 1, pp. 59-71, 2016.
D. Georgiev, D. Numeroso, D. Bacciu, and Pietro Liò,
Neural Algorithmic Reasoning for Combinatorial Optimisation.
arXiv:2306.06064 [cs.NE], 2023.
A. R. Gerlach and D. B. Doman,
Precision airdrop transition altitude optimization via the one-in-a-set traveling
salesman problem.
American Control Conference, pp. 3498-3502, 2016.
A. H. Gholamipour, F. Kurdahi, A. Eltawil, and M. A. R. Saghir,
Exploiting Architectural Similarities and Mode Sequencing in Joint Cost Optimization
of Multi-mode FIR Filters.
International Conference on Field Programmable Logic and Applications, pp. 175-178, 2010.
T. van Gils, K. Braekers, K. Ramaekers, B. Depaire, and A. Caris,
Improving Order Picking Efficiency by Analyzing Combinations of Storage,
Batching, Zoning, and Routing Policies.
Computational Logistics, ICCL, pp. 427-442, 2016.
T. van Gils, A. Caris, K. Ramaeker, K. Braekers, and M. B. M. de Koster,
Designing efficient order picking systems: the effect of real-life features on the relationship
among planning problems.
Transportation Research. Part E, The Logistics and Transportation Review, 125 , pp. 47-73, 2019.
T. van Gils, A Caris, K. Ramaekers, and KrisBraekers,
Formulating and Solving the Integrated Batching, Routing, and Picker Scheduling Problem
in a Real-life Spare Parts Warehouse.
European Journal of Operational Research, Volume 277, pp. 814-830, 2019.
S. de Givry, M. Bouchez, P. Chabrier, D. Milan, and T. Schiex,
CARHTA GENE: multipopulation integrated genetic and radiation hybrid mapping.
Bioinformatics, Volume 21, Issue 8, pp. 1703-1704, 2005.
E. F. G. Goldbarg, M. C. Goldbarg, and J. P. F. Farias,
GRASP with Path-Relinking for the TSP.
Metaheuristics: Progress in Complex Systems Optimization, Chapter 7, Springer, 2007.
E. F. G. Goldbarg, M. C. Goldbarg, and G. R. de Souza,
Particle Swarm Optimization Algorithm for the Traveling Salesman Problem.
Chapter 4 of "Traveling Salesman Problem", Book edited by F. Greco, 2008.
B. Golden, Z. Naji-Azimi, S. Raghavan, M. Salari, and P. Toth,
The Generalized Covering Salesman Problem.
INFORMS Journal on Computing, Vol. 24, No. 4, pp. 534-553, 2012.
B. Golden, E. Oden, and S. Raghavan,
The rendezvous vehicle routing problem.
Optimization Letters, 2023.
C. Gong, Y. Nan, L. M. Pang, H. Ishibuchi, and Q. Zhang,
Initial Populations with a Few Heuristic Solutions Significantly Improve
Evolutionary Multi-Objective Combinatorial Optimization.
Proceedings SSCI, pp. 1398-1405, 2023.
M. K. Gordenko and S. M. Avdoshin,
Transformation of the Mixed Chinese Postman Problem in multigraph into the
Asymmetric Travelling Salesman Problem.
International Journal of Open Information Technologies, vol. 5, no.6, 2017.
N. Grinsztajn, D. Furelos-Blanco, and T. D. Barrett,
Population-Based Reinforcement Learning for Combinatorial Optimization.
arXiv:2210.03475 [cs.AI], 2022.
A. Gruler, C. Fikar, A. Juan, P. Hirsch, and C. Contreras,
A Simheuristic for the Waste Collection Problem with Stochastic Demands in Smart Cities.
Proceedings of the 2015 Int. Conf. of the Forum for Interdisciplinary Mathematics, 2015.
X. Gu, X. Cao, Y. Xie, J. Chen, and X. Sun,
Cooperative trajectory planning for multi-UCAV using multiple traveling salesman problem.
35th Chinese Control Conference (CCC), 2016.
Q. Guan, X. Zhang, M. Xie, J. Nie, H. Cao, Z. Chen, and Z. He,
Large-scale power inspection: A deep reinforcement learning approach.
Frontiers in Energy Research, Vol. 10, 2023.
A. Guastalla, R. Aringhieri, and P. Hosteins,
The Team Orienteering Problem with Service Times and Mandatory & Incompatible Nodes.
arXiv:2410.12368 [math.OC], 2024.
O. Guemri, B. Beldjilali; A. Bekrar, and Ghalem Belalem,
Two-stage heuristic algorithm for the large-scale capacitated location routing problem.
Int. J. of Mathematical Modelling and Numerical Optimisation, Vol.7, No.1, pp. 97, 2016.
L. Gueta, R. Chiba, J. Ota, T. Arai, and T. Ueyama,
A practical and integrated method to optimize a manipulator-based inspection system.
IEEE International Conference on Robotics and Biomimetics, pp. 1911-1918, 2007.
L. Gueta, R. Chiba, J. Ota, T. Arai, and T. Ueyama,
Design and Optimization of a Manipulator-based Automated Inspection System.
The Society of Instrument and Control Engineers Transaction on Industrial Application, 6,
pp. 41-51, 2007.
L. Gueta, R. Chiba, J. Ota, T. Arai, and T. Ueyama,
Coordinated motion control of a robot arm and a positioning table with arrangement of
multiple goals.
EEE International Conference on Robotics and Automation, pp. 2252-2258, 2008.
L. Gueta, R. Chiba, T. Arai, T. Ueyama, and J. Ota,
Practical Point-to-Point Multiple-Goal Task Realization in a Robot Arm with a Rotating
Table.
Advanced Robotics, Volume 25, Numbers 6-7, pp. 717-738, 2011.
L. Gueta, R. Chiba, T. Arai, T. Ueyama, J. Rubrico, and J. Ota,
Compact design of a redundant manipulator system and application to multiple-goal
tasks with temporal constraint.
Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 2, No. 2, 2017.
S. Guo, Y. Xiao, and L. Niu,
GGTAN: Graph Gated Talking-Heads Attention Networks for Traveling Salesman Problem.
IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology, pp. 676-681, 2020.
B. C. Gupta and V. P. Prakash,
Greedy heuristics for the Travelling Thief Problem.
39th National Systems Conference, 2015.
P. Gupta, A. B. Kahng, and S. Mantik,
Routing-Aware Scan Chain Ordering.
ACM Transactions on Design Automation of Electronic Systems (TODAES),
Volume 10, Issue 3, pp. 546-560, July 2005.
P. Gutiérrez-Aguirre and C. Contreras-Bolton,
A multioperator genetic algorithm for the traveling salesman problem with job-times.
Expert Systems with Applications, Volume 240, 2024.
D. Gyulai, B. Kádár, A. Kovács, L. Monostori,
Capacity management for assembly systems with dedicated and reconfigurable resources.
CIRP Annals - Manufacturing Technology, 01, 2014.
D. Gyula,
Production and capacity planning methods for flexible and reconfigurable assembly systems.
Ph.D thesis, Budapest University of Technology and Economics, 2018.
Q. M. Ha, Y. Deville, Q. D. Pham, and M. H. Hà,
A Hybrid Genetic Algorithm for the Traveling Salesman Problem with Drone.
Preprint, arXiv:1812.09351 [cs.AI], 2023.
N. Habib,Y. Li, M. Heidenreich, L. Swiech, I. Avraham-Davidi, J. J. Trombetta, C. Hession,
F. Zhang, and Regev,
Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons.
Science, 353(6302), pp. 925-928, 2016.
M. K. Habibi, C. Grand, C. Lesire, and Cédric Pralet,
Solving Methods for Multi-Robot Missions Planning with Energy Capacity Consideration.
International Conference on Robotics and Automation, 2019.
M. K. Habibi, R. Hammami, O. Battaia, and Alexandre Dolgui,
Simultaneous Pickup-and-Delivery Production-Routing Problem in closed-loop
supply chain with remanufacturing and disassembly consideration.
In Press, International Journal of Production Economics, 2024.
T. Hagström, B. Andersson, and A. Fredriksson,
Reducing treatment time for robotic radiosurgery by considering path
efficiency during node selection.
Medical Physics, 2024.
C- Hague, A. Willis, D. Maity, and A. Wolek,
Planning Visual Inspection Tours for a 3D Dubins Airplane Model in an Urban Environment.
arXiv:2301.05309 [eess.SY], 2023.
S. Hahn, and A. Scholz,
Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times.
Working paper 17006, Otto-von-Guericke University Magdeburg, 2017.
D. Hains, D. Whitley, and A. Howe,
Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP.
Lecture Notes in Computer Science, Volume 7492, pp. 388-397, 2012.
R. Hajizadeh and K. Holmberg,
A branch-and-dive heuristic for single vehicle snow removal.
Networks, Volume 76, Issue 4, pp. 509-521, 2020.
R. Hajizadeh and K. Holmberg,
The Non Zealous Snow Remover Problem.
Linköping University Electronic Press, p. 7, 2022.
R. Hajizadeh and K. Holmberg,
Urban snow removal: Tree elimination.
Report, Linköping University, LiTH-MAT-R--2022/01--SE, 2022.
R. Hajizadeh,
Optimization of Snow Removal in Cities.
Linköping Studies in Science and Technology.
Dissertations No. 2325, 2023.
M. Hall and M. Niccoli,
Recovering data from seismic images by colourmap estimation.
Canadian Society of Exploration Geophysicists COnvention, 2017.
H. Hamidreza, S. Luca, and L. Fabrizio,
Evaluation, analysis, and enhancement of error resilience for reliable compression of
VLSI test data.
IEEE transactions on instrumentation and measurement, 54(5), pp. 1761-1769, 2005.
L. Han, B. T. Luong, and S. Ukkusuri,
An Algorithm for the One Commodity Pickup and Delivery Traveling Salesman Problem
with Restricted Depot.
Networks and Spatial Economics, DOI 10.1007/s11067-015-9297-3, 2015.
Y. Handa, H. Ono, K. Sadakane, and M. Yamashita,
Neighborhood Composition: A Parallelization of Local Search Algorithms.
Lecture Notes in Computer Science, Volume 3241, pp. 155-163, 2004.
G. Hardouin, F. Morbidi, J. Moras, J. Marzat, and E. M. Mouaddib,
Surface- driven Next-Best-View planning for exploration of large-scale 3D
environments.
IFAC-PapersOnLine, Volume 53, Issue 2, pp. 15501-15507, 2020.
G. Hardouin, J. Moras, F. Morbidi, J. Marzat and E. M. Mouaddib,
Next-Best-View planning for surface reconstruction of large-scale 3D environments
with multiple UAVs.
EEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1567-1574, 2020.
G. Hardouin, J. Moras, F. Morbidi, J. Marzat, and E. M. Mouaddib,
A Multirobot System for 3-D Surface Reconstruction With Centralized
and Distributed Architectures.
IEEE Transactions on Robotics, vol. 39, no. 4, pp. 2623-2638, 2023.
T. Harks, F. G. König, and J. Matuschke,
Approximation Algorithms for Capacitated Location Routing.
Technische Universität Berlin, Preprint, 2010.
D. Hasegawa and N. Shiono,
Average TSP tour length approximations for territory design.
ACSMA, 2023.
H. Hashempour, L. Schiano, and F. Lombardi,
Enhancing Error Resilience for Reliable Compression of VLSI Test Data.
Proceedings of the 15th ACM Great Lakes symposium on VLSI, pp. 371-376, 2005.
D. He, Z. Li, X. Li, Y. Li, and K.Tang,
Collision-Conscious Multi-Pass Flank Milling of Complicated Parts
Based on Stripification.
Computer-Aided Design, 2023.
L. He, B. Wang, Y. Peng, and X. Zhang,
An Unmanned Sweeper Path Planning Algorithm for Structured Roads.
IEEE Access, Volume 12, 2024.
Q. He, F. Wang, and J. Song,
Two-Stage Attention Model to Solve Large-Scale Traveling Salesman Problems.
Neural Information Processing, Lecture Notes in Computer Science, vol 14448,, 2024.
O. F. C. Heine, A. Demleitner, and J. Matuschke,
Bifactor Approximation for Location Routing with Vehicle and Facility Capacities.
In Press, European Journal of Operational Research, 2022.
J. Heins, J. Bossek, J. S. Pohl, M. V. Seiler, H. Trautman, and Pascal Kerschke,
On the potential of normalized TSP features for automated algorithm selection.
Conference: Foundations of Genetic Algorithms XVI, 2021.
J. Heins, J. Bossek, J. Pohl, M. Seiler, H. Trautmann, amd Pascal Kerschke,
A Study on the Effects of Normalized TSP Features for Automated Algorithm Selection.
Theoretical Computer Science, 2022.
J. Heins, L. Schäpermeier, P. Kerschke, and D. Whitley,
Dancing to the State of the Art?
How Candidate Lists Influence LKH for Solving the Traveling Salesperson Problem.
arXiv:2407.03927 [cs.AI], 2024.
B. Herdianto, R. Billot, F. Lucas, and M. Sevaux,
Metaheuristic Enhanced with Feature-Based Guidance and Diversity Management
for Solving the Capacitated Vehicle Routing Problem.
arXiv:2407.20777 [cs.AI], 2024.
J. Herrera-Cobo, J. Escobar, andd D. Álvarez-Martínez,
Metaheuristic algorithm for the location, routing and packing problem
in the collection of recyclable waste.
International Journal of Industrial Engineering Computations , 14(1), pp., 157-172. 2023
K. Helsgaun,
Solving the Equality Generalized Traveling Salesman Problem Using the
Lin-Kernighan-Helsgaun Algorithm.
Computer Science Report #141, Roskilde University, 2014.
K. Helsgaun,
Solving the Clustered Traveling Salesman Problem Using
the Lin-Kernighan-Helsgaun Algorithm.
Computer Science Report #142, Roskilde University, 2014.
K. Helsgaun,
Solving the Bottleneck Traveling Salesman Problem Using the
Lin-Kernighan-Helsgaun Algorithm.
Computer Science Report #143, Roskilde University, 2014.
K. Helsgaun,
Solving Arc Routing Problems Using the Lin-Kernighan-Helsgaun Algorithm.
Computer Science Report #143, Roskilde University, 2014.
Helsgaun, K.:
Using POPMUSIC for Candidate Set Generation in the Lin-Kernighan-Helsgaun TSP Solver.
Technical Report, Computer Science, Roskilde University, 2018.
T. Henke, M. G Speranza, and G. Wäscher,
The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes.
Working Paper, Otto-von-Guericke University Magdeburg, No. 6, 2014.
T. Henke, M. G. Speranza, and G. Wäscher,
The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes.
European Journal of Operational Research, Vol. 246, pp. 730-743, 2015.
N. Henry and J-D. Fekete,
MatrixExplorer: a Dual-Representation System to Explore Social Networks.
IEEE Trans. Visual Comput. Graphics, 12(5), pp. 677-684, 2006.
K. Hernandez , B. Bacca, and B. Posso,
Multi-goal Path Planning Autonomous System for Picking up and Delivery Tasks
in Mobile Robotics.
IEEE Latin America Transactions 15(2): pp. 232-238. 2017.
B. Herrera,
Combinação de Enxame de Partículas com Inspiração Quântica e Método
Lin-Kernighan-Helsgaun aplicado ao Problema do Caixeiro Viajante.
M.Sc. thesis, Pontificia Universidade Católica do Paraná, 2007.
B. Herrera, L. Coelho, and M. Steiner,
Quantum Inspired Particle Svarm Combined with Lin-Kernighan-Helsgaun
Method
to the Travling Salesman Problem.
Pesquisa Operacional, vol. 35, no. 3, Rio de Janeiro, Sept./Dec. 2015.
D. Herring, M. Kirley, and X. Yao,
Dynamic Multi-objective Optimization of the Travelling Thief Problem.
asXiv:202636v1 [cs.NE], 2020.
D. Herring, M. Kirley, and X. Yao,
A comparative study of evolutionary approaches to the bi-objective
dynamic Travelling Thief Problem.
Swarm and Evolutionary Computation, 2023.
A. Hertel,
Hamiltonian Cycles in Sparse Graphs.
M.Sc. thesis, University of Toronte, 2004.
J. Hess, G. D. Tipaldi, and W. Burgard,
Null Space Optimization for Effective Coverage of 3D Surfaces using Redundant
Manipulators.
Proceedings IROS, 2012.
J. Hess, M. Beinhofer, D. Kuhner, P. Ruchti, and W. Burgard,
Poisson-Driven Dirt Maps for Efficient Robot Cleaning.
Proc. of the IEEE Int. Conf. on Robotics and Automation, 2013.
J. Hess, M. Beinhofer, and W. Burgard,
A Probabilistic Approach to High-Confidence Cleaning Guarantees for
Low-Cost Cleaning Robots.
Proc. of the IEEE Int. Conf. on Robotics and Automation, 2014.
J. Hess,
Efficient Approaches to Cleaning with Mobile Robots.
Dissertation, Albert-Ludwigs-Universität Freiburg im Breisgau, 2015.
P. H. D. B. Hokama, C. N. Lintzmayer, and M. C. San Felice,
A faster heuristic for the Traveling Salesman Problem with Drone.
arXiv:2405.18566 [cs.DS], 2024.
N. Holden and G. Hasle,
Extending the Lin-Kernighan algorithm to improve solutions to VRPs with Time Windows.
SINTEF report A13822, 2009.
K. Holmberg,
The (Over) Zealous Snow Remover Problem.
Report,
Linöping University, 2016.
N. Holvoet,
Planning for active mapping of crop fields using UAVs.
Robotics [cs.RO], 2018.
P. H. D. B. Hokama, C. N. Lintzmayer, and M. C. San Felice,
A faster heuristic for the traveling salesman problem with drone.
Optimization Letters, 2024.
D. Horti and S. B. Jamge,
Code Compression Schemes for Embedded Processors.
AIP Conf. Proc. 1324, pp. 438–440, 2010.
M. Horvat,
A Graph-Based Approach to String Regeneration.
MPhil Thesis, University of Cambridge, 2013.
M. Horvat and W. Byrne,
A Graph-Based Approach to String Regeneration.
EACL Student Research Workshop, 2014.
M. Hosseinabady, S. Sharifi, F. Lombardi, and Z. Navabi,
A Selective Trigger Scan Architecture for VLSI Testing.
IEEE Trans. Computers, 57(3), pp. 316-328, 2008.
A. Hottung and K. Tierney,
Neural Large Neighborhood Search for the Capacitated Vehicle Routing Problem.
arXiv:1911.09539 [cs.AI], 2019.
A. Hottung, B. Bhamdari, and K. Tierney,
Learning a Latent Search Space for Routing Problems using Variational Autoencoders.
International Conference on Learning Representations, 2021.
A. Hottung, M. Mahajan, and K. Tierney,
PolyNet: Learning Diverse Solution Strategies for Neural Combinatorial Optimization.
arXiv:2402.14048 [cs.LG], 2024.
A. Hottung, Y.-D. Kwon, and K. Tierney,
Efficient Active Search for Combinatorial Optimization Problems.
arXiv:2106.05126 [cs.LG], 2021.
A. Hottung, P. Wong-Chung, and K.Tierney,
Neural Deconstruction Search for Vehicle Routing Problems.
arXiv:2501.03715 [cs.AI], 2025.
Q. Hou, J. Yang, Y. Su, X. Wang, and Y. Deng,
Generalize Learned Heuristics to Solve Large-scale Vehicle Routing
Problems in Real-time.
Conference paper, ICLR, 2023.
X. Hou, Z. Pan, L. Lu, Y. Wu, J. Hu, Y. Lyu, andf C. Zhao,
LAEA: A 2D LiDAR-Assisted UAV Exploration Algorithm
for Unknown Environments.
Drones, 8, 128, 2024.
S. Hougardy and R. T. Schroeder,
Edge Elimination in TSP Instances.
University of Bonn, Report No: 131066, 2014.
R. Houston,
Tackling the Minimal Superpermutation Problem.
arXiv:1408.5108, 2014.
A. Howe and L. D. Whitley,
Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces.
Air Force Office of Scientific Research, 8/08-11/10, 2011.
A. Howe and L. D. Whitley,
Exploiting Elementary Landscapes for TSP, Vehicle Routing and Scheduling.
Final Report for AFOSR #9550-11-1-0088, 2015.
C. Hryc and M. L. Baker,
Beyond the Backbone: The Next Generation of Pathwalking Utilities for
Model Building in CryoEM Density Maps.
Biomolecules, 12(6): 773, 2022.
C. Hu and Y. Wang,
Minimizing the Number of Mobile Chargers to Keep Large-Scale WRSNs
Working Perpetually.
International Journal of Distributed Sensor Networks, Article ID 782952, Volume 2015.
M. Hu, W. Liu, K. Peng, X. Ma, W. Cheng, J. Liu, and B. Li,
Joint Routing and Scheduling for Vehicle-Assisted Multi-Drone Surveillance.
IEEE Internet of Things Journal, DOI: 10.1109/JIOT.2018.2878602, 2018.
Q. Hu, Z. Lin, and J. Fu,
A new global toolpath linking algorithm for different subregions with Travelling
Saleman problem solver.
International Journal of Computer Integrated Manufacturing, 2021.
Z. Hu and G. Yang,
A local optimization algorithm based on eliminating the inclusion and
intersection relations between sub tours for multi-traveling salesman problem.
Proceedings Volume 12602, EIECS 2023.
B. Huang, H.Liao, Y. Ge, W. Zhang, H. Kang, Z. Wang, and J. Wu.
Development of BIM Semantic Robot Autonomous Inspection and Simulation System.
9th International Conference on Mechatronics and Robotics Engineering, pp. 35-40, 2023.
J. Huang, Z. Fan, Z. Yan, P. Duan, R. Mei, and H. Cheng,
Efficient UAV Exploration for Large-Scale 3D Environments Using Low-Memory Map.
Drones 2024, 8, 443, 2024.
X. Huang and G. Wang,
Total Energy Cost Optimization for Data Collection With Boat-Assisted Drone:
A Study on Large-Scale Marine Sensor.
IEEE Access, vol. 11, pp. 134473-134484, 2023.
X. Huang and G. Wang,
Optimization for total energy consumption of drone inspection based on distance-constrained
capacitated vehicle routing problem: A study in wind farm.
Expert Systems with Applications, Volume 255, Part D, 2024,
X. Huang, Y. Liu, L. Huang, S. Stikbakke, and E. Onstein,
BIM-supported drone path planning for building exterior surface inspection.
Computers in Industry, Volume 153, 2023.
X. Huang and G. Wang,
Saving Energy and High-Efficient Inspection to Offshore Wind Farm
by the Comprehensive-Assisted Drone.
International Journal of Energy Reasearch, Vol. 2024.
Y. Huang, K. Gu, and H. Lee,
S&Reg: End-to-End Learning-Based Model for Multi-Goal Path Planning Problem.
arXiv:2308.04160 [cs.RO], 2023.
I. I. Huerta, D. A. Neira, D. A.Ortega, V. Varas, J. Godoy, and R. Asín-Achá,
Improving the state-of-the-art in the Traveling Salesman Problem: An Anytime
Automatic Algorithm Selection.
Expert Systems with Applications, Volume 187, 115948, 2022.
