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Abstract

This report describes an implementation of the Lin-Kernighan heuris-
tic, one of the most successful methods for generating optimal or near-
optimal solutions for the symmetric traveling salesman problem. Com-
putational tests show that the implementation is highly effective. It has
found optimal solutions for all solved problem instances we have been
able to obtain, including a 7397-city problem (the largest nontrivial
problem instance solved to optimality today). Furthermore, the algo-
rithm has improved the best known solutions for a series of large-scale
problems with unknown optima, among these an 85900-city problem.

1. Introduction

The Lin-Kernighan heuristic [1] is generally considered to be one of the most
effective methods for generating optimal or near-optimal solutions for the
symmetric traveling salesman problem. However, the design and implemen-
tation of an algorithm based on this heuristic is not trivial. There are many
design and implementation decisions to be made, and most decisions have a
great influence on performance.

This report describes the implementation of a new modified version of the
Lin-Kernighan algorithm. Computational experiments have shown that the
implementation is highly effective.

The new algorithm differs in many details from the original one. The most
notable difference is found in the search strategy. The new algorithm uses
larger (and more complex) search steps than the original one. Also new is the
use of sensitivity analysis to direct and restrict the search.
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Run times of both algorithms increase approximately as n2.2. However, the
new algorithm is much more effective. The new algorithm makes it possible
to find optimal solutions to large-scale problems, in reasonable running times.

For a typical 100-city problem the optimal solution is found in less than a sec-
ond, and for a typical 1000-city problem optimum is found in less than a min-
ute (on a 300 MHz G3 Power Macintosh).

Even though the algorithm is approximate, optimal solutions are produced
with an impressively high frequency. It has produced optimal solutions for all
solved problems we have been able to obtain, including a 7397-city problem
(at the time of writing, the largest nontrivial problem solved to optimality).

The rest of this report is organized as follows. Section 2 defines the traveling
salesman problem and gives an overview of solution algorithms. Section 3
describes the original algorithm of Lin and Kernighan (including their own
refinements of the algorithm). Sections 4 and 5 present the new modified al-
gorithm and its implementation. The effectiveness of the implementation is re-
ported in Section 6.
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2. The traveling salesman problem

2.1 Formulation

A salesman is required to visit each of n given cities once and only once,
starting from any city and returning to the original place of departure. What
tour should he choose in order to minimize his total travel distance?

The distances between any pair of cities are assumed to be known by the
salesman. Distance can be replaced by another notion, such as time or money.
In the following the term ’cost’ is used to represent any such notion.

This problem, the traveling salesman problem (TSP), is one of the most
widely studied problems in combinatorial optimization [2]. The problem is
easy to state, but hard to solve. Mathematically, the problem may be stated as
follows:

Given a ‘cost matrix’ C = (cij), where cij represents the cost of
going from city i to city j, (i, j = 1, ..., n), find a permutation
(i1, i2, i3, ..., in) of the integers from 1 through n that minimizes
the quantity

ci1i2 + ci2i3 +  . . .  +  cini1

Properties of the cost matrix C are used to classify problems.

• If cij = cji for all i and j, the problem is said to be symmetric; otherwise, it
is asymmetric.

• If the triangle inequality holds (cik ≤ cij + cjk for all i, j and k), the problem
is said to be metric.

• If c ij are Euclidean distances between points in the plane, the problem is
said to be Euclidean. A Euclidean problem is, of course, both symmetric
and metric.

2.2 Motivation
 
 The importance of the TSP stems not from a massive need from salesmen
wishing to minimize their travel distance. The importance comes from a
wealth of other applications, many of which seemingly have nothing to do
with traveling routes.
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 For example, consider the following process planning problem. A number of
jobs have to be processed on a single machine. The machine can only process
one job at a time. Before a job can be processed the machine must be prepared
(cleaned, adjusted, or whatever). Given the processing time of each job and
the switch-over time between each pair of jobs, the task is to find an execu-
tion sequence of the jobs making the total processing time as short as possi-
ble.
 