J. A. Hughes.
A Study of Ordered Gene Problems Featuring DNA Error Correction and
DNA Fragment Assembly with a Variety of Heuristics, Genetic Algorithm
Variations, and Dynamic Representations.
M.Sc. thesis, Brock University St. Catharines, 2014.
J. A. Hughes, S. Houghten, and D. Ashlock,
Restarting and Recentering Genetic Algorithm Variations for DNA Fragment Assembly:
The Necessity of a Multi-Strategy Approach.
BioSystems, doi:10.1016/j.biosystems.2016.08.001, 2016.
F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown,
Algorithm Runtime Prediction: The State of the Art.
Artificial Intelligence Journal, submitted, 2012.
F. Hutter, H. H. Hoos, and K. Leyton-Brown,
Identifying Key Algorithm Parameters and Instance Features using Forward Selection.
Learning and Intelligent Optimization (LION 7). 2013.
V. A. Huynh, J. Enright, and E. Frazzoli,
Persistent Patrol with Limited-range On-Board Sensors.
49th IEEE Conference on Decision and Control, pp. 7661-7668, 2010.
W. Höhn, F. G. König, M. E. Lübbecke, and R. H. Möhring,
Sequencing and Scheduling in Coil Coating with Shuttles.
Technische Universität Berlin. Tech-Report 001-2009, 2009.
W. Höhn, F. G. König, R. H. Möhring, and M. E. Lübbecke,
Integrated Sequencing and Scheduling in Coil Coating.
Management Science, Vol. 57, No. 4, pp. 647-666, 2011.
W. Höhn and R. H. Möhring,
Integrating Sequencing and Scheduling:
A Generic Approach with Two Exemplary Industrial Applications.
In L. Kliemann and P. Sanders (Eds.): Algorithm Engineering,
LNCS 9220, pp. 330-351, 2016.
F. Imeson,
Robotic Path Planning for High-Level Tasks in Discrete Environments.
Ph.D. thesis, University Of Waterloo, 2018.
F. Imeson and S. L. Smith,
A Language For Robot Path Planning in Discrete Environments:
The TSP with Boolean Satisfiability Constraints.
Conf. on Robotics and Automation, Hong Kong, China, May 2014.
M. A. Ismail,
Design Of A Parallel Multi Threaded Programming Model For Multi Core Processor.
Ph.D. thesis, NED University of Engineering & Technology, Karachi. 2011.
M. A. Ismail, S. H. Mirza, and T. Altaf,
A Parallel and Concurrent Implementation of Lin- Kernighan Heuristic (LKH-2)
for Solving Traveling Salesman Problem for Multi-Core Processors using
SPC3 Programming Model.
International Journal of Advanced Computer Science and Applications, Vol. 2, No. 7,
pp. 34-43, 2011.
H. Ismkhan,
Effective Three-Phase Evolutionary Algorithm to Handle the Large-Scale Colorful
Traveling Salesman Problem.
Expert Systems with Applications 67. pp148-162, 2017.
H. Ismkhan and K. Zamanifar,
Developing programming tools to handle traveling salesman problem by the three
object-oriented languages.
Applied Computational Intelligence and Soft Computing, Article 18, 2014.
N. Isoart and J.-C. Régin,
Improving the Robustness of EPS to Solve the TSP.
CPAIOR, pp.155-172, 2022.
C. E. Izquierdo, A. Rossi, and M. Sevaux,
Modeling and solving the clustered capacitated vehicle routing problem.
Proceedings of the 14th EU/ME workshop, pp. 110-115, 2013.
J. P. Jackson,
Constrained Task Assignment and Scheduling On Networks of Arbitrary Topology.
Ph.D. thesis, University of Michigan, 2012.
S. H. Jacobson,
Finite-Time Performance of Local Search Algorithms: Theory and Application.
Research report, University of Illinois, 2009.
J. Janoš, V. Vonásek, and R. Pěnička,
Multi-Goal Path Planning Using Multiple Random Trees,
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4201-4208, 2021,
Dae-Sung Jang, Hyeok-Joo Chae, and Han-Lim Choi,
Optimal Control-Based UAV Path Planning with Dynamically-Constrained TSP with
Neighborhoods.
eprint arXiv:1612.06008, 2016.
J. Janoš, V. Vonásek, and R. Pěnička,
Multi-Goal Path Planning Using Multiple Random Trees.
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4201-4208, 2021.
J. Janoš, R. Pěnička, and V. Vonásek,
Randomized multi-goal path planning for Dubins vehicles.
2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation , pp. 1-4, 2022.
S. S. J. Jaheruddin,
Friendly Interchange Heuristic for Vehicle Routing Problems with Time Windows.
BSc Thesis, Tilburg University, 2010.
S. Jasonarson and P. Mayer,
2-Opt Moves and Flips for Area-optimal Polygonizations.
ACM Journal of Experimental Algorithmics, Vol. 27, pp. 1-12, 2022.
F. R. Jensen,
Using the Traveling Salesman Problem in Bioinformatic Algorithms.
M.Sc. thesis, Department of Computer Science, Aarhus University, 2010.
M. A. F. Jensen, C. G. Sørensen, and D. Bochtis,
Assessment of Track Sequence Optimization based on Recorded Field Operations.
Proceedings of EFITA / WCCA / CIGR, 203.
H. Jiang, Y. Hu, Q. Li and, H. Yu,
Fat Computational Complexity and Heuristic Design for the TSP.
Journal of Software, Vol.20, No.9, pp. 2344−2351, 2009.
L. Jiang, X. Zang, I. I.Y. Alghoul, X. Fang, J. Dong, and C. Liang,
Scheduling the covering delivery problem in last mile delivery,
Expert Systems with Applications, 2021.
X. Jiang, Y. Wu, and Y. Zhang,
Learning to Generate Hard Instances: Towards Robust Solutions
for Vehicle Routing Problems.
TechRxiv, April 08, 2024.
X. Jiang, Y. Wu, Y. Wang, and Y. Zhang,
UNCO: Towards Unifying Neural Combinatorial Optimization through
Large Language Model.
arXiv:2408.12214 [cs.AI], 2024.
Y. Jiang, Y. Wu, Z. Cao, and J. Zhang,
Learning to Solve Routing Problems via Distributionally Robust Optimization.
arXiv:2202.07241 [cs.LG], 2022.
Y. Jiang,
Learning generalizable heuristics for solving vehicle routing problem
under distribution shift.
Ph.D. thesis, Nanyang Technological University, 2024.
Z. Jiang, J. Liu, and S. Wang,
Traveling salesman problems with PageRank Distance on complex networks reveal
community structure.
Physica A: Statistical Mechanics and its Applications, available online, 2016.
O. Johansson,
An Evaluation of Algorithms for Time-constrained Path and Route Planning in
an Indoor Environment with Several Waypoints and Limited Battery Time.
Student thesis, KTH, School of Electrical Engineering and Computer Science, 2022.
D. S. Johnson and L. A. McGeoch,
Experimental Analysis of Heuristics for the STSP.
The Traveling Salesman Problem and its Variations, G. Gutin and A. Punnen, Editors,
pp. 369-443, 2002.
D. S. Johnson and L. A. McGeoch,
Experimental Analysis of Heuristics for the ATSP.
The Traveling Salesman Problem and its Variations, G. Gutin and A. Punnen, Editors,
pp. 445-487, 2002.
J. Jooken, P. Leyman, and P. De Causmaecker,
A multi-start local search algorithm for the Hamiltonian completion problem on
undirected graphs.
arXiv:1904.11337 [cs.DM], 2019.
C. K. Joshi, T. Laurent, and X. Bresson,
An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem.
arXiv:1906.01227 [cs.LG], 2019.
C. K. Joshi.
Graph Convolutional Neural Networks for the Travelling Salesman Problem.
Thesis, Nanyand Technology University, Singapore, SCSE18-0163, 2019.
S. Jung, S. Song, P. Youn, and H. Myung,
Multi-Layer Coverage Path Planner for Autonomous Structural Inspection of High-Rise
Structures.
International Conference on Intelligent Robots and Systems (IROS), 2018.
G. Jäger,
The Theory of Tolerances with Applications to the Traveling Salesman Problem.
Habilitation Thesis, Christian Albrechts University of Kiel, 2010.
G. Jäger, C. Dong, B. Goldengorin, P. Molitor, and D. Richter,
A backbone based TSP heuristic for large instances.
Journal of Heuristics, Vol. 20, pp. 107-124, 2014.
K. Jörnsten and J. Kaclsics,
A New Lagrangean Approach for the Travelling Salesman Problem.
NHH Dept. of Business and Management Science Discussion Paper
No. 2015/4, 2015.
P. Kalatzantonakis, A. Sifaleras, and N. Samaras,
A reinforcement learning—Variable neighborhood search method
for the capacitated Vehicle Routing Problem.
Preprint submitted to Expert Systems with Applications, 2022.
A. B. Kahng and S. Reda,
Match twice and stitch: a new TSP tour construction heuristic.
Operations Research Letters, Volume 32, pp. 499-509, 2004.
S. Kalantari, R. S. Ramhormozi, Y.i Wang, S. Sun, and X. Wang,
Trailer allocation and truck routing using bipartite graph assignment
and deep reinforcement learning.
Transactions in GIS, 2023.
P, Kalatzantonakis, A. Sifaleras, and N. Samaras,
A reinforcement learning-Variable neighborhood search method
for the capacitated Vehicle Routing Problem.
Expert Systems with Applications, Volume 213, Part A, 2023.
K. Karagül and G. Gündüz,
A Novel Heuristic For The Traveling Salesman Problem: maxS.
DEÜ FMD 24(71), pp. 665-677, 2022.
I. Kazemian, B. Cavdar, and M. Yildirim,
Sensor-Driven Predictive Vehicle Maintenance and Routing Problem
with Time Windows.
arXiv:2412.04350 [math.OC], 2024,.
L. Ke, X. Yang, and Z. Chen,
A hybrid network with spatial attention mechanism for
solving large-scale TSP.
AANN, 2023.
X. Ke, R. Ding, and S. Yang,
Reinforcement Learning for Routing Problems with Hybrid
Edge-Embedded Networks.
Lecture Notes in Computer Science, vol 14090, 2023.
P. Kerschke,
Automated and Feature-Based Problem Characterization and Algorithm
Selection Through Machine Learning.
Ph.D. thesis, Westfälischen Wilhelms-Universit¨at Münster, 2017.
P. Kerschke, L. Kotthoff, J. Bossek, H. H. Hoos, and H. Trautmann,
Leveraging TSP Solver Complementarity through Machine Learning.
Asccpeted manuscript, Evolutionary Computation, 2017.
P. Kerschke, J. Bossek, and H. Trautmann,
Parameterization of state-of-the-art performance indicators: a robustness
study based on inexact TSP solvers.
Proceedings of GECCO '17, pp. 1737-1744, 2018.
J. Kersten, V. Rodehorst, N. Hallermann, P. Debus, and G. Morgenthal,
Potentials of Autonomous UAS and Automated Image Analysis for Structural
Health Monitoring.
40th IABSE Symposium, 2018.
A. K. Khatta, J. Singh, and G. Kaur,
Vehicle Routing Problem with Value Iteration Network.
In: I. Woungang, S. K. Dhurandher, K. K. Pattanaik, A. Verma, and P. Verma, (eds) :
Advanced Network Technologies and Intelligent Computing. ANTIC, 2022.
Z. Khodabakhshi,
Application of Traveling Salesman Problem in Generating a
Collision-Free Tool Path in Drilling.
Thesis, University of Ontario Institute of Technology, 2021.
D. Kikuta, H. Ikeuchi, K. Tajiri, and Y. Nakano,
RouteExplainer: An Explanation Framework for Vehicle Routing Problem.
arXiv:2403.03585 [cs.LG], 2024.
E. Kılıçaslan, H. I. Demir, A. H. Kökçam, R. K. Phanden, and C. Erden,
Ant Colony optimization application in bottleneck station scheduling.
Advanced Engineering Informatics, Vol. 56, 2023.
M. Kim, S. Choi, J. Son, H. Kim, J. Park, and Y. Bengio,
Ant Colony Sampling with GFlowNets for Combinatorial Optimization.
arXiv:2403.07041 [cs.LG], 2024.
M. Kim, J. Park, and J. Park,
Sym-NCO: Leveraging Symmetricity for Neural Combinatorial Optimization.
arXiv:2205.13209 [cs.LG], 2022.
M. Kim, J. Park, and J. Park,
Neuro CROSS exchange: Learning to CROSS exchange to solve realistic
vehicle routing problems.
arXiv:2206.02771 [cs.LG], 2022.
S. Kim and S. Choi,
Dynamic closest color warping to sort and compare palettes.
ACM Transactions on Graphics, Volume 40, Issue 4, pp. 1-15, 2021.
Y. Kim, D. Edirimanna, M. Wilbur, P. Pugliese, A. Laszka. A. Dubey,
and S. Samaranayake,
Rolling Horizon based Temporal Decomposition for the Offline
Pickup and Delivery Problem with Time Windows.
Association for the Advancement of Artificial Intelligence, 2023.
B. Klocker, H. Fleischner, and G. R. Raidl,
Finding Uniquely Hamiltonian Graphs of Minimum Degree Three
with Small Crossing Numbers.
Hybrid Metaheuristics, 10th International Workshop, 2016.
K. Kloster, M. Moeini, D. Vigo, and O. Wendt,
The multiple traveling salesman problem in presence of
drone- and robot-supported packet stations.
Preprint, European Journal of Operational Research, 2022.
M. van Knippenberg, M. Holenderski, and V. Menkovski,
Complex Vehicle Routing with Memory Augmented Neural Networks.
arXiv:2009.10520 [cs.NE], 2020.
L. T. Kóczy, P. Földesi, and B. Tüü-Szabó,
An effective Discrete Bacterial Memetic Evolutionary Algorithm for
the Traveling Salesman Problem.
International Journal of Intelligent Systems, 10.1002/int.21893, 2017.
L. T. Kóczy, P. Földesi, and B. Tüü-Szabó,
Enhanced Discrete Bacterial Memetic Evolutionary Algorithm -
An efficacious metaheuristic for the Traveling Salesman optimization.
Information Sciences, Volumes 460-461, pp. 389-400, 2018.
O. Koenig and M. Jouaneh,
Minimization of Airtime in Cutting and Welding Applications.
Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pp. 3300-3305, 2005.
K. Komarudin and A. Chandra,
Optimization of Very Large Scale Capacitated Vehicle Routing Problems.
Conference paper, ICIBE, 2019.
D. Kong, Y. Ma, Zhiguang C. Zhiguang, and J. Xiao,
Efficient Neural Collaborative Search for Pickup and Delivery Problems.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
F. G. König,
Sorting with Objectives - Graph Theoretic Concepts in Industrial Optimization.
Doctoral Thesis, Technische Universität Berlin, November 2009.
C. Konstantopoulos, B. Mamalis, G. Pantziou, V. Thanasias,
Watershed-Based Clustering for Energy Efficient Data Gathering in Wireless Sensor
Networks with Mobile Collector.
Lecture Notes in Computer Science Volume 7484, pp. 754-766, 2012.
C. Konstantopoulos, B. Mamalis, G. Pantziou, V. Thanasias,
An image processing inspired mobile sink solution for energy efficient data gathering
in wireless sensor networks.
Wireless Networks, 21, DOI 10.1007/s11276-014-0779-x, pp. 227-249, 2015.
W. Kool, H. van Hoof, and M. Welling,
Attention, Learn to Solve Routing Problems!
Conference paper at ICLR 2019.
W. Kool, H. van Hoof, H. J. Gromicho, and M. Welling,
Deep Policy Dynamic Programming for Vehicle Routing Problems.
CPAIOR Lecture Notes in Computer Science 13292, 2022.
W. Kool,
Learning and optimization in combinatorial spaces:
With a focus on deep learning for vehicle routing.
Thesis, Universiteit van Amsterdam, 2022.
O. Korb,
Das Traveling Salesman Problem im GAILS-Framework: Integration und Analyse.
Student's thesis, Fachgebiet Intellektik, Fachbereich Informatik,
Technische Universität Darmstadt, Darmstadt, Germany, 2004.
L. Kotthoff, P. Kerschke, H. H. Hoos, and H. Trautmann,
Improving the State of the Art in Inexact TSP Solving using Per-Instance
Algorithm Selection.
Learning and Intelligent Optimization 9, 2015.
S. Kou, B. Golden, and S. Poikonen,
Optimal TSP tour length estimation using standard deviation as a predictor.
In Press, Computers & Operations Research, 2022.
S. Kou, B. Golden, and S. Poikonen,
Estimating optimal objective values for the TSP, VRP,
and other combinatorial problems using randomization.
International Transactions in Operational Research, 2023.
Y. Kou, Y. Zhou, and M. Zhou,
An Efficient Metaheuristic Algorithm for Solving Soft-clustered Vehicle Routing Problems,
International Conference on Networking, Sensing and Control ,CNSC, pp. 1-5, 2022.
A. Koubâa, O. Cheikhrouhou, H. Bennaceur, M.-F. Sriti, Y. Javed, and A.l Ammar,
Move and Improve: a Market-Based Mechanism for the Multiple Depot Multiple
Travelling Salesmen Problem.
Journal of Intelligent & Robotic Systems, Volume 85, Issue 2, pp. 307-330, 2015.
A. Kovács,
Integrated task sequencing and path planning for robotic remote laser welding.
International Journal of Production Research,
DOI: 10.1080/00207543.2015.1057626, 2015.
J. Krantz, S. Banerjee, W. Zhu, J. Corso2, P. Anderson, S. Lee, J. Thomason,
Iterative Vision-and-Language Navigation.
NeurIPS 2022.
M. El Krari,
Adaptation de Métaheuristiques pour résoudre des Problèmes d’Optimisation
Combinatoire liés aux Transports.
Ph.D. thesis, Université Mohammed V de Rabat, 2019.
M. El Krari, B. Ahiod, and Y. B. El Benani,
A pre-processing reduction method for the generalized travelling salesman problem.
Operational Research, DOI: 10.1007/s12351-019-00533-w, 2019.
V. Krátký, P. Petráček, V. Spurný and M. Saska,
Autonomous Reflectance Transformation Imaging by Team of Unmanned Aerial Vehicles.
IIEEE Robotics and Automation Letters, 2020.
B. Kriuk, K. Sulamanidze, and F. Kriuk,
ELENA: Epigenetic Learning through Evolved Neural Adaptation.
arXiv:2501.05735 [cs.NE], 2025.
M. Kulich and L. Přeučil,
Multirobot search for a stationary object placed in a known environment with a
combination of GRASP and VND.
International Transactions in Operational Research, 00, pp. 1-32, 2020.
D. P. Kumar, P. Rajbhandari, L. McGuire, S. Darbha, and D. Sofge,
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop.
arXiv:2310.08828 [math.OC], 2023.
D. P. Kumar, S. Rathinam, S. Darbha, and T. Bihl,
Heuristic for Min-Max Heterogeneous Multi-Vehicle Multi-Depot
Traveling Salesman Problem.
arXiv:2312.17403 [math.OC], 2023.
D. P. Kumar, S. Rathinam, S. Darbha, and T. Bihl,
Heterogeneous Min-Max Multi-Vehicle Multi-Depot Traveling Salesman Problem:
Heuristics and Computational Results.
arXiv:2410.23449 [math.OC], 2024.
S. Kumar and S. Chakravorty,
Multi-agent Generalized ProbabIlistic RoadMaps : MAGPRM.
Parasol Seminar, Texas A&M University, 2012.
S. Kumar,
Generalized Sampling-Based Feedback Motion Planners.
Ph.D. thesis,
Texas A&M University, 2012.
V. S. Kumar, B. Rutt, T. Kurc, U. Catalyurek, J. Saltz, S. Chow, S. Lamont,
and M. Martone,
Large Image Correction and Warping in a Cluster Environment.
SC06, International Conference for High Performance Computing, Networking,
Storage and Analysis, 2006.
V. S. Kumar,
Specification, Configuration and Execution of Data-Intensive Scientific Applications.
Ph.D. thesis,
The Ohio State University, 2010.
A. Kundu, R. G, Escobar, and T. I. Matis,
An efficient routing heuristic for a drone-assisted delivery problem.
IMA Journal of Management Mathematics, 2021.
A. Kundu,
Developing Efficient Order and Split Heuristics for Coordinated Covering
Tour Problems with Drones.
Ph.D. thesis,
Texas Tech University, 2022.
M. Kulich and L. Preucil,
Multirobot search for a stationary object placed in a known environment
with a combination of GRASP and VND.
International Transactions in Operational Research, 29, pp. 805–836. 2022.
R. Kutelmakh,
Experience of Applying the Geometric Optimization Method for the
Huge Traveling Salesman Problem.
Conference paper, CSIT, 2024.
Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, S. Min, and Y. Gwon,
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning.
NeurIPS, 2020.
Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon,
Matrix Encoding Networks for Neural Combinatorial Optimization.
arXiv:2106.11113 [cs.LG], 2021
P. T. Kyaw, A. Paing, T. T. Thu, R. E. Mohan, A. Vu Le, and P. Veerajagadheswar,
Coverage Path Planning for Decomposition Reconfigurable Grid-Maps Using
Deep Reinforcement Learning Based Travelling Salesman Problem.
I
EEE Access, vol. 8, pp. 225945-225956, 2020.
M. Lam, J. Mittenthal, and B. Gray,
The impact of stopping rules on hierarchical capacitated clustering in location
routing problems.
Academy of Information and Management Scineces Journal, Vol. 12, No. 1, pp. 13-28, 2009.
M. Lam and J. Mittenthal,
Capacitated hierarchical clustering heuristic for multi depot location-routing problems.
International Journal of Logistics: Research and Applications, 2013.
J. C. Lang,
MIP-Based Heuristics for Capacitated Lot-Sizing with Sequence-Dependent Setups and
Substitutions.
Lecture Notes in Economics and Mathematical Systems, Vol. 636, pp. 151-183, 2010.
J. C. Lang and Z.-J. M. Shen,
Fix-and-optimize heuristics for capacitated lot-sizing with sequence-dependent setups
and substitutions.
European Journal of Operational Research, 214(3), pp. 595-605, 2011.
D. Lee, C. Lee, G. Jang, W. Na, and S. Cho,
Energy-Efficient Directional Charging Strategy for Wireless Rechargeable Sensor Networks.
IEEE Internet of Things Journal, vol. 9, no. 19, pp. 19034-19048, 2022.
E. M. Lee, S. Jung, S. Song, D. Choi, D. Lee, S. Lee, S. Kim, and H. Myung,
CEO-MLCPP: Control-Efficient and Obstacle-Aware Multi-Layer Coverage
Path Plannerfor 3D Reconstruction with UAVs.
Lecture Notes in Networks and System. Vol. 642, pp. 27-36, 2023.
J. Lee, S. Onn, and R. Weismantel,
Nonlinear Optimization over a Weighted Independence System.
Lecture Notes in Computer Science, Volume 5564, pp. 251-264, 2009.
Z. Lei and J.-K. Hao,
A Memetic Algorithm for the Close-Enough Traveling Salesman Problem.
EU/ME meeting, 2023.
Z. Lei and J.-K. Hao,
An effective memetic algorithm for the close-enough traveling salesman problem.
In Press, Applied Soft Computing, 2024.
F. E. B. Leiva,
Efectos en los niveles de resiliencia en sistemas de distribución a través de ruteos
de cuadrillas de restauración.
Thesis, Universidad Chile, 2018.
D. R. Levy,
Multiple Vehicle Routing Problem with Fuel Constraints.
MSc. thesis, Texas A&M University, 2013.
K. T. Le Dong, H. B. Kewal, and K. Saluja,
Test Time Reduction to Test for Path-Delay Faults using Enhanced Random-Access Scan.
20th International Conference on VLSI Design, pp. 769-774, 2007.
B. Li , P. Feng, L. Zeng, C. Xu, and J. Zhang,
Path planning method for on-machine inspection of aerospace structures based on
adjacent feature graph.
Robotics and Computer-Integrated Manufacturing, Volume 54, pp. 17–34, 2018.
C. Li,
Rational swarm for global optimization.
Ph.D. thesis, University of Virginia, 2010.
J. Li, Y. Niu, G. Zhu, and J. Xiao,
Solving pick-up and delivery problems via deep reinforcement learning
based symmetric neural optimization.
Expert Systems with Applications, Volume 255. Part B, 2024.
J. Li, Y. Ma, Z. Cao, Y. Wu, W. Song, J. Zhang, and Y. M. Chee,
Learning Feature Embedding Refiner for Solving Vehicle Routing Problems.
IEEE Transactions on Nueralk Networks and Learning Systems, VOL. X, NO. X, 2023.
K. Li, H. Luan, and C-C. Shen,
Qi-ferry: Energy-constrained wireless charging in wireless sensor networks.
WCNC, pp. 2515-2520, 2012.
M. Li, S. Tu., and L. Xu,
Generalizing Graph Network Models for the Traveling Salesman Problem
with Lin-Kernighan-Helsgaun Heuristics.
Neural Information Processing.,ICONIP, pp 528–539, 2023.
S. Li, Z. Yan, and C. Wu,
Learning to Delegate for Large-scale Vehicle Routing.
arXiv:2107.04139 [cs.LG], 2021.
T. Li, J. He, H. Cao, Y. Zhang, J. Chen, Y. Xiao, and S.-Y. Huang,
All-atom RNA structure determination from cryo-EM maps.
Nature Biotechnology, 2024.
T. Li, H. Cao, J. He, , and S.-Y. Huang,
Automated detection and de novo structure modeling of nucleic acids
from cryo-EM maps.
Nature Communications, 15, 9367, 2024.
X. Li, B. Wang, Z. Dou, and D. Ye,
Autonomous Obstacle-Avoiding Movement in Unknown Environments,
6th International Conference on Artificial Intelligence and Big Data, pp. 339-344, 2023.
Y. Li,
Models and algorithms for a class of production routing problems.
Thesis, Université d’Evry-Val-d’Essonne, 2018.
Y. Li, F. Chu, and K. Chen,
Coordinated Production Inventory Routing Planning for Perishable Food.
IFAC PapersOnLine 50-1, pp. 4246–4251, 2017.
Y. Li, F. Chu, C. Chu, and Z. Zhu,
An Effecient Three-level Heuristic for the Large-scaled Multi-product
Production Routing Problem with Outsourcing.
European Journal of Operational Research, Accepted Manusript, 2018.
Y. Li, J. Guo, R. Wang, and J. Yan,
T2T: From Distribution Learning in Training to Gradient Search in Testing
for Combinatorial Optimization.
Advances in Neural Information Processing Systems, 2023.
Y. Li, S. Li, Y. Zhang, W. Zhang, and H. Lu,
Dynamic Route Planning for a USV-UAV Multi-Robot System in the
Rendezvous Task with Obstacles
Journal of Intelligent & Robotic Systems, 107, 52, 2023.
Y. Li, J. Guo, R. Wang, H. Zha, and J. Yan,
Fast T2T: Optimization Consistency Speeds Up Diffusion-Based
Training-to-Testing Solving for Combinatorial Optimization.
Proceedings, NeurIPS, 2024.
Y. Li and Z. Dai,
A two-stage flow-shop scheduling problem with incompatible job families
and limited waiting time.
Engineering Optimization, DOI: 10.1080/0305215X.2019.1593974, 2019.
Y. Li, L. Zeng, K. Tang, and C. Xie,
Orientation-point relation based inspection path planning method for
5-axis OMI system.
Robotics and Computer Integrated Manufacturing, Vol. 61, 2020.
Y. Li, J. Wang, H. Chen, X. Jiang, and Y. Liu,
Object-Aware View Planning for Autonomous 3-D Model Reconstruction
of Buildings Using a Mobile Robot.
I
EE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-15, 2023.
Z. Li, S. Wang, W. Li, and H. Jiang,
A VRP-based Approach for the Airline Crew Pairing Problem.
10th ISCTech, pp. 309-315, 2022.
Z. Lian, Q. Yang, Qinglin, W. Wang, Q. Zeng, M, Alazab, H. Zhao and C. Su,
DEEP-FEL: Decentralized, Efficient and Privacy-Enhanced Federated Edge
Learning for Healthcare Cyber Physical Systems.
IEEE Transactions on Network Science and Engineering, 2022.
Z. Lian,
Optimizing Federated Learning for IoMT and Social Computing
Based on Efficiency and Privacy Enhancements.
Ph.D. thesis, The University of Aizu.,2024
H. Liang, Y. Ma, Z. Cao, T. Liu, F. Ni., Z. Li, and J.Hao,
SplitNet: A Reinforcement Learning Based Sequence Splitting Method
for the MinMax Multiple Travelling Salesman Problem.
AAAI -23, 37(7), pp. 8720-8727, 2023.
J. Liang, G. Zhang, Z. Xu, Z. Hou, W. Wang, and C.-S. Han,
Efficient Offline Programming Method for Remote Laser Assisted Drilling.
IMCEC, 2019.
Y. Liang, L. Ju, S. Chakraborty, T. Mitra, and A. Roychoudhury,
Cache-aware Optimization of BAN Applications.
ACM International Conference on Hardware/Software Codesign and System Synthesis,
pp. 149-154, 2008.
L. Libralesso, A. M. Bouhassoun, H. Cambazard, and V. Jost,
Tree search algorithms for the Sequential Ordering Problem.
arXiv:1911.1242, [cs.DM], 2019.
F. Lin and H.-P. Hsieh,
Traveling Transporter Problem: Arranging a New Circular Route in a Public
Transportation System Based on Heterogeneous Non-Monotonic Urban Data.
Preprint, ACM Transactions on Intelligent Systems, Vol. 13, No.3, 2022.
F. Lin and H.-P. Hsieh,
A Grid-Based Two-Stage Parallel Matching Framework for Bi-Objective
Euclidean Traveling Salesman Problem.
ACM Transactions on Spatial Algorithms and Systems, 2022.
L. Lin, L. Tian, Z. Wang, and W. Yang,
A De-Based Single-Level Algorithm for Jointly Optimizing the Deployment
and Flight Trajectory of Uav-Assisted Data Collection System.
Preprint, Available at SSRN, 2023.
L. Lin, Z. Wang , L. Tian, J. Wu, and W. Wu,
A PSO-based energy-efficient data collection optimization algorithm
for UAV mission planning.
PLOS ONE, 2024.
S. Lin, C. L. Lee, and J. E. Chen,
A cocktail approach on random access scan toward low power and high efficiency test.
Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design,
pp. 94-99, 2005.
S.-W. Lin and K.-C. Ying,
Optimization of makespan for no-wait flowshop scheduling problems using efficient
matheuristics
Omega, Volume 64, pp. 115-125, 2016.
S.-W. Lin and K.-C. Ying,
Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent
family setup times.
Computers & Industrial Engineering, Volume 128, pp. 1-7, 2019.
X. Lin, Z. Yang, and Q. Zhang,
Pareto Set Learning for Neural Multi-Objective Combinatorial Optimization.
Conference paper, ICLR, 2022.
X. Lin, Z. Yang, X. Zhang, and Q. Zhang,
Continuation Path Learning for Homotopy Optimization.
Proceedings of the 40th International Conference on Machine Learning, PMLR 202, 2023.
X. Lin, Y. Yazıcıoğlu, and D. Aksaray,
Robust Planning for Persistent Surveillance With Energy-Constrained UAVs
and Mobile Charging Stations.
IEEE Robotics and Automation Letters, Volume: 7, Issue: 2, 2022.
Z. Lin, J. Fu, H. Shen, W. Gan, S. Yue,
Tool path generation for multi-axis freeform surface finishing with the LKH TSP solver.
Computer-Aided Design, Vol. 69, pp. 51-61, 2015.
Z. Lin, J. Fu, Y. Sun, Q. Gao, and G. Xu,
Non-retraction toolpath generation for irregular compound freeform surfaces with the
LKH TSP solver.
The International Journal of Advanced Manufacturing Technology, pp. 1-15, 2017.
Z. Lin, X. Deng, J. Fu, and Q. Gao,
An optimisation algorithm for reducing the number of turns on space-filling curve toolpath
for sculptured surface milling.
International Journal of Computer Integrated Manufacturing, 32(2), p. 199-209, 2018.
R. Linfati, J. W. Escobar, and G. Gatica,
Un algoritmo metaheurístico para el problema de localización y ruteo con flota heterogénea.
Ingeniería y Ciencia-ing. cienc. 10 (19), pp. 55-76, 2014.
R. Linfati, J. W. Escobar and G. Gatica,
Un algoritmo metaheurístico para el problema de localizaciòn y ruteo con flota
heterogénea.
Ingeniería y Ciencia - ing.cienc., Vol. 10 (19), pp. 55-76, 2014.
Z. Ling, Y. Zhang, and X. Chen,
A Deep Reinforcement Learning Based Real-Time Solution Policy for the
Traveling Salesman Problem
IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 6, pp. 5871-5882, 2023.
A. Lischka, J. Wu, M. H. Chehreghani, and B. Kulcsár,
A GREAT Architecture for Edge-Based Graph Problems Like TSP.
arXiv:2408.16717 [cs.LG], 2024.
B. Liu, W. Guo, D. Niu, J. Luo, C. Wang, Z. Wen, and Yu Xu,
GIANT: Scalable Creation of a Web-scale Ontology.
Conference paper, SIGMOD '20, 2020.
C. Liu, C. J. Beltran, J. Shen, B. Lu, C. Park, S. Yaddanapudi, J. Tan,
K. M. Furutani, and X. Liang,
Investigation of scan path optimization in improving proton pencil beam
scanning continuous delivery.
Accepted manuscript, Physics in Medicine & Biology, 2023.
C. Liu, L. Wang, Y. Zhong, Y. Dong, and J. Kong,
Personalized Tour Itinerary Recommendation Algorithm Based
on Tourist Comprehensive Satisfaction.
Applied Sciences, 14(12):5195, 2024.
C. Liu, X-F. Feng, F. Li, Q-L. Xian, Z‑H. Jia, Y‑H. Wang, and Z‑D. Du,
Deep reinforcement learning combined with transformer to solve
the traveling salesman problem.
The Journal of Supercomputing, 81:161, 2025.
F. Liu and G. Zeng,
Study of genetic algorithm with reinforcement learning to solve the TSP.
Expert Systems with Applications, 36, pp. 6995-7001, 2009.
F. Liu, X. Lin, W. Liao, Z. Wang, Q. Zhang, X. Tong, and M. Yuan,
Prompt Learning for Generalized Vehicle Routing.
arXiv:2405.12262 [cs.LG], 2024.
F. Liu, X. Tong, M. Yuan, X. Lin, F. Luo, Z. Wang, Z. Lu, and Q. Zhang,
Evolution of Heuristics: Towards Efficient Automatic Algorithm Design
Using Large Language Model.
arXiv:2311.15249v1, [cs.NE], 2023.
F. Liu, X. Tong, M. Yuan, X. Lin, F. Luo, Z. Wang, Z. Lu, and Q. Zhang,
An Example of Evolutionary Computation + Large Language Model Beating Human:
Design of Efficient Guided Local Search.
arXiv:2401.02051 [cs.NE], 2024.
F. Liu, X. Lin, Q. Zhang, X. Tong, and M. Yuan,
Multi-Task Learning for Routing Problem with Cross-Problem
Zero-Shot Generalization.
arXiv:2402.16891 [cs.LG], 2024.
J. F. Liu, Z. -H. Wang, W. Zhang, C.-R. Zhang, J.F. Hou, B. Bai, and G. Zghang,
HiTSP: Towards a Hierarchical Neural Framework for Large-scale
Traveling Salesman Problems.
Journal of the Operations Research Society of China 2023.
H. Liu, Q. Deng, S. Tian, X. Peng, and T. Pei,
Recharging Schedule for Mitigating Data Loss in Wireless Rechargeable Sensor Network.
Sensors, 18(7), 2223, 2018.
H. Liu, Z. Zong, Y. Li, and D. Jin,
NeuroCrossover: An intelligent genetic locus selection scheme for genetic algorithm
using reinforcement learning.
In Press,
Applied Soft Computing, 2023.
M. Liu, H. Ma, J. Li, and S. Koenig,
Task and Path Planning for Multi-Agent Pickup and Delivery.
Conference paper, AAMAS, 2019.
M. Liu, Y. Li, Q. Huo, A. Li, M. Zhu, N, Qu, L. Chen, and M. Xia,
A Two-Way Parallel Slime Mold Algorithm by Flow and Distance for the
Salesman Problem.
Applied Sciences, Vol. 10, Issue 18, 2020.
M. Liu, Y. Li, A. Li, Q. Huo, N. Zhang, N. Qu, M. Zhu, and L. Chen,
A Slime Mold-Ant Colony Fusion Algorithm for Solving Traveling Salesman Problem.
IEEE Access, vol. 8, pp. 202508-202521, 2022.
S. Liu,
A Powerful Genetic Algorithm for Traveling Salesman Problem.
arXiv:1402.4699 [cs.NE], 2014.
S. Liu, K. Tang, and X. Yao,
Automatic Construction of Parallel Portfolios via Explicit Instance Grouping.
arXiv:1804.06088, Artificial Intelligence, 2018.
S. Liu, K. Tang,Y. Lei, and X. Yao,
On Performance Estimation in Automatic Algorithm Configuration.
arXiv:1911.08200v1 [cs.LG], 2019.
S. Liu, K. Tang, and X. Yao,
Generative Adversarial Construction of Parallel Portfolios.
IEEE Transactions on Cybernetics, Vol. 52, No. 2, pp. 784-795, 2022.
S. Liu, Y. Zhang, K. Tang, and X. Yao,
How Good Is Neural Combinatorial Optimization?
arXiv:2209.10913 [cs.NE], 2022.
T. Liu, Q. Wang, X. Zhong, Z. Wang, C. Xu, F. Zhang, and F. Gao,
Star-Convex Constrained Optimization for Visibility Planning
with Application to Aerial Inspection.
Preprint, ArXiv:2204.04393 [cs.RO], 2022.
X. Liu, Z. Li, W. Zong, H. Su, P. Liu, and S. S. Ge,
Graph Representation Learning and Optimization for Spherical
Emission Source Microscopy System.
IEEE Transactions on Automation Science and Engineering, 2024.
X. Liu, M. Piao, H. Li, Y. Li, and B. Lu, B,
Quality and Efficiency of Coupled Iterative Coverage Path Planning
for the Inspection of Large Complex 3D Structures.
Drones, 8, 39. 2024.
Y. Liu, Y. Wu, T. Liua, D. Wu, J. Yang, Y. Xu, and J. Li,
LPPO: Lightweight Population-Based Policy Optimization for Pickup
and Delivery Problems.
Available at SSRN 5015814, 2024.
Z. Liu, C. Liu, W. Qu, T. Qiu, Z. Zhao, and Y. Hu,
Deep Reinforcement Learning-Based Multi-AUV Task Allocation Algorithm
in Underwater Wireless Sensor Networks.
IEEE Sensors Journal, vol. 25, no. 2, pp. 3909-3922, 2025.
S. Long, Y. Li, C. Wu, B Xu, and W. Fan,
HEROS: Hierarchical Exploration with Online Subregion Updating for
3D Environment Coverage.
arXiv:2407.11326 [cs.RO], 2024.
L. Lozano, J. C. Smith, and M. E. Kurz,
Solving the traveling salesman problem with interdiction and fortification.
Operations Research Letters, In Press, 2017.
L. Lozano,
Exact Algorithms for Mixed-Integer Multilevel Programming Problems.
Ph.D. thesis, Clemson University, 2017.
H. Lu, Z. Li, R. Wang, Q. Ren, J. Yan, and X.Yang,
Mind Your Solver! On Adversarial Attack and Defense for Combinatorial Optimization.
arXiv:2201.00402 [math.OC], 2021.
H. Lu, Z. Li, R. Wang, Q. Ren, J. Yan, and X.Yang,
General Framework for Evaluating Robustness of Combinatorial Optimization
Solvers on Graphs.
arXiv:2201.00402 [math.OC], 2022.
H. Lu, X. Zhang, and S. Yang,
A Learning-based Iterative Method for Solving Vehicle Routing Problems.
ICLR conference paper, 2020.
Y. Lu, J.-K. Hao, and Q. Wu,
Solving the Clustered Traveling Salesman Problem via TSP methods.
PeerJ Computer Science, 2022.
Y. Lu, U. Benlic, and Q. Wu,
A highly effective hybrid evolutionary algorithm for the covering salesman problem.
Information Sciences, Volume 564, pp. 144-162, 2021.
Y. Lu, U. Benlic, and Q. Wu,
An effective hybrid evolutionary algorithm for the set orienteering problem.
Information Sciences, 2023.
Y. Lu, Z. Di, B. Li, S. Liu, H. Qian, P. Yang, K. Tang, and A. Zhou,
Towards Geometry-Aware Pareto Set Learning for Neural Multi-Objective
Combinatorial Optimization.
arXiv:2405.08604 [cs.LG], 2024.
Y. Lu and E. Plaku,
Leveraging Single-Goal Predictions to Improve the Efficiency of Multi-Goal
Motion Planning with Dynamics.
Proceedings IROS, pp. 850-857, 2023.
Z. Lu, Y. Wang, F. Dai, Y. Ma, L. Long, Z. Zhao, Y. Zhang, and J. Li,
A reinforcement learning-based optimization method for task allocation of
agricultural multi-robots clusters.
Computers and Electrical Engineering,Volume 120, Part B, 2024.
Y. Luan and Q. -S. Jia,
Simplify Twin Crane Scheduling in Railway Yard by Spatial Task Assignment.
China Automation Congress (CAC), pp. 3034-3039. 2023.
M. Lujak and A. Doniec,
Towards Distributed Real-Time Coordination of Shoppers’ Routes in Smart
Hypermarkets.
Lecture Notes in Computer Science, Vol. 11327, pp. 223-238, 2019.
F. Luo, X. Lin, F. Liu, Q. Zhang, and Z Wang,
Neural Combinatorial Optimization with Heavy Decoder:
Toward Large Scale Generalization.
arXiv:2310.07985 [cs.LG], 2023.
F. Luo, X. Lin, Z. Wang, T. Xialiang, M. Yuan, and Q. Zhang,
Self-Improved Learning for Scalable Neural Combinatorial Optimization.
arXiv:2403.19561 [cs.LG], 2024.
Y. Luo, B.Golden, S. Poikonen, and R. Zhang,
A fresh look at the Traveling Salesman Problem with a Center.
Computers & Operations Research, olume 143(3), 2022.
Y. Luo, Z. Zhuang, N. Pan, C. Feng, S. Shen, F. Gao, and H. Cheng, Boyu Zhou,
Star-Searcher: A Complete and Efficient Aerial System for Autonomous
Target Search in Complex Unknown Environments.
arXiv:2402.16348 [cs.RO], 2024.
T. Lust and J. Teghem,
Two Phase Stochastic Local Search Algorithms for the Biobjective Traveling
Salesman problem.
IRIDIA, Technical Report No.TR/IRIDIA/2007-014, pp. 21-25, 2007.
T. Lust and J. Teghem,
Two-phase Pareto local search for the biobjective traveling salesman problem.
Journal of Heuristics, 2009, DOI:10.1007/s10732-009-9103-9.
T. Lust and J. Teghem,
Multiobjective Decomposition of Positive Integer Matrix: Application to Radiotherapy.
EMO 2009, pp. 335-349.
T. Lust,
New metaheuristics for solving MOCO problems: application to the knapsackproblem,
the traveling salesman problem and IMRT optimization.
Ph.D. thesis, Univeristé
de Mons, 2010.
E. Lutton, H. Gilbert, W. Cancino, B. Bach, J. Pallamidessi, P. Parrend, and P. Collet,
Visual and Audio Monitoring of Island Based Parallel Evolutionary Algorithms.
Journal of Grid Computing, pp. 1-19, 2014, DOI 10.1007/s10723-014-9321-8.
D. Luxen,
Lokale Suche in variabler Tiefe.
Diploma Thesis, Goethe Universität, Frankfurt, 2007.
Z. Lyo,
Exact Models, Heuristics, and Supervised Learning Approaches
for Vehicle Routing Problems.
Ph.D. thesis, University of Tennessee, 2023.
M. Löffler, N. Boysen, and M. Schneider,
Picker routing in AGV-assisted order picking systems.
Working Paper, DPO-2018-0, 2020.
N. Löhndorf, M. Riel, and S, Minner,
Simulation Optimization for the Stochastic Economic Lot Scheduling Problem with
Sequence-Dependent Setup Times.
Optimization Online, 2012.
C. Löwens, I. Ashraf, A. Gembus, G. Cuizon, J. Falkner, and L. Schmidt-Thieme,
Solving the Traveling Salesperson Problem with Precedence Constraints by
Deep Reinforcement Learning.
arXiv:2207.01443 [cs.LG], 2022.
H. Ma, S. Tu, and L. Xu,
IA-CL: A Deep Bidirectional Competitive Learning Method for
Traveling Salesman Problem.
ICONIP 2022, LNCS 13623, pp. 525–536, 2023.
L. Ma, X. Hao, W. Zhou, Q. Hei, R. Zhang, and L. Chen,
A hybrid neural combinatorial optimization framework
assisted by automated algorithm design.
Complex & Intell.igent Systems, 2024.
Q. Ma, S. Ge. D. H, D. Thaker, and I. Drori,
Combinatorial Optimization by Graph Pointer Networks and Hierarchical
Reinforcement Learning.
arXiv:1911.04936 [cs.LG], 2019.
X. Ma annd C. Liu,
A Travel Salesman Problem Solving Algorithm Based on
Feature Enhanced Attention Model.
Journal of Computers Vol. 35 No. 2, pp. 215-230, 2024.
Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and Jing Tang,
Learning to Iteratively Solve Routing Problems with Dual-Aspect
Collaborative Transformer.
arXiv:2110.02544 [cs.LG], 2021.
Y. Ma, J. Li, Z. Cao, W. Song, H. Guo, Y. Gong, and Y. M. Chee,Zhiguang,
Efficient Neural Neighborhood Search for Pickup and Delivery Problems.
31st International Joint Conference on Artificial Intelligence, 2022.