 It is easy to see that this problem is an instance of TSP. Here cij represents
the time to complete job j after job i (switch-over time plus time to perform
job j). A pseudo job with processing time 0 marks the beginning and ending
state for the machine.
 
 Many real-world problems can be formulated as instances of the TSP. Its ver-
satility is illustrated in the following examples of application areas:
 
 • Computer wiring
 • Vehicle routing
 • Crystallography
 • Robot control
 • Drilling of printed circuit boards
 • Chronological sequencing.
 
 TSP is a typical problem of its genre: combinatorial optimization. This means
that theoretical and practical insight achieved in the study of TSP can often be
useful in the solution of other problems in this area. In fact, much progress in
combinatorial optimization can be traced back to research on TSP. The now
well-known computing method, branch and bound, was first used in the
context of TSP [3, 4]. It is also worth mentioning that research on TSP was
an important driving force in the development of the computational complex-
ity theory in the beginning of the 1970s [5].
 
 However, the interest in TSP not only stems from its practical and theoretical
importance. The intellectual challenge of solving the problem also plays a
role. Despite its simple formulation, TSP is hard to solve. The difficulty be-
comes apparent when one considers the number of possible tours - an astro-
nomical figure even for a relatively small number of cities. For a symmetric
problem with n cities there are (n-1)!/2 possible tours. If n is 20, there are
more than 1018 tours. The 7397-city problem, which is successfully solved
by the algorithm described in this report, contains more than 1025,000 possible
tours. In comparison it may be noted that the number of elementary particles
in the universe has been estimated to be ‘only’ 1087.
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2.3 Solution algorithms
 
 It has been proven that TSP is a member of the set of NP-complete problems.
This is a class of difficult problems whose time complexity is probably expo-
nential. The members of the class are related so that if a polynomial time were
found for one problem, polynomial time algorithms would exist for all of
them. However, it is commonly believed that no such polynomial algorithm
exists. Therefore, any attempt to construct a general algorithm for finding op-
timal solutions for the TSP in polynomial time must (probably) fail.
 
 That is, for any such algorithm it is possible to construct problem instances
for which the execution time grows at least exponentially with the size of the
input. Note, however, that time complexity here refers to any algorithm’s be-
havior in worst cases. It can not be excluded that there exist algorithms whose
average running time is polynomial. The existence of such algorithms is still
an open question.
  
 Algorithms for solving the TSP may be divided into two classes:
 
 • Exact algorithms;
 • Approximate (or heuristic) algorithms.
 
2.3.1 Exact algorithms
 
 The exact algorithms are guaranteed to find the optimal solution in a bounded
number of steps. Today one can find exact solutions to symmetric problems
with a few hundred cities, although there have been reports on the solution of
problems with thousands of cities.
 
 The most effective exact algorithms are cutting-plane or facet-finding algo-
rithms [6, 7, 8]. These algorithms are quite complex, with codes on the order
of 10,000 lines. In addition, the algorithms are very demanding of computer
power. For example, the exact solution of a symmetric problem with 2392
cities was determined over a period of more than 27 hours on a powerful su-
per computer [7]. It took roughly 3-4 years of CPU time on a large network
of computers to determine the exact solution of the previously mentioned
7397-city problem [8].
 
 Symmetric problems are usually more difficult to solve than asymmetric
problems [9]. Today the 7397-city problem is the largest (nontrivial) symmet-
ric problem that has been solved. In comparison, the optimal solution of a
500,000-city asymmetric problem has been reported [10].
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2.3.2 Approximate algorithms
 
 In contrast, the approximate algorithms obtain good solutions but do not guar-
antee that optimal solutions will be found. These algorithms are usually very
simple and have (relative) short running times. Some of the algorithms give
solutions that in average differs only by a few percent from the optimal so-
lution. Therefore, if a small deviation from optimum can be accepted, it may
be appropriate to use an approximate algorithm.
 
 The class of approximate algorithms may be subdivided into the following
three classes:
 
 • Tour construction algorithms
 • Tour improvement algorithms
 • Composite algorithms.
 