Y. Ma, Z. Cao, and Y. M. Chee,
Learning to Search Feasible and Infeasible Regions of Routing Problems
with Flexible Neural k-Opt.
arXiv:2310.18264 [cs.AI], 2023.
P. Maini, K. Sundary, S. Rathinam, and PB Sujit,
Cooperative Planning for Fuel-constrained Aerial Vehicles and Ground-based
Refueling Vehicles for Large-Scale Coverage.
arXiv:1805.04417 [cs.RO], 2018.
M. Mahjoob, S. S. Fazeli, S. Milanlouei, and L. S. Tavassoli,
A Modified Adaptive Genetic Algorithm for Multi-product Multi-period
Inventory Routing Problem.
Sustainable Operations and Computers, 2021.
S. Mahmoudinazlou and C. Kwon,
A Hybrid Genetic Algorithm with Type-Aware Chromosomes for
Traveling Salesman Problems with Drone.
arXiv:2303.00614 [cs.NE], 2023.
S. Mahmoudinazlou and C. Kwon,
A Hybrid Genetic Algorithm for the min-max Multiple Traveling Salesman Problem.
arXiv:2307.07120 [cs.NE], 2023.
P. Maini, K. Sundar, M. Singh, and S. Rathinam,
Cooperative Aerial-Ground Vehicle Route Planning with Fuel Constraints for
Coverage Applications.
IEEE Transactions on Aerospace and Electronic Systems, 2019.
G. M. Mallén-Fullerton and G. Fernández-Anaya,
DNA fragment assembly using optimization.
IEEE Congress on Evolutionary Computation 2013: pp. 1570-1577.
G. M. Mallén-Fullerton, J, A. Hughes, S. Houghten, and G. Fernández-Anaya,
Benchmark datasets for the DNA fragment assembly problem.
Int. J. Bio-Inspired Computation, Vol. 5, No. 6, pp, 384-394, 2013.
B. Mamalis,
Prolonging Network Lifetime in Wireless Sensor Networks with Path-Constrained
Mobile Sink.
International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 10, 2014.
S. Manchanda, S. Michel, D. Drakulic. and J.-M. Andreoli,
On the Generalization of Neural Combinatorial Optimization Heuristics.
arXiv:2206.00787 [cs.LG], 2022.
D. Manerba and R. Mansini,
A branch-and-cut algorithm for the Multi-Vehicle Traveling Purchaser Problem with
Exclusionary Side Constraints.
Technical Report No. 02, University of Brescia, 2013.
D. Manerba, M, Gendreau, and R. Mansini,
The multi-vehicle traveling purchaser problem with pairwise incompatibility constraints
and unitary demands: A branch-and-price approach.
CIRRELT, CIRRELT-2014-52, 2014.
P. A. Mannon
Partitioning Methods for NP-Hard Routing Problems.
Ph.D. Thesis, The University of Texas at Austin, 2020.
S. G. Manyam, S. Rathinam, and S. Darbha,
Computation of Lower bounds for a Multiple Depot, Multiple Vehicle Routing Problem
With Motion Constraints.
ASME Dynamic Systems and Control Conference, 2015.
S. G. Manyam, S. Rathinam, S. Darbha, D. Casbeer, Y. Cao, and P. Chandler,
GPS Denied UAV Routing with Communication Constraints
Journal of Intelligent & Robotic Systems, doi: 10.1007/s10846-016-0343-2, pp. 1-13, 2016.
S. G. Manyam, S. Rathinam, S. Darbha, and K. J. Obermeyer,
Lower Bounds for a Vehicle Routing Problem with Motion Constraints.
Journal of Intelligent & Robotic Systems, 30(3), pp. 1-13, 2015.
S. G. Manyam, K. Sundar, and D. W. Casbeer,
Cooperative Routing for an Air-Ground Vehicle Team - Exact Algorithm, Transformation
Method, and Heuristics.
Jounal of Latex class files, Vol. 14, No.3, 2018.
L. Marcia and Y. Gallardo,
Sistemas de almacenamiento y su efecto en la resiliencia de los sistemas
de distribución.
Thesis, Universidad de Chile, 2019.
J. M. C. Marques, R. Ramalingam, Z. Pan, and K. Hauser,
Optimized Coverage Planning for UV Surface Disinfection,
ICRA, pp. 9731-9737, 2021.
J. Marek, P. Váña, and J. Faigl,
Trajectory Planning for Aerial Vehicles in the Area Coverage Problem with Nearby Obstacles.
MESAS 2018. Lecture Notes in Computer Science, vol 11472, pp. 226-236, 2019.
R. Mariescu-Istodor and P. Fränti,
Solving the Large-Scale TSP Problem in 1 h: Santa Claus Challenge 2020.
Frontiers in Robotics and AI, October 2021.
Y. Marinakis and A. Migdalas, and P. M. Pardalos,
Expanding Neighborhood GRASP for the Traveling Salesman Problem.
Computational Optimization and Applications, Volume 32, Number 3, pp. 231-257, 2005.
E. Marques, S. de Givry, P. Stothard, B. Murdoch, Z. Wang, J. Womack, and S. S. Moore,
A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold
rearrangement in the latest bovine assembly.
BMC Genomics, 8: 254, 2007.
E. Marques,
Application of Genomics-based Tools Leading to the Identification of Markers on
Bovine Chromosome 14 Influencing Milk Production and Carcass Quality Traits.
Ph.D. thesis, University of Alberta, 2009.
J, M. C. Marques, R. Ramalingam, Z. Pan, and K. Hauser,
Optimized Coverage Planning for UV Surface Disinfection.
arXiv:2103.14137 [cs.RO], 2021.
H. Masuyama, H. Dan, and S, Umetani,
Curse of Scale-Freeness: Intractability of Large-Scale Combinatorial Optimization
with Multi-Start Methods
arXiv:2210.16678 [math.OC], 2022.
N. Mathew, S. L. Smith, and S. L. Waslander,
A Graph-Based Approach to Multi-Robot Rendezvous for Recharging in Persistent Tasks.
IEEE Conf. on Robotics and Automation, 2013.
N. Mathew, S. L. Smith, and S. L. Waslander,
Optimal Path Planning in Cooperative Heterogeneous Multi-robot Delivery Systems.
Workshop on the Algorithmic Foundations of Robotics, 2014.
N. Mathew, S. L. Smith, and S. L. Waslander,
Multirobot Rendezvous Planning for Recharging in Persistent Tasks.
IEEE Transactions on Robotics. 128. Volume: 31. Issue: 1, 2015.
N. Mathew, S. L. Smith, and S. L. Waslander,
Planning Paths for Package Delivery in Heterogeneous Multirobot Teams.
IEEE Transactions on Automation Science and Engineering. 1298. Volume: 12. Issue: 4, 2015.
N. Mathew,
Discrete Path Planning Strategies for Coverage and Multi-robot Rendezvous.
Thesis, University of Waterloo, 2013.
M. Matusiak, R. de Koster, and J. Saarinen,
Data-driven warehouse optimization: deploying skills of order pickers.
ERIM Report Series Reference No. ERS-2015-008-LIS, 2015.
L. Mathieson and P. Moscato,
The Unexpected Virtue of Problem Reductions or How to Solve Problems
Being Lazy but Wise.
Symposium Series on Computational Intelligence, pp. 2381-2390, 2020.
M. Matusiak,
Optimizing Warehouse Order Batching when Routing Is Precedence Constrained and
Pickers Have VaryingSkills.
Doctoral Dissertationa 62/2014, Aalto University publication series, 2014.
A. Maya-López, F. Casino, and A. Solanas,
Improving Multivariate Microaggregation through Hamiltonian Paths and
Optimal Univariate Microaggregation.
Symmetry, 13(6), 916, 2021.
N. Mazyavkina, S. Sviridov, S. Ivanovc, and E. Burnaev,
Reinforcement learning for combinatorial optimization: A survey.
Computers & Operations Research, Pre-proof, 2021.
D. Mazzieri and Kiziltan,
Machine Learning for Combintaorial Ooptimization:he Case of Vehicle Routing.
Master thesis, Università di Bologna, 2021.
P. McMenemy, N. Veerapen, J. Adair, and G. Ochoa,
Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers.
EvoCOP 2019, LNCS 11452, pp. 99–114, 2019.
Y. A. de Medeiros, M. C. Goldbarg, and E. F. G. Goldbarg,
Prize Collecting Traveling Salesman Problem with Ridesharing.
Revista de Informática Teórica e Aplicada, Vol. 27, Num. 2, pp. 13-29, 2020.
H. Medeiros, E. Ferreira, G. Goldbarg, and M. C. Goldbarg,
On the three-objective static unconstrained leaf sequencing in IMRT.
Medical & Biological Engineering & Computing, 2020.
K. Meng, D. Li, X. He, and M. Liu,
Space Pruning Based Time Minimization in Delay Constrained Multi-Task
UAV-Based Sensing.
IEEE Transactions on Vehicular Technology, 2021.
X. Meng,
Asymptotic analysis of the generalized traveling salesman problem and its application.
PhD. thesis, University of Southern California, 2018.
K. Miao, H. Duan, F. Qian, and Ye Dong,
A one-commodity pickup-and-delivery traveling salesman problem solved by a
two-stage method: A sensor relocation application.
PLoS ONE, Research article, 2019.
B. B. Mieres.
Un modelo y algoritmo para el problema flexible del vendedor viajero
con múltiples drones.
Thesis, Universidad de Concepción, Chile, 2023.
J. Mikula,
Search for a static object in a known environment.
Master thesis, Czech Technical University in Prague, 2021.
J. Mikula and M. Kulich,
Towards a continuous solution of the d-visibility watchman route problem in a polygon with holes.
IEEE Robotics and Automation Letters, 7(3), pp. 5934–5941, 2022.
Y. Min, Y. Bai, and C. P. Gomes,
Unsupervised Learning for Solving the Travelling Salesman Problem.
arXiv:2303.10538 [cs.AI], 2023.
Y. Min and C. P. Gomes,
On Size and Hardness Generalization in Unsupervised Learning
for the Travelling Salesman Problem.
arXiv:2403.20212 [cs.AI], 2024.
S. Misra, B. Wang, K. Sundar, R. Sharma, and S. Rathinam,
Single Vehicle Localization and Routing in GPS-denied Environments using
Range-only Measurements.
IEEE Access, DOI: 10.1109/ACCESS.2019.296328, 2019.
D. Mitra, S. Roy, K. Chakrabarty, and B. B. Bhattacharya,
On-Chip Sample Preparation with Multiple Dilutions using Digital Microfluidics.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
33 (8), pp. 1131-1141, 2014.
Y. Mo, K. Yang, S. Han, and S. Gupta,
Multi-period heterogeneous fleet vehicle routing problem with self-pickup point selection:
a last-mile delivery scenario in urban and rural areas.
Annals of Operations Research, 2024.
S. C. Mohamed, A. Fung, and G. Nejat,
A Multi-Robot Person Search System for Finding Multiple Dynamic Users
in Human- Centered Environments.
IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2022.31664811, 2022.
J. G. Monroe, A. A. Zachariah A, P. Tanger, J. L. Mullen, J. T. Lovell, B. T. Moyers,
D. Whitley, and J. K. McKay,
TSPmap, a tool making use of traveling salesperson problem solvers in the efficient
and accurate construction of high-density genetic linkage maps.
BioData Mining, 10:38, 2017.
J. G. Monroe, Z. A. Allen, P. Tanger, J. L. Mullen, J. T. Lovell, B. T. Moyers,
D. Whitley, and J. K. McKay,
TSPmap, a tool making use of traveling salesperson problem solvers in the efficient
and accurate construction of high-density genetic linkage maps.
BioData Mining, Vol. 10(1), 2017.
R. Montemanni, J. Barta, and L.M. Gambardella,
The robust traveling salesman problem with interval data.
Technical report IDSIA-20-05,
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), 2005.
R. Montemanni, J. Barta, and L.M. Gambardella,
Heuristic and preprocessing techniques for the robust traveling salesman problem
with interval data.
Technical report IDSIA-01-06,
Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), 2006.
A. Mor, M. G. Speranza, and J. M. Viegas,
Efficient loading and unloading operations via a booking system,
Transportation Research Part E: Logistics and Transportation Review, Volume 141, 2020.
G. Morgenthal, N. Hallermann, J. Kersten, J. Taraben, P. lDebus, M. Helmrich, and V. Rodehorst,
Framework for automated UAS-based structural condition assessment of bridges.
Automation in Construction, Volume 97, pp. 77-95, 2019.
D. W. Morris and K. Wilk,
Cayley graphs of order kp are hamiltonian for k < 48.
The Art of Discrete and Applied Mathematics, Vol. 3, 2020.
B. Moser,
Robotic Antenna Metrology Range Calibration, Uncertainty Evaluation,
And Scan Generation To Improve Performance And Flexibility.
Ph.D. thesis, Colorado School of Mines, 2023.
M. Moshir, D. W. Murphy, D. L. Meier, and M. H. Milman,
Systems engineering and application of system performance modeling in SIM Lite Mission.
Proc. SPIE, Vol. 7734-52, 2010.
M. Muijsers,
Hybrid Metaheuristics for the Travelling Salesman Problem.
Master thesis, Eindhoven University of Thechnology, 2021.
O. Muliarevych and V. Golembo,
New Approaches for Solving Traveling Salesman Problems Using Agent Swarm
Iintelligence Behavior Model.
European Cooperation, Vol. 5(5), 2015.
A. Mukherjee, P. S. Barma, J. Dutta, S. Das, and D. Pamucar,
Imprecise Covering Ring Star Problem.
Decision Making: Applications in Management and Engineering, June 2022.
G. Munnelly,
Entity Linking for Text Based Digital Cultural Heritage Collections.
Ph.D. thesis, Trinity Colledge Dublin, 2020.
D. L. H. Muñoz,
The flexible periodic vehicle routing problem: modeling alternatives and solution techniques.
Ph.D. thesis, Universitat Politècnica de Catalunya, 2018.
S. Muñoz-Herrera and K. Suchan,
Constrained Fitness Landscape Analysis of Capacitated Vehicle Routing Problems.
Entropy,
24(1):53, 2022.
S. Muñoz-Herrera and K. Suchan,
Local Optima Network Analysis of Multi-Attribute Vehicle Routing Problems.
Mathematics, 10(24), 4644, 2022.
D. W. Murphy, M. H. Milman, D. L. Meier, and M. Moshir,
SIM Lite narrow-angle modeling and processing.
Proc. SPIE 7734-23, 2010.
Z. Mu,
Analysing the empirical time complexity of high-performance algorithms for SAT and TSP.
M.Sc. thesis, University of British Columbia, 2015.
Z. Mu, H. H. Hoos, and Thomas Stützle,
The Impact of Automated Algorithm Configuration on the Scaling Behaviour
of State-of-the-Art Inexact TSP Solvers.
International Conference on Learning and Intelligent Optimization, pp. 157-172, 2016.
Z. Mu, J. Dubois-Lacoste, H. H. Hoos, and Thomas Stützle,
On the empirical scaling of running time for finding optimal solutions to the TSP.
Journal of Heuristics, https://doi.org/10.1007/s10732-018-9374-0, 2018.
O. Muliarevych and V. Golembo,
New approaches for solving travelling salesman problems using agents swarm
intelligence behavior model,
Współpraca europejska, Nr 5(5), pp. 131-143, 2015.
D. L. H. Muñoz,
The flexible periodic vehicle routing problem: modeling alternatives and solution
techniques.
Ph.D. thesis, Universitat Politècnica de Catalunya, 2018.
A. Mustedanagic,
A generalized vehicle routing problem with spatial and temporal synchronization.
Mathematical modelling and solution.
M.Sc. thesis, Chalmers tekniska högskola, 2016.
Y. Nagata and S. Kobayashi,
A Powerful Genetic Algorithm Using Edge Assembly Crossover for the Traveling
Salesman Problem.
INFORMS Journal on Computing, 2012.
H. Naganawa, E. Hirata, N. Firdausiyah, and R. G. Thompson,
Logistics Hub and Route Optimization in the Physical Internet Paradigm.
Logistics 2024, 8, 37, 2024.
H. Naganawa1 and E. Hirata,
Reinforcement Learning-Based Optimization of Logistical Hubs and Routing
in the Context of the Physical Internet - A Case Study from Japan.
10th International Physical Internet Conference, 2024.
M. S. Nagano, V. S. V. Junqueira, and F. L. Rossi,
An objective review and perspectives on the permutation flowshop scheduling
with no-wait constraint and setup times.
IFAC Journal of Systems and Control, 2024.
Z. Naji-Azimi,
Algorithms for Combinatorial Opimization Problems.
Ph.D. thesis, Università di Bologna, 2010.
Z. Naji-Azimi, M. Salari, and P. Toth,
A heuristic procedure for the Capacitated m-Ring-Star problem.
European Journal of Operational Research, 2010. DOI:10.1016.
A. Nammouchi, H. Ghazzai, and Y. Massoud,
A Generative Graph Method to Solve the Travelling Salesman Problem.
arXiv:2007.04949v1, 2020.
S. Narayanaswamy, B. Wu, P. Ludivig, F. Soboczenski, K. Venkataramani,
and C. J. Damaren,
Low-thrust rendezvous trajectory generation for multi-target active space debris
removal using the RQ-Law.
Advances in Space Research, 2022.
S. Nasehi, F. Choudhury, and E. Tanin,
DeepMDV: Learning Global Matching for Multi-depot Vehicle Routing Problems.
arXiv:2411.17080 [cs.DB], 2024.
B. T. Nguimeya, M. Soh, and L. P. Fotso,
Algorithmes hybrides pour la résolution du problème du voyageur de commerce.
Procesedings of CARI, pp. 63-74, 2016.
H. D. Nguyen, I. Yoshihara, K. Yamamo, and M. Yasunaga,
Implementation of an effective hybrid GA for large-scale traveling salesman problems.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 37 (1), pp. 92-99, 2007.
M. A. Nguyen, H. L. Luong, N. H. Hà, and H.-B. Ban,
An efficient branch-and-cut algorithm for the parallel drone scheduling
traveling salesman problem.
4OR-A Quarterly Journal of Operations Research, 2022.
D. Nicola, R. Vetschera, and A. Dragomir,
Total Distance Approximations for Routing Solutions.
Computers & Operations Research, In Press, 2018.
D. Nicola,
Comparison of four mechanisms for request exchange in collaborative transportation.
International Transactions in Operational Research, 2022.
C. Nie, H. Wu, and W. Zheng,
Lifetime-Aware Data Collection Using A Mobile Sink in WSNs with Unreachable Regions.
Proceedings of MSWiM’17, pp. 143-152, 2017.
A. Nikolaev and M. Batsyn,
Branch-and-Bound Algorithm for Symmetric Travelling Salesman Problem.
IWOCA 2018. Lecture Notes in Computer Science, Vol .10979, pp. 211-322, 2018.
A. G. Nikolaev, S. H. Jacobson, S. N. Hall, and D. Henderson,
A framework for analyzing sub-optimal performance of local search algorithms.
Computation Optimization and Applications, 2009. DOI:10.1007/s10589-009-9290-1.
A. G. Nilolaev and S. H. Jacoson,
Using Markov Chains to Analyze the Effectiveness of Local Search Algorithms.
Discrete Optimization, Volume 8, Issue 2, pp. 160-173, 2011,
A. Nowak, S. Villar, A. S. Bandeir, and J. Bruna,
A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks.
eprint arXiv:1706.07450, 2017.
A. Nowak, D. Folqué, and J. Bruna,
Divide and Conquer Networks.
Conference paper, ICLR, 2018.
J. Le Ny and E. Feron,
Approximation Algorithms for the Dubins' Traveling Salesman Problem.
MIT-LIDS report #2654, 2005.
J. Le Ny and E. Feron,
An Approximation Algorithm for the Curvature-Constrained Traveling Salesman Problem.
Proceedings Allerton Conference on Communications, Control and Computing, 2005.
J. Le Ny,
Performance optimization for unmanned vehicle systems.
Ph.D. thesis, MIT, 2008
.
J. Le Ny, M. M. Zavlanos, and G. J. Pappas,
Resource Allocation for Signal Detection with Active Sensors.
Proceedings of the 28th Chinese Control Conference, 2009.
J. Oark, S, Bakhtiyar, abd J. Park,
ScheduleNet: Learn to solve multi-agent scheduling problems with
reinforcement learning.
arXiv:2106.03051 [cs.LG], 2021.
P. Oberlin,
Path Planning Algorithms for Multiple Heterogeneous Vehicles.
M.Sc. thesis, Texas A&M University, 2009.
P. Oberlin, S. Rathinam, and S. Darbha,
A transformation for a Heterogeneous, Multiple Depot, Multiple Traveling Salesman Problem.
American Control Conference, pp. 1292-1297, 2009.
P. Oberlin, S. Rathinam, and S. Darbha,
A Transformation for a Multiple Depot, Multiple Traveling Salesman Problem.
American Control Conference, pp. 2636-2641, 2009.
P. Oberlin, S. Rathinam, and S. Darbha,
Today's Traveling Salesman Problem.
Heterogeneous, multiple depot, multiple UAV routing problem.
IEEE Robotics & Automation Magazine, Vol. 17 (4), pp.70-77, 2010.
K. J. Obermeyer,
Visibility Problems for Sensor Networks and Unmanned Air Vehicles.
Ph.D. thesis, University of California at Santa Barbara, 2010.
K. J. Obermeyer, P. Oberlin, and S. Darbha,
Sampling-Based Path Planning for a Visual Reconnaissance UAV.
AIAA Journal of Guidance, Control, and Dynamics, 2011.
J. B. Odili, Mohammad, N. Kahar, and A. Noraziah,
Solving Traveling Salesman’s Problem Using African Buffalo Optimization,
Honey Bee Mating Optimization & Lin-Kerninghan Algorithms.
World Applied Sciences Journal 34 (7), pp. 911-916, 2016.
P. Oikonomou, N.Tziritas, K. Kolomvatsos, and T. Loukopoulos,
Fast Heuristics for Mixed Fleet Capacitated Multiple TSP with Applications
to Location Based Games and Drone Assisted Transportation.
Proceeding fo PSI, pp. 294-299, 2021.
B. J. Olivieri de Souza and M. Endler,
Evaluating flight coordination approaches of UAV squads for WSN data
collection enhancing the internet range on WSN data collection.
Journal of Internet Services and Applications, Volume 11, 4, 2020.
J. C. H. Onga, M. Yoonb, H. Shinb, S.-E. Yoonb, Z. Pana, M.-Z. Ismadia, X. Wanga,
Metaheuristic Crack Sealing Path Planning based on Discrete Grey Wolf Optimizer.
Preprint, Available at SSRN, 2024.
A. Osorio-Mora, C. Rey, P. Toth, and D. Vigo,
Effective metaheuristics for the latency location routing problem.
International Transactions
in Operational Research, 2023.
A. Osorio-Mora, J. W. Escobar, and P. Toth,
An iterated local search algorithm for latency vehicle routing problems
with multiple depots.
In Press, Computers and Operations Research, 2023.
A. O. Mora, F. Saldanha-da-Gama, and P. Toth,
A risk-averse latency location-routing problem with stochastic travel times.
European Journal of Operational Research, Volume 321, Issue 3, pp. 837-850, 2025.
D. Ospina-Toro, E. M. Toro-Ocampo, and R. A. Gallego-Rendón,
A methodology for creating feeder routes in mass transit systems.
Revista Facultad de Ingeniería, v. 26, n. 45, 2017.
S. Oßwald, P. Karkowski, and M. Bennewitz,
Efficient Coverage of 3D Environments with Humanoid Robots Using Inverse
Reachability Maps.
Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2017.
W. Ouyang, Y. Wang, P. Weng, and S. Han,
Generalization in Deep RL for TSP Problems via Equivariance and Local Search.
SN Computer Science, Volume 5, article number 369, 2024.
C. Oysua and Z. Bingul,
Application of heuristic and hybrid-GASA algorithms to tool-path optimization problem
for minimizing airtime during machining.
Engineering Applications of Artificial Intelligence, Vol. 22 (3), pp. 389-396, 2008.
S. G. Ozden, A. E. Smith, and K. R. Gue,
Solving large batches of traveling salesman problems with parallel and
distributed computing.
Computers & Operations Research, Vol. 85, pp. 87-96, 2017.
S. G. Ozden,
A Computational System to Solve the Warehouse Aisle Design Problem.
PhD. thesis, Auburn University, 2017.
S.G.Ozden, A.E.Smith, and K.R.Gue,
A Computational Software System to Design Order Picking Warehouses.
Computers & Operations Research, Volume 132, 2021.
C. Pais, A. Weintraub, and Z.-J. M. Shen,
Stochastic forestry planning under market and growth uncertainty.
Computers & Operations Research, Volume 153, 2023.
A. Palau,
Solucions Paral·leles del TSP utilitzant Oracle Coherence.
Thesis, Universitat Politècnica de Catalunya, 2013.
E. Pampalk, T. Pohle, J. Petrak, S. Dixon, F. Gouyon, and A. Flexer,
D3.5.1 Music Collection Structuring and Navigation Module.
SIMAC, public deliverable, 2006.
S. Pan, L. Zhang, R. G. Thompson, and H. Ghaderi,
A parcel network flow approach for joint delivery networks using parcel lockers.
International Journal of Production Research, 2020.
X. Pan, Y. Jin, Y. Ding, MFeng., L. Zhao., L. Song, and J. Bian,
H-TSP: Hierarchically Solving the Large-Scale Traveling Salesman Problem.
AAAI-23, 37(8), pp .9345-9353. 2023.
X. Pan, C. Wang, C. Ying, Y. Xue, and T. Yu,
Rethinking the "Heatmap + Monte Carlo Tree Search" Paradigm
for Solving Large Scale TSP.
arXiv:2411.09238 [cs.LG], 2024.
L. Pansart,
Exact algorithms for picking problem.
M.Sc. thesis, Université Grenoble Alpes, 2016.
L. Pansart, N. Catusse, and H. Cambazard,
Exact algorithms for the picking problem.
arXiv:1703.00699v1, 2017.
C. Papachristos, K. Alexi, L. R. G. Carrillo, and A. Tzes,
Distributed infrastructure inspection path planning for aerial robotics subject
to time constraints.
Proceedings of the International Conference on
Unmanned Aircraft System, 2016.
C. Papachristos and K Alexis,
Augmented reality-enhanced structural inspection using aerial robots.
IEEE International Symposium on Intelligent Control, 2016.
C. Papachristos, M. Kamel, M. Popovic, S. Khattak, A. Bircher, H. Oleynikova,
T. Dang, F. Mascarich, K. Alexis, and R. Siegwart,
Autonomous Exploration and Inspection Path Planning for Aerial Robots
Using the Robot Operating System.
In book: Robot Operating System (ROS), 2019.
X. Pan, Y. Jin, Y. Ding, M. Feng, L. Zhao, L. Song, and Jiang Bian,
H-TSP: Hierarchically Solving the Large-Scale Traveling Salesman Problem.
Microsoft Research, AAAI, 2023.
J. Parappathodi and C. Archetti,
Crowdsourced humanitarian relief vehicle routing problem.
In Press, Computers & Operations Research, 2022.
M. Park, P. Oberlin, S. Rathinam, L. Quadrifoglio, and S. Darbha,
Algorithms for Routing Vehicles and Their Application to the Paratransit Vehicle
Scheduling Problem.
UTCM Final Technical Reports, UTCM 09-15-13, 2012.
A. Patil, J. Bae, and M. Park,
An Algorithm for Task Allocation and Planning for aHeterogeneous Multi-Robot
System to Minimize the LastTask Completion Time.
Sensors, 22, 2022.
S. Paul, P. Ghassemi, and S. Chowdhury,
Learning to Solve Multi-Robot Task Allocation with a Covariant-Attention
based Neural Architecture.
Conference submissison, ICLR, 2021.
P. Pellegrini and E. Moretti,
Quick-and-dirty ant colony optimization.
Proceedings of the 9th annual conference on Genetic and evolutionary
computation, 2007.
P. Pellegrini and E. Moretti,
A Computational Analysis on a Hybrid Approach: Quick-and-dirty ant colony optimization.
Applied Mathematical Sciences, Vol. 3, no. 23, pp. 1127-1140, 2009.
B. Peng, Y. Zhang, Z. Lü, T. C. E. Cheng, and F. Glover,
A Learning-based Memetic Algorithm for the Multiple Vehicle Pickup and Delivery
Problem with LIFO Loading.
Computers & Industrial Engineering, Vol. 142, 2020.
K. Peng, W. Liu, Q. Sun, X. Ma, M. Hu, D. Wang, and J. Liu:
Wide-Area Vehicle-Drone Cooperative Sensing: Opportunities and Approaches.
IEEE Acess PP(99):1-1, 2018.
K. Peng, J. Du, F. Lu, Q. Sun, Y. Dong, P. Zhou, and M. Hu,
A Hybrid Genetic Algorithm on Routing and Scheduling for Vehicle-Assisted Multi-Drone
Parcel Delivery.
IEEE Acesss, Vol. 7, 2019.
F. Perea, R. Ruiz,and K. Katragjini,
Integer programming, clustering, and local search approaches for grouping urban
waste collection sites.
Boletín de Estadística e Investigación Operativa, 32(3), pp. 203-224, 2016.
V. de N. G. Pereira, M. C. S. Felice, P. H. D. B. Hokama, and E. C. Xavier,
On the Restricted Steiner Multi Cycle Problem.
Computers & Operations Research, 2024.
J. R. Peters,
Coordination Strategies for Human Supervisory Control of Robotic Teams.
Ph.D. thesis, University of California, 2017.
J. R. Peters, A. Surana, G. S. Taylor, T. S. Turpin, and F. Bullo,
UAV Surveillance Under Visibility and Dwell-Time Constraints:
A Sampling-Based Approach.
J. Dyn. Sys., Meas., Control., 141(6), 2109.
A. Petrenko, O. N. Timo, and S. Ramesh,
Model-based testing of automotive software: some challenges and solutions.
Proceedings of the 52nd Annual Design Automation Conference, 2015.
A. Petrie and T. R. Willemain,
The snake for visualizing and for counting clusters in multivariate data.
Statistical Analysis and Data Mining, Vo. 3, Issue 4, pp. 236-252, 2010.
M. Peuzin-Jubert, A. Polette, D. Nozais, J.-L. Mari, and J.-P. Pernot,
Survey on the View Planning Problem for Reverse Engineering and
Automated Control Applications.
Computer-Aided Design, Volume 141, 2021.
U. Pferschy and R. Staněk,
Generating subtour constraints for the TSP from pure integer solutions.
Central European Journal of Operations Research, Volume 25, Issue 1,
pp. 231-260, 2017.
A. G. Philip, Z. Ren, S. Rathinam, and H. Choset,
C*: A New Bounding Approach for the Moving-Target Traveling Salesman Problem.
arXiv:2312.05499 [cs.RO], 2024.
J. Pihera and N. Musliu,
Application of Machine Learning to Algorithm Selection for TSP.
Proc. of the IEEE 26th Int. Conference on Tools with Artificial Intelligence, 2014.
A. R. F. Pinto and M. S. Nagano,
A comprehensive review of batching problems in low-level picker-to-parts systems
with order due dates: Main gaps, trade-offs, and prospects for future research.
Journal of Manufacturing Systems, Volume 65, pp. 1-18, 2022.
E. Plaku, S. Rashidian, and S.Edelkamp,
Multi-group motion planning in virtual environments.
Comp. Anim. Virtual Worlds. DOI: 10.1002/cav.1688, 2016.
A. Plebe and A. M. Anile,
A Neural-Network-Based Approach to the Double Traveling Salesman Problem.
Neural Computation, 14(2), pp. 437-471, 2002.
S. Poikonen and B. Golden,
Multi-visit drone routing problem.
Computers & Operations Research, Volume 113:104802, 2020.
T. Pohle, E. Pampalk, and G. Widmer,
Generating Similary-based Playlist Using Traveling Salesman Algorithms.
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx'05),
Madrid, Spain, September 20-22, 2005.
P. C. Pop, O. Cosma, C. Sabo, and C. P. Sitar,
A Comprehensive Survey on the Generalized Traveling Salesman Problem.
In Press, European Journal of Operational Research, 2023.
M. Prágr, P. Vá́ña, and J. Faigl,
Aerial Reconnaissance and Ground Robot Terrain Learning in Traversal
Cost Assessment.
Lecture Notes in Computer Science, vol 11995, pp. 3-10, 2020.
M. Prágr, J. Bayer, and J. Faigl,
Autonomous robotic exploration with simultaneous environment
and traversability models learning.
Frontiers in Robotics and AI, 2022.
A. Prasad,
Fine Scale Mapping and Association Study of Economically Important Traits on
Chromosomes 19 and 29 in Beef and Dairy Cattle.
Ph.D. thesis, University of Alberta, 2009.
J. S. Prashanth and S. V. Nandury,
A Cluster–based Approach for Minimizing Energy Consumption
by Reducing Travel Time of Mobile Element in WSN.
International Journal of Computers Communications & Control, 14(6), pp. 691-709, 2019.
Á. N. Prestes,
Uma Análise Experimental de Abordagens Heurìsticas Aplicadas ao Problema do
Caixeiro Viajante.
Dissertaçâo de mestrado, Universidade Federal do Rio Grande do Norte, 2006.
C. C. Price,
Applications of Operations Research Models to Problems in Health Care.
Dissertation, University of Maryland, 2009.
K. Puljic and R. Manger,
Evolutionary operators for the Hamiltonian completion problem.
Soft Computing, 2020.
Y. Pushak and H. H. Hoos,
Golden Parameter Search.
GECCO '20, pp. 245-253, 2020.
J. Qin,
Algorithms for an Unmanned Vehicle Path Planning Problem.
Thesis, Texas A&M University, 2013.
H. Qiu, S. Wang, Y. Yin, D. Wang, and Y. Wang,
A deep reinforcement learning-based approach for the home delivery
and installation routing problem.
International Journal of Production Economics, Volume 244, 2022.
R. Qiu, Z. Sun, and Y. Yang,
DIMES: A Differentiable Meta Solver for Combinatorial Optimization Problems.
arXiv:2210.04123 [cs.LG], 2022.
Y. Qiu, M. Ni, L. Wang, Q. Li, X. Fang, and P. M. Pardalos,
Production routing problems with reverse logistics and remanufacturing.
Transportation Research Part E: Logistics and Transportation Review,
Volume 111, pp. 87-100, 2018.
Y. Qiu, D. Zhou,Y. Du, J. Liu, P. M. Pardalos, and J. Qiao,
The two-echelon production routing problem with cross-docking satellites.
Transportation Research Part E: Logistics and Transportation Review,
Volume 147, pp. 2021.
O. Quirion-Blais, A. Langevin, F. Lehuédé, O. Péton, and M. Trépanier,
Solving the large-scale min–max K-rural postman problem for snow plowing.
Networks,
Volume 70, Issue 3, pp. 129-215, 2017.
N-H. Qutteineh, T. Larsson, K. Lundberg, K. Holmberg,
Aircraft Mission Planning.
Technical Report LiTH-MAI-R-2012/07-SE, Linköping University, 2012.
K. R. Rajagopal, S. Darbha, and S. Rathinam,
Combinatorial Motion Planning Algorithms for a Heterogeneous Collection of
Unmanned Vehicles.
Technical report, 1410, Texas Engineering Experiment Station, 2013.
D. Rajani, F. Seghizzi, Y. Lai, K. Buchta, and M. Draelos,
Dynamics-aware deep predictive adaptive scanning optical coherence tomography,.
Biomed. Opt. Express 16, 186-207,2025.
R. Ramakrishnan, P. Sharma, and A. P. Punnen,
An efficient heuristic algorithm for the bottleneck traveling salesman problem.
OPSEARCH, 46(3), pp. :275-288, 2009.
R. Rangarajan,
Approximation Algorithms and Heuristics for a Heterogeneous Traveling Salesman.
M.Sc. thesis, National Institute of Technology, Jalandhar, 2011.
J. Rasku, T. Kärkkäinen, and N. Musliu,
Meta-Survey and Implementations of Classical Capacitated Vehicle Routing Heuristics
with Reproduced Results.
Manuscript, University of Jyväskylä, 2019.
K. Ravichandran and S. Pande,
Multiverse: Efficiently Supporting Distributed High-Level Speculation.
ACM SIGPLAN Notices - OOPSLA '13, 48(10), pp. 533-552 , 2013.
S. S. Ray, S. Bandyopadhyay, and S. K. Pal,
Genetic Operators for Combinatorial Optimization in TSP and Microarray Gene Ordering.
Applied Intelligence, vol. 26(3), pp. 183-195, 2007.
S. S. Ray,
New Computational Methods for Gene Analysis from Microarray Data.
Ph.D. thesis, Jadavpur University, 2008.
C. Rego, D. Gamboa, F. Glover, and Colin Osterman,
Traveling salesman problem heuristics: Leading methods, implementations and
latest advances.
European Journal of Operational Research, 211(3), pp. 427-441, 2011.
C. Rego, D. Gamboa, and F. Glover,
Doubly-Rooted Stem-and-Cycle Ejection ChainAlgorithm for the Asymmetric Traveling
Salesman Problem.
Networks, Volume 68, Issue 1, pp. 23-33, 2016.
C. Rego, D. Gamboa, and F. Glover,
Doubly-Rooted Stem-and-Cycle Ejection ChainAlgorithm for the Asymmetric Traveling
Salesman Problem.
Networks, 28 April, 2016
Z. Ren, S. Rathinam, and H. Choset,
MS*: A New Exact Algorithm for Multi-agent Simultaneous Multi-goal Sequencing
and Path Finding.
arXiv:2103.09979 [cs.RO], 2021.
Z. Ren, S. Rathinam, and H. Choset,
Conflict-Based Steiner Search for Multi-Agent Combinatorial Path Finding.
Robotics: Science and Systems, 2022.
Z. Ren, S. Rathinam, and H. Choset,
CBSS: A New Approach for Multiagent Combinatorial Path Finding,
IEEE Transactions on Robotics, vol. 39, no. 4, pp. 2669-2683, 2023.
H. Renard, Y. Robert, and F. Vivien,
Static load-balancing techniques foriterative computations on heterogeneous clusters.
INRIA, Ecole normale supérieure de Lyon, Research Report No 2003-12, 2003.
J. Renaud, F. F. Boctor, and G. Laporte,
Fast and Efficient Heuristics to Solve Two Version of the Median Cycle Problem.
Unicersité Laval, Research Report, No 2003-020, 2003.
J. Renaud, F. F. Boctor, and G. Laporte,
Efficient heuristics for Median Cycle Problems.
Journal of the Operational Research Society, 55(2), pp.179-186, 2004.
C. Rey, P. Toth, and D. Vigo,
An Iterated Local Search for the Traveling Salesman Problem with Pickup,
Delivery and Handling Costs.
39th International Conference of the Chilean Computer Science Society, 2020.
H. B. Riaño, J. W. Escobar, and N. Clavijo-Buritica,
A new metaheuristic approach for the meat routing problem by considering
heterogeneous fleet with time windows.
International Journal of Industrial Engineering Computations, 13, pp. 661-676, 2022.
D. Richter,
Toleranzen in Helsgauns Lin-Kernighan-Heuristik für das TSP.
Diploma Thesis, Martin-Luther-University Halle-Wittenberg, 2006.
D. Richter, B. Goldengorin, G. Jäger, and P. Molitor,
Improving the Efficiency of Helsgauns Lin-Kernighan Heuristic for the Symmetric TSP.
Fourth Workshop on Combinatorial and Algorithmic Aspects of Networking, 2007.
R. E. P. Robles and R. Sakellariou,
Path Plan Optimisation for UAV Assisted Data Collection in Large Areas.
Lecture Notes in Computer Science, vol 14352, 2024.
A. M. Rocha, E. Fernandes, and J. Soares,
Solution of asymmetric traveling salesman problems combining the volume and
simplex algorithms.
Technical Report, University of Minho, 2004.
A. M. Rocha, E. Fernandes, and J. Soares,
Aplicação do algoritmo volumétrico à resolução aproximada e exacta do problema
do caixeiro viajante assimétrico.
Investigação Operacional, 25, pp. 277-294, 2005.
A. Rodolfo and O. Mora,
Vehicle routing and location routing problems with minimum latency:
algorithms and models.
Ph.D. thesis,
Universitá di Bologna, 2024.
A. Rodrìguez and R. Ruiz,
El impacto de la asimetrìa en la resolución de problemas de distribución y rutas.
3rd International Conference on Industrial Engineering and Management,
pp. 1645-1654, 2009.
A. Rodrìguez and R. Ruiz,
The effect of asymmetry on traveling salesman problems.
Technical Report, Universidad Polité́cnica de Valencia, 2010.
M. A. Schack, J. G. Rogers, Qi. Han, and N.T. Dantam,
Robot Team Data Collection with Anywhere Communication.
Proceedings IROS, 2023.
A. Rohleder,
Kandidatenmengen für das TSP - Ein neuer heuristischer Ansatz.
Josef Eul Verlag, 2006.
J. E. Rojas-Saavedra, D. Álvarez-Martínez, and J. W. Escobar,
Boosting sustainable development goals: a hybrid metaheuristic approach for the
heterogeneous vehicle routing problem with three-dimensional packing constraints
and fuel consumption.
Annals of Operations Research, 2023.
D. G. Rossit, D. Vigo, F. Thomé, and M. Frutos,
Improving Visual Attractiveness in Capacitated Vehicle Routing Problems:
a Heuristic Algorithm.
Proceedings of CLAIO, pp. 748-755, 2016.
D. G. Rossit, D. Vigo, F. Thomé, and M. Frutos,
Upstream logistic transport planning in the oil-industry: a case study.
International Journal of Industrial Engineering Computations, 11, pp. 221-234, 2020.
D. S. Roy, B. Golden, A. Masone, and E. Wasil.
Using regression models to understand the impact of route-length variability in practical vehicle routing.
Optimization Letters, 2022.
J. Rutledge, W. Yuan, J. Wu, S. Freed, A. Lewis, Z. Wood, T. Gambin, and C. Clark,
Intelligent Shipwreck Search Using Autonomous Underwater Vehicles.
IEEE International Conference on Robotics and Automation, 2018.
G. de Araujo Sabry, M. C. Goldbarg, E. F. G. Goldbarg, M. da Silva Menezes, and J. G. L. Filho,
Evolutionary algorithms for the Traveling Car Renter with Passengers.
2020 IEEE Congress on Evolutionary Computation, 2020.
G. de Araujo Sabry,
Problema do Caixeiro Viajante Alugador com Passageiros.
Thesis, Universidade Federal do Rio Grande do Norte, 2020.
A. Sadeghi and S. L. Smith
On Efficient Computation of Shortest Dubins Paths Through Three Consecutive Points.
Systems and Control, 2016.
A. Sadeghi and S. L. Smith,
Heterogeneous Task Allocation and Sequencing via Decentralized Large
Neighborhood Search.
Unmanned Systems, Vol. 5, No. 2, pp. 1-17, 2017.
A. J. Sadovsky, P. B. Kruskal, J. M. Kimmel, J. Ostmeyer, F. B. Neubauer,
and J. N. Maclean,
Heuristically Optimal Path Scanning (HOPS) for High Speed Multiphoton Circuit Imaging.
Journal of Neurophysiology, Vol. 106, No. 3, pp. 1591-1598, 2011.
T. Sahai, S. Klus, and M. Dellnitz,
A Traveling Salesman Learns Bayesian Networks.
Science i/o, arXiv:1211.4888v1, 2012.
T. Sahai, A.Zeissler, S. Klus, and M. Dellnitz,
Continuous Relaxations for the Traveling Salesman Problem.
Nonlinear Dynamics,Vol. 97,Issue 4, pp. 2003–2022, 2019.
N. Saidi and A. Layeb,
A hybrid chemical reaction optimisation algorithm for solving the DNA fragment
assembly problem.
CTCS, Vol-2589, pp.39-49, 2019.
Y. Sakurai, K. Takada, N. Tsukamoto, T. Onoyama, R. Knauf, and S. Tsuruta,
Backtrack and Restart Genetic Algorithm to Optimize Delivery Schedule.
Sixth International Conference on Signal-Image Technology and Internet Based Systems,
pp. 85-92, 2010.
M. Salari,
Formulations and Algorithms for Routing Problems.
Thesis, University of Bologna, 2010.
R. G. M. Saleu, L. Deroussi, D. Feillet, N. Grangeon, and A. Quilliot,
The Parallel Drone Scheduling Problem with Multiple Drones and Vehicles.
hal-03448521, European Journal of Operational Research, 2021.
R. G. M. Saleu, L. Deroussi, D. Feillet, N. Grangeon, and A. Quilliot,
An iterative two‐step heuristic for the parallel drone scheduling traveling salesman problem.
NETWORKS, DOI: 10.1002/net.21846, 2018.
R. G. M. Saleu,
Optimisation des livraisons urbaines avec drones et véhicules en parallèle.
Ph.D. thesis, Université Clermont Auvergne, 2021.
D. Sanches, D. Whitley, and R. Tinós,
Improving an Exact Solver for the Traveling Salesman Problem using Partition Crossover.
Proceedings of GECCO '17, pp. 337-344, 2017.
K. Sang-Ho, G. Young-Gun, and Maing-Kyu,
Application of the out-of-kilter algorithm to the asymmetric traveling salesman problem.
Journal of the Operational Research Society, 54(10), pp. 1085-1092, 2003.
R. Santana and S. Shakya,
Dynamic programming operators for the bi-objective Traveling Thief Problem.
2020 IEEE Congress on Evolutionary Computation, 2020.
A. Santini,
An Adaptive Large Neighbourhood Search Algorithm for the Orienteering Problem.
Expert Systems with Applications, Volume 123, pp. 154-167, 2021.
G. M. Satyanarayana, S. Rathinam, S. Darbha, D. Casbeer, Cao, and P. Chandler,
GPS Denied UAV Routing with Communication Constraints.
Journal of Intelligent Robot Systems, Vol. 84, 691-703, 2016.
R. Sato,
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem.
arXiv:2205.01954 [cs.CL], 2022.
A. Satpute and P. Debus,
Path Planning Challenge -Evaluation and Comparison of UAS-Flight Path Planning
Algorithms for the Inspection of Infrastructures.