 The tour construction algorithms gradually build a tour by adding a new city
at each step. The tour improvement algorithms improve upon a tour by per-
forming various exchanges. The composite algorithms combine these two
features.
 
 A simple example of a tour construction algorithm is the so-called nearest-
neighbor algorithm [11]: Start in an arbitrary city. As long as there are cities,
that have not yet been visited, visit the nearest city that still has not appeared
in the tour. Finally, return to the first city.
 
 This approach is simple, but often too greedy. The first distances in the con-
struction process are reasonable short, whereas the distances at the end of the
process usually will be rather long. A lot of other construction algorithms
have been developed to remedy this problem (see for example [2], [12] and
[13]).
 
 The tour improvement algorithms, however, have achieved the greatest suc-
cess. A simple example of this type of algorithm is the so-called 2-opt algo-
rithm: Start with a given tour. Replace 2 links of the tour with 2 other links in
such a way that the new tour length is shorter. Continue in this way until no
more improvements are possible.
 
 Figure 2.1 illustrates a 2-opt exchange of links, a so-called 2-opt move. Note
that a 2-opt move keeps the tour feasible and corresponds to a reversal of a
subsequence of the cities.
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t1t2

t3t4

t2 t1

t4 t3

  Figure 2.1 A 2-opt move
 
 A generalization of this simple principle forms the basis for one the most ef-
fective approximate algorithms for solving the symmetric TSP, the Lin-Ker-
nighan algorithm [1]. The original algorithm, as implemented by Lin and
Kernighan in 1971, had an average running time of order n2.2 and was able to
find the optimal solutions for most problems with fewer than 100 cities.
 
 However, the Lin-Kernighan algorithm is not simple to implement. In a sur-
vey paper from 1989 [14] the authors wrote that no other implementation of
the algorithm at that time had shown as good efficiency as was obtained by
Lin and Kernighan.
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3. The Lin-Kernighan algorithm

3.1 The basic algorithm
 
The 2-opt algorithm is a special case of the -opt algorithm [15], where in
each step λ links of the current tour are replaced by λ links in such a way that
a shorter tour is achieved. In other words, in each step a shorter tour is ob-
tained by deleting λ links and putting the resulting paths together in a new
way, possibly reversing one ore more of them.

The λ-opt algorithm is based on the concept -optimality:
 

 A tour is said to be -optimal (or simply -opt) if it is impossible
 to obtain a shorter tour by replacing any λ of its links by any other
 set of λ links.

 
From this definition it is obvious that any λ-optimal tour is also λ’-optimal for
1 ≤ λ’ ≤ λ. It is also easy to see that a tour containing n cities is optimal if and
only if it is n-optimal.
 
 In general, the larger the value of λ, the more likely it is that the final tour is
optimal. For fairly large λ it appears, at least intuitively, that a λ-optimal tour
should be optimal.
 
 Unfortunately, the number of operations to test all λ-exchanges increases
rapidly as the number of cities increases. In a naive implementation the testing
of a λ-exchange has a time complexity of O(nλ). Furthermore, there is no
nontrivial upper bound of the number of λ–exchanges. As a result, the values
λ = 2 and λ = 3 are the most commonly used. In one study the values λ = 4
and λ = 5 were used [16].
 

 However, it is a drawback that λ must be specified in advance. It is difficult
to know what λ to use to achieve the best compromise between running time
and quality of solution.
 
 Lin and Kernighan removed this drawback by introducing a powerful variable
-opt algorithm. The algorithm changes the value of λ during its execution,

deciding at each iteration what the value of λ should be. At each iteration step
the algorithm examines, for ascending values of λ, whether an interchange of
λ links may result in a shorter tour. Given that the exchange of r links is being
considered, a series of tests is performed to determine whether r+1 link
exchanges should be considered. This continues until some stopping
conditions are satisfied.
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 At each step the algorithm considers a growing set of potential exchanges
(starting with r = 2). These exchanges are chosen in such a way that a feasible
tour may be formed at any stage of the process. If the exploration succeeds in
finding a new shorter tour, then the actual tour is replaced with the new tour.
 