Conferenrece paper, 2021.
J. G. Sauer,
Abordagem de evolução diferencial híbrida com busca local aplicada ao problema
do caixeiro viajante.
Thesis, Pontifícia Universidade Católica do Paraná, 2007.
J. G. Sauer and L. Coelho,
Discrete Differential Evolution with local search to solve the Traveling Salesman Problem:
Fundamentals and case studies.
7th IEEE International Conference on Cybernetic Intelligent Systems, pp. 1-6, 2008.
S. Saylam, M. Çelik, and H. Süral,
The min–max order picking problem in synchronised dynamic zone-picking systems.
International Journal of Production Research, 2022.
M. A. Schack, J. G. Rogers, Q. Han, and N. T. Dantam,
Robot Team Data Collection with Anywhere Communication.
Proceedings IROS, pp. 705-711, 2023.
S. K. Schaumann, F. M. Bergmann, S. M. Wagner, and M. Winkenbach,
Route Efficiency Implications of Time Windows and Vehicle Capacities in
First- and Last-Mile Logistics.
In Press, European Journal of Operational Research, 2023
M. Schlüter, C. Fürweger, and A. Schlaefer,
Optimizing robot motion for robotic ultrasound-guided radiation therapy.
Physics in Medicine & Biology, Vol. 64, 195012, 2019.
M. Schlüter, C. Fürweger, and A. Schlaefer,
Optimizing robot motion for robotic ultrasound-guided radiation therapy.
Physics in Medicine & Biology, Volume 64, Number 19, 2019.
J. Schmidt and S. Irnich,
New Neighborhoods and an Iterated Local Search Algorithm for the
Generalized Traveling Salesman Problem.
EURO Journal on Computational Optimization, 2022.
A. Scholz, D. Schubert, and G. Wäscher,
Order picking with multiple pickers and due dates -
Simultaneous solution of Order Batching,
Batch Assignment and Sequencing, and Picker Routing Problems.
European Journal of Operational Research, Vol. 263, Issue 2, pp. 461-478, 2017.
P. Schrammel, T. Melham, and D. Kroening,
Chaining Test Cases for Reactive System Testing (extended version).
arXiv:1306.3882, University of Oxford, 2013.
P. Schrammel, T. Melham, and D. Kroening,
Generating Test Cases for Reactive System Testing.
International Journal on Software Tools for Technology Transfer, 18:3, pp. 319-334, 2016.
B. Schubert and O. Kohlbacher,
Designing string-of-beads vaccines with optimal spacers.
Genome Medicine, 8:9 doi:10.1186/s13073-016-0263-6, 2016.
B. Schubert,
Advanced Immunoinformatics Approaches for Precision Medicine.
Thesis, Eberhard Karls Universität Tübingen, 2016.
B. Schubert, L. de la Garza, C. Mohr, M. Walzer, and O. Kohlbacher,
ImmunoNodes - Graphical Development of Complex Immunoinformatics Workflows.
Bioinformatics BMC series, 18:242, 2017.
P. Z. Scroccaro,
Inverse Optimization Theory and Applications to Routing Problems.
Dissertation, Delft University of Technology, 2024.
C. Segura, S. B. Rionda, A. H. Aguirre, and S. I. V. Peña,
A Novel Diversity-based Evolutionary Algorithm for the Traveling Salesman Problem.
Proceedings of GECCO '15, pp. 489-496, 2015.
M. Seiler, J. Pohl, J. Bossek, P. Kerscke, and H. Trautmann,
Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm
Selection on the Traveling Salesperson Problem.
Proceedings of PPSN XVI, pp. 48-64, 2020.
M. V. Seiler, J. Rook, J. Heins, O. L. Preuß, J. Bosske, and H. Trautmann,
Using Reinforcement Learning for Per-Instance Algorithm Configuration on the TSP.
Proceedings, SSCI, 2023.
Z. Shang and Z. Shen,
Flight Planning for Survey-Grade 3DReconstruction of Truss Bridges.
Remote Sensing,Vol.14, 2022.
Z. Shang and Z. Shen,
Topology-based UAV path planning for multi-view stereo 3D
reconstruction of complex structures.
Complex & Intelligent Systems, 2022.
T. Shao, Y. Lim W. Gao, J. Lin, and F. Lin,
A PAD-Based Unmanned Aerial Vehichle Route Planning Scheme
for Remote Sensing in Huge Region.
Sensors, Volume 23, Issue 24, 2023.
J. Shi, J. Sun, and Q. Zhang,
Homotopic Convex Transformation: A New Method to Smooth the Landscape of the
Traveling Salesman Problem.
arXiv:1906.03223 [cs.NE], 2019.
R. Shahbazian, L. D. P. Pugliese, F. Guerriero, and G. Macrina,
Integrating Machine Learning into Vehicle Routing Problem: Methods and Applications.
IEEE Access, 2024.
C. Shang, L. Ma, Y. Liu, and S. Sun,
The sorted-waste capacitated location routing problem with queuing time:
A cross-entropy and simulated-annealing-based hyper-heuristic algorithm.
In Press, Expert Systems with Applications, 2022.
Z. Shang, J. Bradley, and Z. Shen,
A Co-optimal Coverage Path Planning Method for Aerial Scanning of
Complex Structures.
Expert Systems with Applications, Volume 158, 2020.
W. Shao, X. Liu, J. Chen, and Z. Lü,
A Study of Multi-Constraints Emergency Transportation Problem in Disaster Response.
Asia-Pacific Journal of Operational Research, Vol. 38, No. 02, 2021.
S. Sharmin, Y. Shim, and K. Roy,
Magnetoelectric oxide based stochastic spin device towards solving
combinatorial optimization problems.
Scientific Reports, Article number: 11276, 2017.
J. Shi, J. Sun, Q. Zhang, and K. Ye,
Homotopic Convex Transformation: A New Landscape Smoothing Method
for the Traveling Salesman Problem.
EEE Transactions on Cybernetics, vol. 52, no. 1, pp. 495-507, 2022.
K. Shin and S. Han,
A Centroid-based Heuristic Algorithm for the Capacitated Vehicle Routing Problem.
Computing and Informatics. Vol. 30, No. 4, pp. 701-720, 2011.
M. K. Shin, S.-J. Park, S.-K. Ryu, H. Kim, and H.-L. Choi,
Distilling Privileged Information for Dubins Traveling Salesman Problems
with Neighborhoods.
arXiv:2404.16721 [cs.AI], 2024.
G. Shobaki, T. Gonggiatgul, J. Normington, and P. Muyan-Ozcelik,
Combining a Parallel Branch-and-Bound Algorithm with a Strong Heuristic
to Solve the Sequential Ordering Problem.
Proceedings of ICPPW '23, pp. 162-166, 2023.
A. F. F. Silva and D. G. Macharet,
A Routing-based Strategy to Socially Approach Multiple Individuals in
Cluttered Environments.
LARS, SBR, and 2022 Workshop on Robotics in Education (WRE), pp. 1-6, 2022.
J. Singh, S. K. Dhurandher, I. Woungang, and T. M. N. Ngatched,
Multi-agent Reinforcement Learning Based Approach for Vehicle Routing Problem.
LNICST, volume 459, 2023.
R. Skinderowicz,
Improving Ant Colony Optimization efficiency for solving large TSP instances.
In Press, Applied Soft Computing, 2022.
S. L. Smith and F. Imeson,
GLNS: An Effective Large Neighborhood Search Heuristic for the Generalized
Traveling Salesman Problem.
Computers & Operations Research, May 2017.
L. C. Soares and M. A. M. Carvalho,
Competitive Approaches for the Job Sequencing and Tool Switching Problem.
Preprint submitted to
Computers & Industrial Engineering, 2022.
M. Soh, B. N. Tsofack, and C. T. Djamegni,
A Multi Ant Colony Optimization Approach For The Traveling Salesman Problem.
INRIA, hal-02926738, 2020.
M. Soh, N. Tsofack, and T. Clémentin,
A Hybrid Algorithm Based on Multi-colony Ant Optimization and Lin-Kernighan for
solving the Traveling Salesman Problem.
Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées,
INRIA, hal-03410104, 2021.
M. Soh, N. Tsofack, and T. Clémentin
A Hybrid Algorithm Based on Multi-colony Ant Optimization and Lin-Kernighan
for solving the Traveling Salesman Problem.
African Journal of Research in Computer Science and Applied Mathematics, INRIA, 2022.
T. Soh, D. Le Berre, S. Roussel, M. Banbara, and N. Tamura,
Incremental SAT-based Method with Native Boolean Cardinality Handling for the
Hamiltonian Cycle Problem.
Lecture Notes in Computer Science, Volume 8761, pp. 684-693, 2014.
J. Son, M. Kim, H. Kim, and J. Park,
Meta-SAGE: Scale Meta-Learning Scheduled Adaptation with Guided Exploration for
Mitigating Scale Shift on Combinatorial Optimization.
arXiv:2306.02688 [cs.LG], 2023.
J. Son, M. Kim, S. Choi, and J. Park,
Solving NP-hard Min-max Routing Problems as Sequential Generation with
Equity Context.
arXiv:2306.02689 [cs.LG], 2023.
J. Son, M. Kim, S. Choi, H. Kim, and J. Park,
Equity-Transformer: Solving NP-Hard Min-Max Routing Problems as
Sequential Generation with Equity Context.
The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24), 2024.
S. Song,
Package Delivery With Trucks And UAVs.
Ph.D. thesis, University of Southern California, 2018.
S. Song and S. Jo,
Online Inspection Path Planning for Autonomous 3D Modeling using a
Micro-Aerial Vehicle.
2017 IEEE International Conference on Robotics and Automation, pp. 6217-6224, 2017.
S. Song and S. Jo,
Surface-based Exploration for Autonomous 3D Modeling.
2018 IEEE International Conference on Robotics and Automation, pp. 4320-4326, 2018.
S. Song, D. Kim, and S. Jo,
Online coverage and inspection planning for 3D modeling.
Autonomous Robots, 2020.
A. G. Soroka and A. V. Meshcheryakov,
Solving Large-Scale Routing Optimization Problems with
Networks and Only Networks.
Doklady Mathematics 2024.
A. G. Soroka, G. V. Mikhelson, A. V. Mescheryakov, and S. V. Gerasimov,
Smart Routes: A System for Development and Comparison of Algorithms
for Solving Vehicle Routing Problems with Realistic Constraints.
Automation and Remote Control, Vol. 85, No. 3, pp. 337-349, 2024.
B. J. O. de Souza,
Flight Coordination Approaches of UAV Squads for WSN Data Collection.
Ph.D. thesis, Pontifical Catholic University of Rio de Janeiro, 2019.
B. J. O. de Souza and M. Endler
Evaluating flight coordination approaches of UAV squads for WSN data
collection enhancing the internet range on WSN data collection.
Journal of Internet Services and Applications, 11, Article number 4, 2020.
G. R. Souza, E. F.G. Goldbarg, M. C. Goldbarg, and A. M.P. Canuto,
A Multiagent Approach for Metaheuristics Hybridization Applied to the Traveling
Salesman Problem.
2012 Brazilian Symposium on Neural Networks.
M. de Souza,
How to Speed-Up the Automated Configuration of Optimization Algorithms.
Proceedings of SioCS 2021.
M. de Souza, M. Ritt, and M. López-Ibáñez,
Capping methods for the automatic configuration of optimization algorithms.
Computers & Operations Research, Vol. 139, 2022.
M. de Souza,
Automatic Algorithm Configuration: Methods and Applications.
Ph.D. thesis,
Universidade Federal do Rio Grande do Sul, 2022.
L. C. Souza and F. L. Usberti,
Two-stage Stochastic Traveling Salesman Problem with Evolutionary Framework.
Technical Report, University of Campinas, IC-PFG-19-25, 2019.
S. Squillaci, S. Roussel, and C. Pralet,
Parallel Scheduling of Complex Requests for a Constellation of Earth Observing.
IOS Press Ebooks, Volume 351, pp. 100-113, 2022.
C. Steininger,
Genetic Algorithms with Deep Learning for Robot Navigation.
M.Sc. thesis,
Imperial College, 2016.
A. Stohy, H.-T. Abdelhakam, S. Ali, M. Elhenawy, A. A. Hassan, M. MasoudI,
S. Glaser, and A. Rakotonirainy,
Hybrid pointer networks for traveling salesman problems optimization.
PLoS
ONE, 16(2), 2021.
Ł. Strąk, W. Wieczorek, and A. Nowakowski,
Simulated Annealing for Finding TSP Lower Bound.
Lecture Notes in Computer Science, Vol. 10449, pp. 45-54, 2017.
T. Strutz,
Travelling Santa Problem: Optimization of a Million-Households Tour Within One Hour.
Frontiers in Robotics and AI, April, 2021.
T. Strutz,
Redesigning the Wheel for Systematic Travelling Salesmen.
Algorithms, 16(2):91, 2023
J. Styles, H. H. Hoos, and M. Müller,
Automatically Configuring Algorithms for Scaling Performance.
Learning and Intelligent OptimizatioN Conference, France, Paris, 2011.
J. Styles and H. H. Hoos,
Ordered racing protocols for automatically configuring algorithms for scaling performance.
GECCO 2013: 551-558.
J. Sui, S. Ding, X. Huang, Y. Yu, R. Liu, B. Xia, Z. Ding, L. Xu, H. Zhang, C. Yu, and D. Bu,
A survey on deep learning-based algorithms for the traveling salesman problem.
Frontiers of Computer Science, 1 9(6), pp. 1-30, 2025.
Y. Su, M. Li, X. Zhu, and C. Li,
Steiner TSP based on aisle as a unit for order picking.
In Press, Computers & Industrial Engineering, 2022.
Z. Su, J. Zhang, and Z. Lü,
A Multi-Stage Metaheuristic Algorithm for Shortest Simple Path Problem
With Must-Pass Nodes.
IEEE Access, 7, pp. 52142-52154, 2019.
Z. Su, S. Huang, C. Li, and Z. Lü,
A Two-Stage Matheuristic Algorithm for Classical Inventory Routing Problem.
IJCAI-20, pp. 3430-3436, 2020.
F. Suárez-Ruiz, T. S. Lembono, and Q.-C. Pham,
RoboTSP – A Fast Solution to the Robotic Task Sequencing Problem.
cs.Ro arXiv:1709.09343v1, 2017.
J. Sui, S. Ding, B. Xia, R. Liu, and D. Bu,
NeuralGLS: learning to guide local search with graph convolutional network
for the traveling salesman problem.
Neural Computing & Applications, 2023.
N. Sultana, J. Chan, A. K. Qin, and T. Sarwar,
Learning Vehicle Routing Problems using Policy Optimisation.
arXiv:2012.13269, 2020.
N. Sultana, J. Chan, T. Sarwar, B. Abbasi, and A. K. Qin,
Learning Enhanced Optimisation for Routing Problems.
arXiv:2109.08345 [cs.AI], 2021.
N. Sultana, J. Chan, T. Sarwar, and A. K. Qin,
Sample-Efficient, Exploration-Based Policy Optimisation for Routing Problems.
arXiv:2205.15656 [cs.LG], 2022.
N. Sultana, J. Chan, B. Abbasi, T. Sarwar, and A. K. Qin,
Learning to Guide Local Search Optimisation for Routing Problems.
Operations Research Letters, 2024.
K. Sundar,
Motion Planning for Unmanned Aerial Vehicles with Resource Constraints.
M.Sc. thesis, Texas A&M University, 2012.
K. Sundar and S. Rathinam,
Route Planning Algorithms for Unmanned Aerial Vehicles with Refueling Constraints.
American Control Conference, pp. 3266-3271, 2012.
K. Sundar and S. Rathinam,
A Primal-Dual Heuristic for a Heterogeneous Unmanned Vehicle Path Planning Problem.
International Journal of Advanced Robotic Systems, 10, 2013.
K. Sundar and S. Rathinam,
Generalized multiple depot traveling salesmen problem - polyhedral study
and exact algorithm.
arXiv:1508.01813, 2015.
K. Sundar,
Algorithms for Routing Unmanned Vehicles with Motions, Resource,
and Communication Constraints.
Ph.D. thesis, Texas A&M University, 2016.
K. Sundar and S. Rathinam,
Multiple depot ring star problem: a polyhedral study and an exact algorthm.
Journal of Global Optimization, Volume 67, Issue 3, pp. 527-551, 2017.
K. Sundar, S. Srinivasan, S. Misra, S. Rathinam, and R. Sharma,
Landmark Placement for Localization in a GPS-denied Environment.
arXiv:1802.07652 [math.OC], 2018.
K. Sundar, S. G. Manyam, P. Sujit, and D. Casbeer,
Coordinated Air-Ground Vehicle Routing with Timing Constraints.
Sixth Indian Control Conference, pp. 116-121, 2019.
V. Sydneyta, Komarudin,
Optimization of Distribution Route and Schedule with Vehicle Routing Problem
with Time Windows (VRPTW).
International Conference on Industrial Design Engineering, pp. 121-126, 2017.
Q. Sykora, M. Ren, and R. Urtasun,
Multi-Agent Routing Value Iteration Network.
arXiv:2007.05096v1 [cs.AI], 2020. s
B. Tadunfock Teti and L. P. Fotso,
Heuristiques du problème du voyageur de commerce.
8th African Conference on Research in Computer Science, 2006.
N. Tahirov, N. Akhundov, S. Emde, and C. H. Glock,
Configuration of last-mile distribution networks for an encroaching manufacturer.
Annals of Operations Research, 2024.
É. D. Taillard,
TSP Neighbourhood Reduction with POPMUSIC.
MIC'17 proceedings, 2017.
É. D. Taillard,
An n log n Heuristic for the TSP.
MIC'19 proceedings, 2019.
É. D. Taillard,
A linearithmic heuristic for the rravelling salesman problem.
European Journal of Operational Research, Volume 297, Issue 2, pp. 442-450, 2022.
É. D. Taillard,
Design of Heuristic Algorithms for Hard Optimization.
With Python Codes for the Travelling Salesman Problem.
Book, 2023.
É. D. Taillard and K. Helsgaun,
POPMUSIC for the Travelling Salesman Problem.
European Journal of Operational Research, Volume 472, Issue 2, pp 420-429, 2019.
L. Talarico, J. Springael, K. Sörensen, and F. Talarico,
A large neighbourhood metaheuristic fo rthe risk-constrained cash-in-transit
vehicle routing problem.
Computers & OperationsResearch , In Press, 2016.
L. Talarico, K. Sörensen, and J. Springael,
Meta heuristics for therisk-constrained cash-in-transit vehicle routing problem.
European Journal of Operationa lResearch, Vol. 244, pp. 457-470, 2015.
L. Talarico, K. Sörensen, and J. Springael,
Metaheuristics for the Risk-constrained Cash-in-Transit Vehicle Routing Problem.
University of Antwerp, Research paper 2013-005, 2013.
L. Talarico, K. Sörensen, and J. Springael,
The k-dissimilar vehicle routing problem.
University of Antwerp, Working paper 2013-029, 2013.
L. Talarico, F. Meisel, and K. Sörensen,
Ambulance routing for disaster response with patient groups.
Computers & Operations Research, Vol. 56, pp. 120-133, 2015.
L. Talarico,
Secure Vehicle Routing: models and algorithms to increase security and reduce costs
in the cash-in-transit sector.
Dissertation, Universiteit Antwetpen, 2015.
H. Tamaki,
Alternating cycles contribution: a strategy of tour-merging for the traveling
salesman problem.
Max-Planck Institute Research Report MPI-I-2003-1-007, 2003.
K. Tang, S. Liu, P. Yang, and X. Yao,
Few-shots Parameter Tuning via Co-evolution.
arXiv:2007.00501v1 [cs.NE], 2020.
K. Tang, S. Liu, P. Yang, and X. Yao,
Few-shots Parallel Algorithm Protfolio Construction via Co-evolution.
IEEE Transactions on Evolutionary Computation, Vol. 25, No.3, pp. 595-607, 2021.
Q. Tang, Y. Kong, L. Pan, and C. Lee,
Learning to Solve Soft-Constrained Vehicle Routing Problems with
Lagrangian Relaxation.
arXiv:2207.09860 [cs.AI], 2022.
T. Tanskanen,
Heuristinen etsintä ja tietorakenteet kauppamatkustajan ongelmassa.
Univerty of Helsinki, 2013.
X. Tao, Y. Wang, Y. Sun, C.Du, and S. Tang,
Heterogeneous teaching–learning based optimization with local search for the
covering delivering problem in last mile delivery.
Expert Systems with Applications, Volume 252, Part A, 24176, 2024.
M. Tarkov,
Solving the traveling salesman problem using a recurrent neural network.
Numerical Analysis and Applications. Volume 8. Issue 3. pp. 275-283, 2015.
S. Teck and R. Dewil,
A Multi-Agent Based Approach to the Order and Robot Scheduling in a
Robotic Mobile Fulfillment System.
Preprint, Avaiable at SSRN, 2022.
S. Teck, P. Vansteenwegen, R. Dewil,
An Efficient Multi-Agent Approach to Order Picking and Robot Scheduling
in a Robotic Mobile Fulfillment System.
In Press, Simulation Modelling Practice and Theory, 2023.
C. Theys, O. Bräysy, W. Dullaert, and B. Raa,
Towards a Metaheuristic for Routing Order Pickers in a Warehouse.
Evolutionary Methods for Design, Optimization and Control,
P. Neittaanmaki, J. Periaux, and T. Tuovinen (Eds., Barcelona, Spain, 2007.
C. Theys, O. Bräysy, W. Dullaert, and B. Raa,
Using a TSP heuristic for routing order pickers in warehouses,
Journal of Operational Research, 200(3), pp. 755-763, 2010.
M. Thiessen, L. Quesada, and K. N. Brown,
Improving a Branch-and-Bound Approach for the Degree-Constrained
Minimum Spanning Tree Problem with LKH.
Lecture Notes in Computer Science, Vol. 12296. 2020.
D. Thyssens, J. Falkner, and L. Schmidt-Thieme,
Supervised Permutation Invariant Networks for Solving the CVRP.
arXiv:2201.01529 [cs.LG], 2022.
D. Thyssens, T. Dernedde, J. K. Falkner, and L. Schmidt-Thieme,
Routing Arena: A Benchmark Suite for Neural Routing Solvers.
arXiv:2310.04140.[cs.LG], 2023.
W. Tian, X. Wang, Q. Xiong, and Y. Chen,
Obtaining Quality-Proved Near Optimal Results for Traveling Salesman Problem.
Technical Report 20150129, arXiv:1502.00447, 2015.
W. Tian,
NP=P: From Polynomial Time Approximation Bounded Solutions of TSP.
UESTC, arXiv:1605.06183, 2016.
W. Tian, C. Huang, and X. Wang,
A Near Optimal Approach for SymmetricTraveling Salesman Problem in
EuclideanSpace.
arxiv:1502.00447v2, 2016.
Y. Tian, Q. Zhu, S. Shao, L. Si, and X. Zhang,
A Deep Reinforcement Learning Assisted Heuristic for Solving Traveling Salesman Problems.
IEEE Congress on Evolutionary Computation, 2024.
R. Tinós, D. Whitley, and G. Ochoa,
Generalized Asymmetric Partition Crossover (GAPX) for the Asymmetric TSP.