 The Lin-Kernighan algorithm belongs to the class of so-called local optimiza-
tion algorithms [17, 18]. The algorithm is specified in terms of exchanges (or
moves) that can convert one tour into another. Given a feasible tour, the algo-
rithm repeatedly performs exchanges that reduce the length of the current
tour, until a tour is reached for which no exchange yields an improvement.
This process may be repeated many times from initial tours generated in some
randomized way. The algorithm is described below in more detail.
 
 Let T be the current tour. At each iteration step the algorithm attempts to find
two sets of links, X = {x1, ..., x r} and Y = {y1,  . . . ,  y r}, such that, if the
links of X are deleted from T and replaced by the links of Y, the result is a
better tour. This interchange of links is called a r-opt move. Figure 3.1 illus-
trates a 3-opt move.
 

 

y1 y3

y2

x1

x3x2

y1 y3

y2

x2 x3

x1
 Figure 3.1 A 3-opt move

 
 The two sets X and Y are constructed element by element. Initially X and Y
are empty. In step i a pair of links, xi and yi, are added to X and Y, respec-
tively.
 
 In order to achieve a sufficient efficient algorithm, only links that fulfill the
following criteria may enter X and Y.
 
 (1) The sequential exchange criterion
 
 xi and yi must share an endpoint, and so must yi and x i+1.  If t1 denotes one of
the two endpoints of x1, we have in general: xi = (t2i-1,t2i), yi = (t2i,t2i+1) and
xi+1 = (t2i+1,t2i+2) for i ≥ 1. See Figure 3.2.
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yi

t2i+2

t2i-1

t2i+1

t2i xi

yi+1

xi+1

 
 Figure 3.2. Restricting the choice of xi, yi, xi+1, and y i+1.

 
 As seen, the sequence (x1, y1, x2, y2, x3, ..., xr, y r) constitutes a chain of ad-
joining links.
 
 A necessary (but not sufficient) condition that the exchange of links X with
links Y results in a tour is that the chain is closed, i.e., yr = (t2r,t1). Such an
exchange is called sequential.
 
 Generally, an improvement of a tour may be achieved as a sequential ex-
change by a suitable numbering of the affected links. However, this is not
always the case. Figure 3.3 shows an example where a sequential exchange is
not possible.

 
 Figure 3.3 Nonsequential exchange (r = 4).

 
 
 
 

 

y1
y4

y2y3

y1
y4

y2y3

x3

x2

x4

x1 x1

x2

x3 x4
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 (2) The feasibility criterion
 
 It is required that xi = (t2i-1,t2i) is chosen so that, if t2i is joined to t1, the re-
sulting configuration is a tour. This feasibility criterion is used for i ≥ 3 and
guarantees that it is possible to close up to a tour. This criterion was included
in the algorithm both to reduce running time and to simplify the coding.
 
 (3) The positive gain criterion
 
 It is required that yi is always chosen so that the gain, G i, from the proposed
set of exchanges is positive. Suppose gi = c(xi) - c(yi) is the gain from ex-
changing xi with yi. Then G i is the sum g1 + g2 + ... + gi.
 
 This stop criterion plays a great role in the efficiency of the algorithm. The
demand that every partial sum, Gi, must be positive seems immediately to be
too restrictive. That this, however, is not the case, follows from the following
simple fact: If a sequence of numbers has a positive sum, there is a cyclic
permutation of these numbers such that every partial sum is positive. The
proof is simple and can be found in [1].
 
 (4) The disjunctivity criterion
 
 Finally, it is required that the sets X and Y are disjoint. This simplifies cod-
ing, reduces running time and gives an effective stop criterion.
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 Below is given an outline of the basic algorithm (a simplified version of the
original algorithm).
 

   1.  Generate a random initial tour T.

   2.  Let i = 1. Choose t1.

  3.  Choose x1 = (t1,t2) ∈ T.

  4.  Choose y1 = (t2,t3) ∉ T such that G1 > 0.
If this is not possible, go to Step 12.

  5.  Let i = i+1.

  6.  Choose x i = (t2i-1,t2i) ∈ T such that
     (a) if t2i is joined to t1, the resulting configuration is a

                 tour, T’, and
            (b) xi ≠ ys for all s < i.
       If T’ is a better tour than T, let T = T’ and go to Step 2.

  7.  Choose y i = (t2i,t2i+1) ∉ T such that
     (a) Gi > 0,
     (b) yi ≠ xs for all s ≤ i, and
     (c) xi+1 exists.

       If such yi exists, go to Step 5.

   8.  If there is an untried alternative for y2, let i = 2 and go to Step 7.

   9.  If there is an untried alternative for x2, let i = 2 and go to Step 6.

 10.  If there is an untried alternative for y1, let i = 1 and go to Step 4.

 11.  If there is an untried alternative for x1, let i = 1 and go to Step 3.

 12.  If there is an untried alternative for t1, then go to Step 2.

 13.  Stop (or go to Step 1).

 
 Figure 3.4. The basic Lin-Kernighan algorithm

 
 Comments on the algorithm:
 
 Step 1. A random tour is chosen as the starting point for the explorations.
 
 Step 3. Choose a link x1 = (t1,t2) on the tour. When t1 has been chosen, there
are two choices for x1. Here the verb ‘choose’ means ‘select an untried alter-
native’. However, each time an improvement of the tour has been found (in
Step 6), all alternatives are considered untried.
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 Step 6. There are two choices of xi. However, for given yi-1 (i ≥ 2) only one
of these makes it possible to ‘close’ the tour (by the addition of yi). The other
choice results in two disconnected subtours. In only one case, however, such
an unfeasible choice is allowed, namely for i = 2. Figure 3.5 shows this
situation.
 

 
t1t2 x1

y1

t3 t4x2

y2

 
 Figure 3.5 No close up at x2.

 
 If y2 is chosen so that t5 lies between t2 and t3, then the tour can be closed in
the next step. But then t6 may be on either side of t5 (see Figure 3.6); the
original algorithm investigated both alternatives.
 
 

 
t1t2 x1

t3 t4

t5x3

y1

y2

x2

 
 Figure 3.6 Two choices for x3.
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 On the other hand, if y2 is chosen so that t5 lies between t4 and t1, there is only
one choice for t6 (it must lie between t4 and t5), and t7 must lie between t2 and
t3. But then t8 can be on either side of t7 (see Figure 3.7); the original algo-
rithm investigated the alternative for which c(t7,t8) is maximum.
 

 
t1t2

t3 t4

t5

t6

t7x4

x1

x3

x2

y1

y2

y3

 
 Figure 3.7 Unique choice for x3. Limited choice of y3. Two choices for x4.

 
 Condition (b) in Step 6 and Step 7 ensures that the sets X and Y are disjoint:
yi must not be a previously broken link, and xi must not be a link previously
added.
 
 Steps 8-12. These steps cause backtracking. Note that backtracking is al-
lowed only if no improvement has been found, and only at levels 1 and 2.
 
 Step 13. The algorithm terminates with a solution tour when all values of t1
have been examined without improvement. If required, a new random initial
tour may be considered at Step 1.
 
 The algorithm described above differs from the original one by its reaction on
tour improvements. In the algorithm given above, a tour T is replaced by a
shorter tour T’ as soon as an improvement is found (in Step 6). In contrast,
the original algorithm continues its steps by adding potential exchanges in or-
der to find an even shorter tour. When no more exchanges are possible, or
when Gi ≤ G*, where G* is the best improvement of T recorded so far, the
search stops and the current tour T is replaced by the most advantageous tour.
In their paper [1] Lin and Kernighan did not state their reasons for introduc-
ing this method. It complicates the coding and results neither in better solu-
tions nor in shorter running times.
 



15

3.2 Lin and Kernighan’s refinements
 
 A bottleneck of the algorithm is the search for links to enter the sets X and Y.
In order to increase efficiency, special care therefore should be taken to limit
this search. Only exchanges that have a reasonable chance of leading to a re-
duction of tour length should be considered.
 