Genetic and Evolutionary Computation Conference, 2014.
R.Tinós and D. Whitley,
A Fusion Mechanism for the Generalized Asymmetric Partition Crossover.
IEEE Congress on Evolutionary Computation, pp. 1431-1438, 2018.
R. Tinós, K. Helsgaun, and D. Whitley,
Efficient Recombination in the Lin-Kernighan-Helsgaun Traveling Salesman Heuristic.
Lecture Notes in Computer Science, Volume 11101, pp. 95-107, 2018.
R. Tinós, D. Whitley, and A. Howe,
Use of Explicit Memory in the Dynamic Traveling Salesman Problem.
GECCO 2014: 999-1006.
R. Tinós, D. Whitley, and G. Ochoa,
A New Generalized Partition Crossover for the Traveling Salesman Problem:
Tunneling Between Local Optima.
Evolutionary Computation, Vol. 28, No. 2, 2020.
A. Tkachev.
Multi-Goal Path Planning for Spray Writing with Unmanned Aerial Vehicle.
BSc Thesis, Czech Technical University in Prague, 2020.
P. Torabi, A. Hemmati, A. Oleynik, and G. Alendal,
A deep reinforcement learning hyperheuristic for the covering tour
problem with varying coverage.
Computers & Operations Research, 2024.
J. S. A Torres, D. M. R. Paloma, G. Gatica, D. Álvarez-Martínez, and J. W. Escobar,
A hybrid matheuristic approach for the integrated location routing problem
of the pineapple supply chain.
Decision Science Letters, 13(2), pp. 483-498, 2024.
C. D. Tran, T. Bach, and T. S. Hy,
Symmetry-preserving graph attention network to solve routing
problems at multiple resolutions.
arXiv:2310.15543 [cs.LG], 2023.
S. Trigui, O. Cheikhrouhou, A. Koubaa, U. Baroudi, and H. Youssef,
FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling
salesman problem for multi-robot systems.
Soft Computing, doi:10.1007/s00500-016-2279-7, 2016.
S. Trigui, O. Cheikhrouhou, A. Koubaa, U. Baroudi, and H. Youssef,
A clustering market-based approach for multi-robot emergency response applications.
16th IEEE International Conference on Autonomous Robot systems and Competition, 2016.
S. Trigui, O. Cheikhrouhou, A. Koubaa, A. Zarrad, and H. Youssef,
An analytical hierarchy process-based approach to solve the multi-objective multiple
traveling salesman problem.
Intelligent Service Robotics, doi.org/10.1007/s11370-018-0259-8, 2018.
P. Tripicchio, M. Unetti, S. D’Avella, and C. A. Avizzano,
Smooth Coverage Path Planning for UAVs with Model Predictive Control Trajectory Tracking.
Electronics, 12(10), 2023.
H.-K. Tsai, J.-M. Yang, Y.-F. Tsai, and C.-Y. Kao,
An Evolutionary Algorithm for Large Traveling Salesman Problems.
IEEE Trans Syst Man Cybern B Cybern. 34(4), pp. 1718-29, 2004.
B. Tsofak Nguimeya, M. Soh, and L. P. Fotso,
Algorithmes Hybrides Pour la Résolution du Problème du Voyageur de Commerce.
Proceedings of CARI, 2016.
S. Tsutsui, M. Pelikan, and A. Ghosh,
Edge histogram based sampling with local search for solving permutation problems.
Int. J. Hybrid Intell. Syst., 3(1), pp. 11-22, 2006
C. Twomey, T. Stützle, M. Dorigo, M. Manfrin, and M. Birattari,
An Analysis of Communication Policies for Homogeneous Multi-colony ACO Algorithms.
Information Sciences, 180, pp. 2390-2404, 2010..
M. Turkensteen, D. Malyshev, B. Goldengorin, and P. M. Pardalos,
The reduction of computation times of upper and lower tolerances for selected combinatorial
optimization problems.
Journal of Global Optimization, 68(3), pp. 601-622, 2017.
B. Tüű-Szabó, P. Földesi, and L. T. Koczy,
A population based metaheuristic for Traveling Salesman type problems.
International Conference on Fuzzy Theory and Its Applications, 2017.
B. Tüű-Szabó, P. Földesi, and L. T. Koczy,
A Memetic Version of the Bacterial Evolutionary Algorithm for Discrete Optimization Problems.
DOI: 10.1007/978-3-030-18058-4_4, 2020.
B. Tüű-Szabó, P. Földesi, and L. T. Koczy,
Analyzing the Performance of TSP Solver Methods.
Studies in Computational Intelligence, Vol. 955, pp. 65.71, 2022.
B. Tüű-Szabó, P. Földesi, and L. T. Koczy,
An Efficient Tour Construction Heuristic for Generating the Candidate Set of the
Traveling Salesman Problem with Large Sizes.
Mathematics, 2024.
H. S. Uhm and Y. H. Lee,
Vehicle routing problem under safe separation distance for multiple unmanned
aerial vehicle operation.
Operational Research, 2022.
M. V. Ulyanov and M. I. Fomichev,
Combined Algorithm for Solving the Asymmetric Traveling Salesman Problem
as Applied to Transport Logistics Problems.
Information Technologies, No. 3., Vol. 28, pp.141-147, 2022.
L. Uon, C. A. Y. Ng, F. Ng, S-O.i A. Paduman, and A. Y. P. Chu,
A Novel Approach to Optimize Numerical Control Codes Using a Systematic Block
Management Method.
International Journal of Automation and Smart Technology 9(1), pp. 23-32. 2019.
S. T. Vadseth, H. Andersson, M. Stålhane, and M. Chitsaz,
A multi-start route improving matheuristic for the production routeing problem.
International Journal of Production Research, 2023.
S. T. Vadseth, H. Andersson, and M. Stålhane,
An iterative matheuristic for the inventory routing problem.
Computers & Operations Research, Volume 131, 2021.
S. T. Vadseth, H. Andersson, M. Stålhane, and M. Chitsaz,
A multi-start route improving matheuristic for the production routeing problem.
Journal of Production Research, 2023.
T. Valkonen and T. Kärkkäinen,
Continuous reformulations and heuristics for the Euclidean travelling salesperson problem.
ESAIM: Control, Optimization and Calculus of Variations, 15, 2009.
P. Váña,
Path Planning for Non-holonomic Vehicle in Surveillance Missions.
Master's thesis, Czech Technical University in Prague, 2015.
P. Váña and J. Faigl,
On sampling based methods for the dubins traveling salesman problem with neighborhoods.
Acta Polytechnica CTU Proceedings, 2, pp. 57–61, 2015.
P. Váña and J. Faigl,
The Dubins traveling salesman problem with constrained collecting maneuvers,
Acta Polytechnica CTU Proceedings 6, pp. 34-39, 2016.
P. Váña, J. Faigl, and J. Sláma,
Emergency Landing Aware Surveillance Planning for Fixed-wing Planes.
European Conference on Mobile Robots, 2019.
P. Váña, J. Sláma, and J. Faigl,
Surveillance planning with safe emergency landing guarantee for fixed-wing aircraft.
Robotics and Autonomous Systems, In Press, 2020.
P. Váña and J. Faigl,
Bounding Optimal Headings in the Dubins Touring Problem.
The 37th ACM/SIGAPP Symposium on Applied Computing, 2022.
S. Vanheusden, T. van Gils, K. Ramaekers, and A. Caris,
Increasing the Practical Applicability of Order Picking Operations by Integrating
Classification, Labelling and Packaging Regulations.
International Conference on Computational Logistics, pp. 733-746, 2020.
S. Varadarajan and D. Whitley,
A Parallel Ensemble Genetic Algorithm for the Traveling Salesman Problem.
GECCO '21, pp.636-643, 2021.
S. Varadarajan,
The mixing genetic algorithm for traveling salesman problem.
Ph.D. thesis, Colorado State University, 2022.
D. E. Vargas,
Metodología de solución híbrida: heuristica-metaheuristica-enumeración implicita 1-0 para
el problema de ruteamiento de vehiculos capacitado (CVRP).
Ph.D. thesis, Universidad Tecnológica de Pereira, 2014.
D. E. Vargas, R. A. G. Rendón, and A. E. Zuluaga,
Hybrid Solution Methodology: Heuristic-Metaheuristic-Implicit Enumeration 1-0 for the
Capacitated Vehicle Routing Problem (Cvrp).
International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 3, pp. 259-268, 2016.
T. Varol, O. Ö. Özener, and E. Albey,
Neural Network Estimators for Optimal Tour Lengths of Traveling
Salesperson Problem Instances with Arbitrary Node Distributions.
Transportation Science, 2023.
A. Vatistas,
Multi-objective mobile robot path planning applied in autonomous
robotic inspection of outdoor environment.
Thesis, National Technical University of Athens, 2024.
E. Venkata and K. Dhulipala,
Angle Bisector Algorithm and Modified Dynamic Programming Algorithm for
Dubins Traveling Salesman Problem.
Preprint, 10.36227/techrxiv.14767593.v, 2021.
S. Venkatachalam and K. Sundar,
Branch-and-price algorithm for an auto-carrier transportation problem.
arXiv:1605.09030, 2016.
M. Veeresh, T. J. Kumar, and M. Thangaraja,
Solving the single depot open close multiple travelling salesman problem
through a multi- chromosome based genetic algorithm.
Decision Science Letters, 2024.
E. Vercesi, S. Gualandi, M. Mastrolilli, and L. M. Gambardella,
On the generation of metric TSP instances with a large integrality gap
by branch-and-cut.
Mathematical Programming Computation, Vol. 15, pp. 389-516, 2023.
E. Vercesi and A. Buchanan,
The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve
for few subtour constraints.
Optimization Online, 2024.
F. J. C. Verdù, L. Castelli, and L. Bortolussi,
Scaling Combinatorial Optimization Neural Improvement Heuristics
with Online Search and Adaptation.
arXiv:2412.10163 [cs.LG], 2024.
T. Vidal,
Technical Note: Split algorithm in O(n) for the vehicle routing problem.
Computers & Operations Research, Vol. 69, pp. 40-47, 2016.
T. Vidal,
Hybrid Genetic Search for the CVRP: Open-Source Implementation and
SWAP* Neighborhood.
arXiv:2012.10384 [cs.ne], 2021.
H. de F. Vieira,
Um modelo multiobjetivo para controle biológico de pragas por meio
de VANT: distribuição eficiente de cápsulas.
Doctoral Thesis, Universidade de São Paulo, 2020.
V. Vig and U. S. Palekar,
On estimating the distribution of optimal traveling salesman tour lengths using
heuristics.
European Journal of Operational Research, 186, pp. 111-119, 2008.
S. Voigt and H. Kuhn,
Crowdsourced logistics: The pickup and delivery problem with transshipments
and occasional drivers.
Networks, DOI: 10.1002/net.2204, pp. 1-24, 2021.
S. L. Villumsen and M. Kristiansen,
A Framework for Task Sequencing for Redundant Robotic Remote Laser
Processing Equipment Based on Redundancy Space Sampling.
Procedia Manufacturing, 11, pp. 1826 - 1836, 2017.
R. Viswanathan, J. Li, and M. C. Chuah,
Message Ferrying for Constrained Scenarios.
World of Wireless Mobile and Multimedia Networks, pp. 487-489, 2005.
C. Walshaw,
A Multilevel Lin-Kernighan-Helsgaun Algorithm for the Travelling Salesman Problem.
Computing and Mathematical Sciences, University of Greenwich,
Mathematics Research Report: 01/IM/80, September 27, 2001.
B. Wang, S. Rathinam, R. Sharma, and K. Sundar,
Algorithms for Localization and Routing of Unmanned Vehicles in GPS-Denied
Environments.
ASME 2018 Dynamic Systems and Control Conference, Volume 3, 2018.
B. Wang, B. Xin, Y. Ding, and Y. Li,
Research on the Messenger UAV Mission Planning Based on Sampling
Transformation Algorithm.
Journal of Advanced Computational Intelligence and
Intelligent Informatics, Vol.28 No.3, 2024.
C. Wang, F. Ma, J. Yan, D. De, and S. K. Das,
Efficient Aerial Data Collection with UAV in Large-scale Wireless Sensor Networks.
International Journa lof Distributed SensorNetworks, 8(3), 2015.
C. Wang, S. Ma, B. Zha, and B. Ma,
Surrogate-Accelerated Evolutionary Algorithm for Solving Electric
Vehicle Routing Problems.
IEEE Transactions on Transportation Electrification, 2024.
C. Wang, Y. Yang, O. Slumbers, C. Han, T. Guo, H. Zhang, and J. Wang,
A Game-Theoretic Approach for Improving Generalization Ability of TSP Solvers.
arXiv:2110.15105, [cs.LG], 2021.
C. Wang, Z. Yu, S. McAleer, T. Yu, and Y. Yang,
ASP: Learn a Universal Neural Solver!
arXiv:2303.00466 [cs.LG], 2023.
C. Wang, P. Cheng, L. Jingze, and W. Sun,
Leader Reward for POMO-Based Neural Combinatorial Optimization.
arXiv:2405.13947 [cs.LG], 2024.
D. Wang, Q. Liu, H. Yi, H. Han, W. Zhao, and T. Wu,
A Practical Data Forwarding Path Selecting Method for Software-Defined 5G Networking.
IEEE Wireless Communications and Networking Conference, pp. 1-6, 2017.
F. Wang, Q. He, and S. Li,
Solving Combinatorial Optimization Problems with Deep Neural Network: A Survey.
Tsinghua Science and Technology, vol. 29, no. 5, pp. 1266-1282, 2024.
G. Wang, E. Darve, and A. J. Lew,
Temperature field optimization for laser powder bed fusion as a traveling
salesperson problem with history.
International Journal for Numerical Methods in Engineering, 2023.
J. Wang, H. Du, B. Ding, Q. Xu, S. Chen, and Y. Kang,
DDAM: Data Distribution-Aware Mapping of CNNs on Processing-In-Memory Systems.
ACM Transactions on Design Automation of Electronic Systems, 2022.
J. Wang, H. Yu, Z. Zheng, G. Lu, K. Zhang, T. Cheng, and C. Fang,
Autonomous robotic exploration with region-biased sampling and
consistent decision making.
Complex Intelligent Systems, 2023.
K. Wang, Y. Gu, T. Zhou, and H. Chen,
Multi-Pair Active Shielding for Security IC Protection.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Volume 38, Issue 12,
pp. 2321-2329, 2019.
K. Wang and X. Cai,
An Efficient Neighborhood Structure Generating Method for Large-scale Traveling
Salesman Problem.
IEEE 7th International Conference on Cloud Computing and Intelligent Systems,
pp. 149-153, 2021.
L. Wang, J. Zheng, Z. Xiong, and K. He,
Multi-armed Bandit and Backbone boost Lin-Kernighan-Helsgaun Algorithm
for the Traveling Salesman Problems.
SSRN, 2024
M. Wang, B. Xin, and Q. Wang,
A general variable neighborhood search for the multiple depots multiple traveling
salesmen problem.
Workshop paper, IWACIII2021, 2021.
Q. Wang, H. Chen, L. Qiao, J. Tian, Yu.Su,
Path planning for UAV/UGV collaborative systems in intelligent manufacturing.
IET Intelligent Transport Systems,Volume 14, Issue 11, pp. 1475-1483, 2020.
Q. Wang and C.Tang,
Deep reinforcement learning for transportation network combinatorial optimization:
A survey.
Knowledge-Based Systems, 2021.
Q. Wang, Y. He, and C. Tang.
Mastering construction heuristics with self-play deep reinforcement learning.
Neural Computing and Applications, 2022.
Q. Wang, C. Zhang, and C. Tang,
Discovering Lin-Kernighan-Helsgaun Heuristic for Routing Optimization
using Self-Supervised Reinforcement Learning.
Journal of King Saud University - Computer and Information Sciences, 2023.
R. Wang, Z. Hua, G. Liu, J. Zhang, J. Yan, F. Qi, S. Yang, J. Zhou, and X. Yang,
A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs.
arXiv:2106.04927 [cs.LG], 2021.
Q. Wang, Y. Hao, and J. Zhang,
Generative Inverse Reinforcement Learning for Learning 2-opt Heuristics
without Extrinsic Rewards in Routing Problems.
Journal of King Saud University, 2023.
R. Wang, Y. Zhang, Z. Guo, T. Chen, X. Yang, and J. Yan,
LinSATNet: The Positive Linear Satisfiability Neural Networks.
Proceedings of PMLR 202, 2023.
Q. Wang,
VARL: a variational autoencoder‑based reinforcement learning framework
for vehicle routing problems.
Applied Intelligence, 2021.
Q. Wang and Y. Hao,
Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning.
Applied Intelligence, 2023.
S. X.-J. Wang,
Analysis of Hybrid Method for Solving the Traveling Salesman Problem to Optimality.
Faculty of Computer Science, Dalhousie University, 2004.
X. Wang, B. Golden, and E. Wasil,
The min-max multi-depot vehicle routing problem: heuristics and computational results.
Journal of the Operational Research Society, pp. 1-14, 2014, doi:10.1057/jors.2014.108.
X. Wang, B. Golden, E. Wasil, and R. Zhang,
The min–max split delivery multi-depot vehicle routing problem with minimum service
time requirement.
Computers & Operations Research, Vol. 71, pp. 110-126, 2016.
X. Wang, B. Golden, and E. Wasil,
A Steiner Zone Variable Neighborhood Search Heuristic for the Close-Enough
Traveling Salesman Problem.
Computers and Operations Research, Accepted Manuscript, 2018.
X. Wang,
Vehicle routing problems that minimize the completion time: Heuristics,
worst-case analyses, and computational results.
PhD Thesis, Department of Mathematics, The University of Maryland, 2016.
Y. Wang, W. Peng, Q. Dou, and Z. Gong,
Energy-constrained ferry route design for sparse wireless sensor networks.
Journal of Central South University, 20. pp. 3142-3149, 2013.
Y. Wang, W. Ming, and Z. Zhang,
Sheet metal part sorting sequence planning based on dual-arm co-axial truss robot.
Computer Integrated Manufacturing Systems, 2023.
Y. Wang , Y.-H. Jia1, W.-N. Chen, and Y. Mei,
Distance-aware Attention Reshaping: Enhance Generalization of Neural Solver
for Large-scale Vehicle Routing Problems.
arXiv:2401.06979 [cs.AI], 2024.
Y. Wang and Z. Chen,
Dynamic graph Conv-LSTM model with dynamic positional encoding for
the large-scale traveling salesman problem
Mathematical biosciences and engineering, Vol. 19, Issue 10, pp. 9730-9748, 2022.
Y. Wang and C. Hu,
Moving as a whole: multirobot traveling problem constrained by connectivity.
Turkish Journal of Electrical Engineering & Computer Sciences, 23, pp. 769-788, 2015.
A. Weber and A. Knoll,
On the Solution of the Travelling Salesman Problem for Nonlinear Salesman
Dynamics using Symbolic Optimal Control.
arXiv:2103.00260 [math.OC], Proc. European Control Conference (ECC), 2021.
A. Weber, F. Fiege. and A. Knoll,
Vehicle mission guidance by symbolic optimal control.
arXiv:2205.14085 [math.OC], 2022.
J. Wei, Y. Pan, L. Sun, H. Shang, and X. Chen,
A Novel Redundant Cooperative Control Strategy for Robotic Pollination.
Preprint, Avaiable at SSRN, 2024.
S. Westphal and K. Noparlik,
A 5.875-approximation for the Traveling Tournament Problem.
Annals of Operations Research, Violume 118, Ussue 1, pp. 347-360, 2014.
L. D. Whitley,
Next Generation Genetic Algorithms: A User’s Guide and Tutorial.
Handbook of Metaheuristics, Chapter 8, pp. 129--168, 2018.
C. Wildt, F. Weidinger, and N. Boysen,
Picker routing in scattered storage warehouses: an evaluation of solution
methods based on TSP transformations.
OR Spectrum 2024.
A. Wins, L. Barthelmes, S. Alpers, C. Becker, M. Kagerbauer, and A. Oberweis,
Personalized Day-Trip Planning: A TSP-TW-Based Multimodal
Multicriteria Optimisation Approach.
Procedia Computer Science, Volume 238, pp. 352-360, 2024.
A. Wolek, J. McMahon, B. R. Dzikowicz, B. H. Houston,
The Orbiting Dubins Traveling Salesman Problem: planning inspection
tours for a minehunting AUV.
Autonomous Robots, 2020.
D. Woller and M. Kulich,
Path planning algorithm ensuring accurate localization of radiation sources.
Applied Intelligence, Vol. 52, pp. 9574–9596, 2022.
L.-P. Wong, M.Y.H. Low, and Chin Soon Chong,
Bee Colony Optimization with local search for traveling salesman problem.
6th IEEE International Conference on Industrial Information, pp. 1019 - 1025, 2008.
L.-P. Wong, M. Y. H. Low, and C. S. Chong,
Finding the Shortest Hamiltonian Circuit of Selected Places in Penang Using a Generic
Bee Colony Optimization Framework.
Sixth International Conference on Bio-Inspired Computing, pp. 51-57, 2011.
C. Wu, Y. Song, V. March, and E. Duthi,
Learning from Drivers to Tackle the Amazon Last Mile Routing Research Challenge.
arXiv:2205.04001 [cs.AI], 2022.
H. Wu, C. Nie, and F.-C. Kuo,
The optimal testing order in the presence of switching cost.
Information and Software Technology, 80, pp. 57-72, 2016.
J. Wu, S. Polyakovskiy, M. Wagner, and F. Neumann
Evolutionary Computation plus Dynamic Programming for the Bi-Objective Travelling
Thief Problem.
arXiv:1802.02434 [cs.AI], 2018.
M. Wu and W. Zhu,
A dynamic convexized method for the TSP.
IEEE International Conferenceon Intelligent Computing and Intelligent Systems,
pp. 307-311, 2010.
S. Wu and T. W. S Chow,
Self-Organizing and Self-Evolving Neurons: A New Neural Network for Optimization.
IEEE Transactions on Neural Networks, Volume 18, Number 3, pp. 385-296, 2007.
X. Wu, D. Wang, L. Wen, Y. Xiao, C. Wu, Y. Wu, C. Yu, D. L. Maskell, and Y. Zhou,
Neural Combinatorial Optimization Algorithms for Solving Vehicle Routing Problems:
A Comprehensive Survey with Perspectives.
arXiv:2406.00415 [cs.AI], 2024.
Y. Wu, T. Weise, and W. Liu,
Hybridizing Different Local Search Algorithms with Each Other and Evolutionary
Computation: Better Performance on the Traveling Salesman Problem.
Proceedings of GECCO’16, pp. 57–58, 2016.
Y. Wu, T. Weise, and R. Chiong,
Local Search for the Traveling Salesman Problem: A Comparative Study.
Proceedings of 14th IEEE Conferenc on Cognitive Informatics and Cognitive Computing,
pp. 213-220, 2015.
Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim,
Learning Improvement Heuristics for Solving Routing Problems.
arxiv.org/abs/1912.05784v2, 2019.