 The basic algorithm as presented in the preceding section limits its search by
using the following four rules:
 
 (1) Only sequential exchanges are allowed.
 
 (2) The provisional gain must be positive.
 
 (3) The tour can be ‘closed’ (with one exception, i = 2).
 
 (4) A previously broken link must not be added, and a previously  
       added link must not be broken.
 
 To limit the search even more Lin and Kernighan refined the algorithm by in-
troducing the following rules:
 
 (5) The search for a link to enter the tour, yi = (t2i,t2i+1), is limited to
         the five nearest neighbors to t2i.
 
 (6) For i ≥ 4, no link, xi, on the tour must be broken if it is a common
       link of a small number (2-5) of solution tours.
 
 (7) The search for improvements is stopped if the current tour is the
       same as a previous solution tour.

 
 Rules 5 and 6 are heuristic rules. They are based on expectations of which
links are likely to belong to an optimal tour. They save running time, but
sometimes at the expense of not achieving the best possible solutions.
 
 Rule 7 also saves running time, but has no influence on the quality of solu-
tions being found. If a tour is the same as a previous solution tour, there is no
point in attempting to improve it further. The time needed to check that no
more improvements are possible (the checkout time) may therefore be saved.
According to Lin and Kernighan the time saved in this way it typically 30 to
50 percent of running time.
 
 In addition to these refinements, whose purpose is primarily to limit the
search, Lin and Kernighan added some refinements whose purpose is primar-
ily to direct the search. Where the algorithm has a choice of alternatives, heu-
ristic rules are used to give priorities to these alternatives. In cases where only
one of the alternatives must be chosen, the one with the highest priority is
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chosen. In cases where several alternatives must be tried, the alternatives are
tried in descending priority order (using backtracking). To be more specific,
the following rules are used:
 
 (8) When link yi (i ≥ 2) is to be chosen, each possible choice is given
        the priority c(xi+1) - c(yi).
     
 (9) If there are two alternatives for x4, the one where c(x4) is highest
       is chosen.
 
 Rule 8 is a heuristic rule for ranking the links to be added to Y. The priority
for yi is the length of the next (unique) link to be broken, xi+1, if y i is included
in the tour, minus the length of yi. In this way, the algorithm is provided with
some look-ahead. By maximizing the quantity c(xi+1) - c(yi), the algorithm
aims at breaking a long link and including a short link.
 
 Rule 9 deals with the special situation in Figure 3.7 where there are two
choices for x4. The rule gives preference to the longest link in this case. In
three other cases, namely for x1, x2, and sometimes x3 (see Figure 3.6) there
are two alternatives available. In these situations the algorithm examines both
choices using backtracking (unless an improved tour was found). In their pa-
per Lin and Kernighan do not specify the sequence in which the alternatives
are examined.
 
 As a last refinement, Lin and Kernighan included a limited defense against the
situations where only nonsequential exchanges may lead to a better solution.
After a local optimum has been found, the algorithm tests, among the links
allowed to be broken, whether it is possible to make a further improvement
by a nonsequential 4-opt change (as shown in Figure 3.3). Lin and Ker-
nighan pointed out that the effect of this post optimization procedure varies
substantially from problem to problem. However, the time used for the test is
small relative to the total running time, so it is a cheap insurance.
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4. The modified Lin-Kernighan algorithm
 
 Lin and Kernighan’s original algorithm was reasonably effective. For prob-
lems with up to 50 cities, the probability of obtaining optimal solutions in a
single trial was close to 100 percent. For problems with 100 cities the prob-
ability dropped to between 20 and 30 percent. However, by running a few
trials, each time starting with a new random tour, the optimum for these
problems could be found with nearly 100 percent assurance.
 
 The algorithm was evaluated on a spectrum of problems, among these a drill-
ing problem with 318 points. Due to computer-storage limitations, the prob-
lem was split into three smaller problems. A solution tour was obtained by
solving the subproblems separately, and finally joining the three tours. At the
time when Lin and Kernighan wrote their paper (1971), the optimum for this
problem was unknown. Now that the optimum is known, it may be noted that
their solution was 1.3 percent above optimum.
 