Y. Xia, X. Yang, Z. Liu, Z. Liu, L. Song, and J. Bian,
Position: Rethinking Post-Hoc Search-Based Neural Approaches for Solving
Large-Scale Traveling Salesman Problems.
arXiv:2406.03503 [cs.AI], 2024.
P. Xiao, Z. Zhang, J. Chen, J. Wang, and Z. Zhang,
Neural Combinatorial Optimization for Robust Routing Problem
with Uncertain Travel Times.
38th Conference on Neural Information Processing Systems, 2024.
Y. Xiao, D. Wang, B. Li, M. Wang, X. Wu, C. Zhou, and Y. Zhou,
Distilling Autoregressive Models to Obtain High-Performance Non-Autoregressive
Solvers for Vehicle Routing Problems with Faster Inference Speed.
arXiv:2312.12469 [cs.LG], 2023.
Y. Xiao, D. Wang, B. Li, H. Chen, W. Pang, X. Wu, H. Li, D. Xu, Y. Liang, and Y. Zhou,
Reinforcement Learning-Based Nonautoregressive Solver for Traveling Salesman Problems.
IEEE Transactions on Neural Networks and Learning Systems, pp. 1-15, 2024.
X.-F. Xie and J. Liu,
Multiagent optimization system for solving the traveling salesman problem (TSP).
IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 39, No. 2, 2009.
K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong, D. Cohen-Or, and H. Huang,
Creating and Chaining Camera Moves for Quadrotor Videography.
ACM Transactions on Graphics, Association for Computing Machinery, 37, pp.1-14. 2018.
L. Xin, W. Song, Z. Cao, and J. Zhang,
Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems.
arXiv:2012.10638 [cs.LG], 2020.
L. Xin, W. Song, Z. Cao, and J. Zhang,
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for
Solving the Traveling Salesman Problem.
35th Conference on Neural Information Processing Systems, 2021.
L.-N. Xing, Y.-W. Chen, and X.-S. Shen,
Multiprogramming genetic algorithm for optimization problems with permutation property.
Applied Mathematics and Computation, 185(1), pp. 473-483, 2007.
L.-N. Xing, Y.-W. Chen, K.-W. Yang, F. Hou, H.-P. Cai, and X.-S. Shen,
A hybrid approach combining an improved genetic algorithm and optimization strategies
for the asymmetric traveling salesman problem.
Engineering Applications of Artificial Intelligence archive, 21( 8), pp. 1370-1380, 2008.
F. Xue, C. Y. Chan, W. H. Ip and C. F. Cheung,
A learning-based variable assignment weighting scheme for heuristic and exact
searching in Euclidean traveling salesman problems.
NETNOMICS, DOI: 10.1007/s11066-011-9064-7, pp. 1-25, 2012.
F. Xue,
A suboptimum- and proportion-based heuristic generation method for combinatorial
optimization problems.
Ph.D. thesis, Hong Kong Polytechnic University, 2012.
H. Xu and S. Shen,
BDPGO: Balanced Distributed Pose Graph Optimization Framework for Swarm Robotics.
arXiv:2109.04502 [cs.RO], 2021.
H. Xu and H. Lan,
An Adaptive Layered Clustering Framework with Improved Genetic Algorithm
for Solving Large-Scale Traveling Salesman Problems.
Electronics, 12, 1681, 2023.
Q. Xu, J. Li, S. Koenig and H. Ma,
Multi-Goal Multi-Agent Pickup and Delivery.
Proceedings IROS, pp. 9964-9971, 2022.
R. Xu, Y. Huang, and W. Xiao,
A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered
Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs.
Sustainability 15, no. 9: 7639, 2023.
X. Xu, J. Li, M. Zhou, and X. Yu,
Precedence-Constrained Colored Traveling Salesman Problem:
An Augmented Variable Neighborhood Search Approach.
IEEE Transactions on Cybernetics, vol. 52, no. 9, pp. 9797-9808, 2022.
J. Xu, C. Liu, J. Shao, Y. Xue, and Y. Li,
Collaborative Orchard Pesticide Spraying Routing Problem with
Multi-Vehicles Supported Multi-UAVs.
Journal of Cleaner Production, 142429, 2024.
S. Yadlapalli, Jungyun Bae, S. Rathinam, and S. Darbha,
Approximation Algorithms for a Heterogeneous Multiple Depot Hamiltonian Path Problem.
American Control Conference, pp. 2789 - 2794, 2011.
M. E. Yafrani and B. Ahiod,
Cosolver2B: An Efficient Local Search Heuristic for the Travelling Thief Problem.
ACS/IEEE International Conference on Computer Systems and Applications, 2015.
V. Yajnanarayana, K. E. G. Magnusson, R. Brandt, S. Dwivedi, and P. Händel,
Optimal Scheduling for Interference Mitigation by Range Information.
IEEE Trans. Mobile Computing, 2015.
V. P. Yajnanarayana,
Ultra Wideband: Communication and Localization.
Doctoral Thesis, KTH, School of Electrical Engineering, 2017.
S. Yalcin, H. B. Usul, and G. Yalcin,
CompreCity: Accelerating the Travelling Salesman Problem on GPU with data compression.
In Press, Integration, 2024.
H. Yamagiwa, Y. Takase, and H. Shimodaira,
Axis Tour: Word Tour Determines the Order of Axes in ICA-transformed Embeddings.
arXiv:2401.06112 [cs.CL], 2024.
L. Yamin. L. Zeng, and K. Tang,
Orientation-point relation based inspection path planning method for 5-axis OMI system.
Robotics and Computer-Integrated Manufacturing, Vol. 61, 2019.
L. Yan, H. Shen, L. Kang, J. Zhao, Z. Zhang and C. Xu,
MobiCharger: Optimal Scheduling for Cooperative EV-to-EV Dynamic Wireless Charging,
IEEE Transactions on Mobile Computing, vol. 22, no. 12, pp. 6889-6906, 2023.
S-L. Yan and K-F. Zhou,
Three-Tier Multi-agent Approach for Solving Traveling Salesman Problem.
Lecture Notes in Computer Science, Volume 4099, pp. 813-817, 2006.
G. Yang, R. Dai, and Y-C. Liang,
Energy-Efficient UAV Backscatter Communication with Joint Trajectory Design and
Resource Optimization.
arXiv:1911.05553 [cs.IT], 2019.
H. Yang, K. Xie, S. Huang, and H. Huang,
Uncut Aerial Video via a Single Sketch.
Pacific Graphics Forum, Vol. 37, No. 7, 2018.
H. Yang,
TSP Combination Optimization with Semi-local Attention Mechanism.
Part of LNCS, volume 14262, pp 469–481, 2023.
J. Yang and J. Wang,
A Hybrid Method Combing Reinforcement Learning and Heuristics in Solving
Two-Echelon Vehicle Routing Problem with Backhauls.
Lecture Notes in Computer Science, vol 14885, pp. 241–253, 2024.
J-J. Yang, J-R. Jiang, and Y-L. Lai,
A Decreasing k-Means Algorithm for the Disk Covering Tour Problem in Wireless
Sensor Networks.
International Workshop on Internet of Things Technologies, 2014.
R. Yang,
Optimizing Traveling Salesman Problem in Multi-AgentSystems with Practical Constraints.
M.Sc. thesis, MIT, 2024.
S. Yao, X. Lin, J. Wang, Q. Zhang,and Z. Wang,
Rethinking Supervised Learning based Neural Combinatorial Optimization
for Routing Problem.
ACM Transactions on Evolutionary Learning, 2024.
H. Ye, J. Wang, H. Liang, Z. Cao, Y. Li, and F. Li,
GLOP: Learning Global Partition and Local Construction for Solving
Large-scale Routing Problems in Real-time.
arXiv:2312.08224 [cs.AI], 2023.
P. Yelmewad and B. Talawar,
Parallel iterative hill climbing algorithm to solve TSP on GPU.
Concurrency and Computation, Accepted paper, 2018.
A. S. Yengejeh,
Distributed Task Allocation and Task Sequencing for Robots with Motion Constraints.
M.Sc. thesis, University of Waterloo, 2016.
H. Yi, Y. Liu, H. Yang, and M. Menéndez,
Charging-on-the-move Public Transit Systems Constituted by
Modular Trolleybuses and Modular Buses.
EEE Transactions on Transportation Electrification, 2024.
S. K. Yi, M. Steyvers, M. D. Lee, and M. J. Dry,
Wisdom of the Crowds in Traveling Salesman Problems.
University of California, University of Adelaide, 2009 (submitted).
S. K. Yi, M. Steyvers, M. D. Lee, and M. J. Dry,
Wisdom of the Crowds in Combinatorial Problems.
Cognitive Science, 38 (3), pp. 452-470, 2012.
K-C. Yin and S.-W. Lin,
Minimizing makespan for no-wait flowshop scheduling problems with setup times.
Computers & Industrial Engineering, Volume 121, pp. 73–81, 2018.
K.-C. Ying and S.-W. Lin,
Maximizing cohesion and separation for detecting protein functional modules in
protein-protein interaction networks.
PLoS ONE 15(10), 2020.
J. Yook, J. Seo, J. Huh, H. J. Byun, and B. Mooon,
CycleFormer : TSP Solver Based on Language Modeling.
arXiv:2405.20042, [cs.LG], 2024.
W. Yong,
Hybrid Max-Min ant system with four vertices and three linesinequality for traveling
salesman problem.
Soft Computing, 2014, DOI 10.1007/s00500-014-1279-8.
K. Yu, H. Zhao, Y. Huang, R. Yi, K. Xu, and C. Zhu,
DISCO: Efficient Diffusion Solver for Large-Scale Combinatorial Optimization Problems.
arXiv:2406.19705 [cs.AI], 2024.
X. Yu,
Optimization Approaches for a Dubins Vehicle in Coverage Planning Problem
and Traveling Salesman Problems.
Ph.D. thesis, Auburn University, 2015.
V. Yajnanarayana, K. E. G. Magnusson, R. Brandt, S. Dwivedi, and P. Händel,
Optimal Scheduling for Interference Mitigation by Range Information.
IEEE Trans. Mobile Computing, 2017.
B. Yuan, M. Orlowska, and S. Sadiq,
Finding the Optimal Path in 3D Spaces Using EDAs - The Wireless Sensor Networks Scenario.
Lecture Notes in Computer Science, Volume 4431, pp. 536-545, 2007.
R. Zamani and S. K. Lau,
Embedding learning capability in Lagrangean relaxation: An application to the travelling
salesman problem.
European Journal of Operational Research, 2001(1), pp. 82-88, 2010.
W. Zahrouni and H. Kamoun,
Transforming part-sequencing problems in a robotic cell into a GTSP.
Journal of the Operational Research Society, January 2010, DOI:10.1057/jors.2009.158.
R. Zamora-Cristales and J. Sessions,
Are double trailers cost effective for transporting forest biomass on steep terrain?
California Agriculture, 69(3), pp.177-183, 2015.
X. Zang, L. Jiang, B. Ding, and X. Fang,
A hybrid ant colony system algorithm for solving the ring star problem.
Applied Intelligence,
2020.
C. Zauner, H. Gattringer, A. Müller, and M. Jörgl,
A Heuristic Sequencing Method for Time Optimal Tracking of Open and Closed Paths.
ECCOMAS Thematic Conference on Multibody Dynamics, 2021.
C. Zauner, H. Gattringer, A. Müller, and M. Jörgl,
Heuristic sequencing methods for time optimal tracking of nested, open and closed paths.
Multibody Systems Dynamics, 2023.
D. Zhang, Z. Xiao, Y. Wang, M. Song, and G. Chen,
Neural TSP Solver with Progressive Distillation.
AAAI-23, 37(10), pp. 12147-12154, 2023.
H. Zhang and F. Zhang,
Path Optimization of Stacker in Automated Storage and Retrieval System
with Split-Pallet Task,
10 th International Conference on Traffic and Logistic Engineeringg, p.p 12-16, 2022.
J. Zhang and B. Khoshnevis,
Contour Crafting Process Planning and Optimization. Part I: Single-Nozzle Case.
Journal of Industrial and Systems Engineering, Vol. 4, No. 1, pp 33-46, 2010.
J. Zhang and B. Khoshnevis,
Toolpath Planning and Optimization for Single and Multiple Gantry Contour Crafting System.
International Journal of Advanced Manufacturing Systems, Vol. 13, No.1, pp. 61-73, 2011.
J. Zhang and B. Khoshnevis,
Optimal machine operation planning for construction by Contour Crafting.
Automation in Construction, Vol. 29, pp. 50.67, 2013.
M. Zhang, C. Feng, Z. Li, G. Zheng, Y. Luo, Z. Wang, J. Zhou, S. Shen, and B. Zhou,
SOAR: Simultaneous Exploration and Photographing with Heterogeneous UAVs for
Fast Autonomous Reconstruction.
arXiv:2409.02738 [cs.RO], 2024.
Y. Zhang, D. Yang, and R. Liao,
SymmetricDiffusers: Learning Discrete Diffusion on Finite Symmetric Groups.
arXiv:2410.02942 [cs.LG], 2024.
Y. Zhang, J. Chen, and L. Shen,
Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface
multi-target attack.
Journal of Systems Engineering and Electronics, Vol. 23 (4), pp. 536-552, 2012.
Y. Zhang, H. Wang, and Z. Ren,
Multi-Agent Combinatorial Path Finding with Heterogeneous Task Duration.
arXiv:2311.15330 [cs.RO], 2023.
Y. Zhang, X. Chen, C. Feng, B. Zhou, and S. Shen,
FALCON: Fast Autonomous Aerial Exploration using Coverage Path Guidance.
arXiv:2407.00577 [cs.RO], 2024.
Y. Zhang, K. Liao, Z. Liao, and L. Guo,
Enhancing Policy Gradient for Traveling Salesman Problem with
Data Augmented Behavior Cloning.
Lecture Notes in Computer Science, vol 14646, 2024.
Z. Zhang, X. Wang, Z. Zhang, P. Cui, and W. Zhu,
Revisiting Transformation Invariant Geometric Deep Learning:
Are Initial Representations All You Need?
arXiv:2112.12345, 2021.
Z. Zhang, L.Yang, P. Kang, X. Jia,nand W. Zhang
Solving the Traveling Thief Problem Based on Item Selection Weight
and Reverse-Order Allocation.
IEEE Access PP(99):1-1, 2021.
Z. Zhang, S. Ma, and X. Jiang,
Research on Multi-Objective Multi-Robot Task Allocation by Lin–Kernighan–Helsgaun
Guided Evolutionary Algorithms.
Mathematics, 10, 4714, 2022.
Z. Zhang, X. Jiang, Z.Yang, Z. Ma, J. Chen, and W. Sun,
Scalable Multi-Robot Task Allocation Using Graph Deep Reinforcement Learning
with Graph Normalization.
Electronics 2024, 13, 1561, 2024.
K. Zhao, S. Liu, Y. Rong, and J. X. Yu,
Leveraging TSP Solver Complementarity via Deep Learning.
arXiv:2006.00715 [cs.AI], 2020.
K. Zhao, S. Liu, J. X. Yu, and Y. Rong,
Towards Feature-free TSP Solver Selection: A Deep Learning Approach.
arXiv:2006.00715v2 [cs.AI], 2021.
K. Zhao, H. Zhang, J. Li, Z. Wang, Z. Pan, and Z. Zhang,
Research on Terminal Visit Plan Formulation Method Based on Deep Reinforcement Learning.
Preprint, Research Square, 2024.
X. Zhao, C. Yu, E. Xu, and Y. Liu,
TDLE: 2-D LiDAR Exploration With Hierarchical Planning Using Regional Division.
arXiv:2307.02852 c[s.RO] 2023.
X. Zhao, W. Chu, K. Shen, J. Wu, and Y. Yao,
Multi-Depot Vehicle Routing Problem with Flexibility for Two-Stage Emergency
Resource Scheduling.
Available at SSRN, 2024.
Y. Zhao, L. Yan, H. Xie, J. Dai, and P. Wei,
Autonomous Exploration Method for Fast Unknown Environment Mapping
by Using UAV Equipped with Limited FOV Sensor.
arXiv:2302.02293 [cs.RO], 2023.
Y. Zhao, L. Alfandari, and C. Archetti,
Stochastic scheduling and routing decisions in online meal delivery
platforms with mixed force,
European Journal of Operational Research, 2024.
Z. Zhao, J. Yang, Y. Niu, Y. Zhang, and L. Shen,
A Hierarchical Cooperative Mission Planning Mechanism for Multiple
Unmanned Aerial Vehicles.
Electronics, 8, 443, 2019.
J. Zheng, K. He, J. Zhou, Y. Jin, and Chu-min Li,
Combining Reinforcement Learning with Lin-Kernighan-Helsgaun Algorithm for the
Traveling Salesman Problem.
arXiv:2012.04461 [cs.AI], 2020.
J. Zheng, M. Chen, J. Zhong, and K. He,
Reinforced Hybrid Genetic Algorithm for the Traveling Salesman Problem.
INFORMS Journal on Computing, arXiv:2107.06870 [cs.NE], 2021.
J. Zheng, K. He, J. Zhou, Y. Jin, and Chu-Min Li,
Reinforced Lin-Kernighan-Helsgaun algorithms for the traveling salesman problems.
Knowledge-Based Systems, Vol. 260, 2023.
J. Zheng, J. Zhong, M. Chen, and K. He,
A reinforced hybrid genetic algorithm for the traveling salesman problem.
Preprint, Computers & Operations Research, 2023.
Z. Zheng, C. Zhou, T. Xialiang, M. Yuan, and Z. Wang,
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale
Combinatorial Optimization Problems.
arXiv:2407.00312 [cs.AI], 2024.
B. Zhou, Y. Zhang, X. Chen, and S. Shen,
FUEL: Fast UAV Exploration using Incremental Frontier Structure and Hierarchical Planning.
arXiv:2010.11561 [cs.RO], 2020.
B. Zhou, H. Xu, and Shaojie Shen,
RACER: Rapid Collaborative Exploration with a Decentralized Multi-UAV System.
arXiv:2209.08533 [cs.RO], 2022.
B. Zhou and T. Tian,
A path planning method of lattice structural components for additive manufacturing.
The International Journal of Advanced Manufacturing Technology, 2021.
B. Zhou, R. Zhou,Y. Gan, F. Fang, and Y. Mao,
Multi-Station Cooperative Spot Welding Task Allocation Based on Stepwise
Optimization: An Industrial Case Study.
Computer-Integrated Manufacturing, Volume 73, 2022.
B. Zhou, C. Lu, Y. Pan, and F. Chen,
OTO Planner: An Efficient Only Travelling Once Exploration Planner
for Complex and Unknown Environments.
arXiv:2406.07294 [cs.RO], 2024.
C. Zhou, X. Lin, Z. Wang, X. Tong, M. Yuan, and Q. Zhang,
Instance-Conditioned Adaptation for Large-scale Generalization
of Neural Combinatorial Optimization.
arXiv:2405.01906 [cs.AI], 2024.
J. Zhou, Y. Wu, W. Song, Z. Cao, and J. Zhang,
Towards Omni-generalizable Neural Methods for Vehicle Routing Problems.
arXiv:2305.19587 [cs.LG], 2023.
J. Zhou, Z. Cao, Y. Wu, W. Song, Y. Ma, J. Zhang, and C. Xu,
MVMoE: Multi-Task Vehicle Routing Solver with Mixture-of-Experts.
arXiv:2405.01029 [cs.AI], 2024.
J. Zhu, K. Guo, P. He, H. Huang, R. Malekian, and Y. Sun,
An effective trajectory planning heuristics for UAV-assisted
vessel monitoring system.
Peer-to-Peer Networking and Applications, 2024.
J. Zhou, Y. Wu, Z. Cao, W. Song, J. Zhang, and Z. Shen,
Collaboration! Towards Robust Neural Methods for Routing Problems.
arXiv:2410.04968 [cs.AI], 2024.
T. Zhou, K. Ye, Z. Shi, J. Lin, D. Xu, and M. Jiang,
Enhancing Large-scale UAV Route Planing with Global and Local
Features via Reinforcement Graph Fusion.
arXiv:2412.15537 [cs.AI], 2024.
X. Zhou, K. Xie, K. Huang, Y. Liu, Y. Zhou, M. Gong, and H. Huang,
Offsite Aerial Path Planning for Efficient Urban Scene Reconstruction.
ACM Trans. Graph., Vol. 39, No. 6, Article 192, 2020.
T. Zhu, X. Shi, X. Xu, and J. Cao,
An accelerated end-to-end method for solving routing problems.
Neural Networks, 2023.
Y. Zhu and S. Wang,
Efficient Aerial Data Collection With Cooperative Trajectory Planning for Large-Scale
Wireless Sensor Networks.
IEEE Transactions on Communications, vol. 70, no. 1, pp. 433-444, 2022.
Y. Zhu and S. Wang,
Data Collection in Wireless Sensor Networks: A Truck-Assisted Multi-UAV Method.
IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems,
pp. 318-324, 2022.
Y. Zhu and S. Wang,
Flying Path Optimization of Rechargeable UAV for Data Collection in
Wireless Sensor Networks,.
IEEE Sensors Letters, vol. 7, no. 2, pp. 1-4, 2023.
Y. Zhu and S. Wang,
Joint Deployment and Trajectory Planning of Multiple UAVs for
Emergency Communications.
GLOBECOM, pp. 1854-1859, 2023.
S. Zhou, Y. Ding, C. Zhang, Z. Cao, and Y. Jin,
DualOpt: A Dual Divide-and-Optimize Algorithm for the
Large-scale Traveling Salesman Problem.
arXiv:2501.08565 [cs.AI], 2025.
Y. Zhou, W. Xu, Z.-H. Fu, and M. Zhou,
Multi-Neighborhood Simulated Annealing-Based Iterated Local Search for
Colored Traveling Salesman Problems.
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9,
pp. 16072-16082, 2022.
Y. Zhou, Y. Kou, and M. Zhou,
Bilevel Memetic Search Approach to the Soft-Clustered Vehicle Routing Problem.
Transportation Science, 2022.
T. Zhu, X. Shi, Xinli, X. Xu, and J. Cao, Jinde,
An Accelerated End-to-End Method for Solving Routing Problems.
Preprint, SAvailable at SRN, 2023.
Y. Zhu and S. Wang,
Flying Path Optimization of Rechargeable UAV for Data Collection
in Wireless Sensor Networks.
IEEE Applied Sensing Conference, 2023.
G. N. Zhukova, M. V. Ulyanov, and M. l. Fomichev,
Exact time-efficient combined algorithm for solving the asymmetric traveling
salesman problem.
Business Inormatics, No. 3(45), pp. 20-28, 2018.
G. N. Zhukova, M. V. Ulyanov, and M. l. Fomichev,
A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem:
Construction and a Statistical Study of Computational Efficiency.
Automation and Remote Controlm, 80(11), pp. 2054-2067, 2019.
L. Zikou, C. Papachristos, K. Alexis, and A. Tzes,
Inspection Operations Using an Aerial Robot Powered-over-Tether by a Ground Vehicle.
Lecture Notes in Computer Science, Volume 9474, pp. 455-465, 2015.
Z. Zong, H. Wang, J. Wang, M. Zheng, and Y. Li,
BG: Hierarchically Solving Large-Scale Routing Problems in Logistic Systems
via Reinforcement Learning.
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2022.