 In the following, a modified and extended version of their algorithm is pre-
sented. The new algorithm is a considerable improvement of the original algo-
rithm. For example, for the mentioned 318-city problem the optimal solution
is now found in a few trials (approximately 2), and in a very short time (about
one second on a 300 MHz G3 Power Macintosh). In general, the quality of
solutions achieved by the algorithm is very impressive. The algorithm has
been able to find optimal solutions for all problem instances we have been
able to obtain, including a 7397-city problem (the largest nontrivial problem
instance solved to optimality today).
 
 The increase in efficiency is primarily achieved by a revision of Lin and Ker-
nighan’s heuristic rules for restricting and directing the search. Even if their
heuristic rules seem natural, a critical analysis shows that they suffer from
considerable defects.
 
4.1 Candidate sets
 
 A central rule in the original algorithm is the heuristic rule that restricts the in-
clusion of links in the tour to the five nearest neighbors to a given city (Rule 5
in Section 3.2). This rule directs the search against short tours and reduces
the search effort substantially. However, there is a certain risk that the appli-
cation of this rule may prevent the optimal solution from being found. If an
optimal solution contains one link, which is not connected to the five nearest
neighbors of its two end cities, then the algorithm will have difficulties in ob-
taining the optimum.
 
 The inadequacy of this rule manifests itself particularly clearly in large prob-
lems. For example, for a 532-city problem [19] one of the links in the optimal
solution is the 22nd nearest neighbor city for one of its end points. So in or-
der to find the optimal solution to this problem, the number of nearest neigh-
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bors to be considered ought to be at least 22. Unfortunately, this enlargement
of the set of candidates results in a substantial increase in running time.
 
 The rule builds on the assumption that the shorter a link is, the greater is the
probability that it belongs to an optimal tour. This seems reasonable, but used
too restrictively it may result in poor tours.
 
 In the following, a measure of nearness is described that better reflects the
chances of a given link being a member of an optimal tour. This measure,
called -nearness, is based on sensitivity analysis using minimum spanning
trees.
 
 First, some well-known graph theoretical terminology is reviewed.
 
 Let G = (N, E) be a undirected weighted graph where N = {1, 2, ..., n} is
the set of nodes and E = {(i,j)| i ∈ N, j ∈ N} is the set of edges. Each edge
(i,j) has associated a weight c(i,j).
 
 A path is a set of edges {(i1,i2), (i2,i3), ..., (ik-1,ik)} with ip ≠ iq for all p ≠ q.
 
 A cycle is a set of edges {(i1,i2), (i2,i3), ..., (ik,i1)} with ip ≠ iq for p ≠ q.
 
 A tour is a cycle where k = n.
 

 For any subset S ⊆ E the length of S, L(S), is given by L(S) = ∑(i,j)∈S c(i,j).
 
 An optimal tour is a tour of minimum length. Thus, the symmetric TSP can
simply be formulated as: “Given a weighted graph G, determine an optimal
tour of G”.
 
 A graph G is said to be connected if it contains for any pair of nodes a path
connecting them.
 
 A tree is a connected graph without cycles. A spanning tree of a graph G with
n nodes is a tree with n-1 edges from G. A minimum spanning tree is a span-
ning tree of minimum length.
 
 Now the important concept of a 1-tree may be defined.
 

 A 1-tree for a graph G = (N, E) is a spanning tree on the
node set N\{1} combined with two edges from E incident to
node 1.
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 The choice of node 1 as a special node is arbitrary. Note that a 1-tree is not a
tree since it contains a cycle (containing node 1; see Figure 4.1).
 

 
 Figure 4.1 A 1-tree.

 
 A minimum 1-tree is a 1-tree of minimum length.
 
 The degree of a node is the number of edges incident to the node.
 
 It is easy to see [20, 21] that
 
      (1) an optimal tour is a minimum 1-tree where every node has degree 2;
 
      (2) if a minimum 1-tree is a tour, then the tour is optimal.
 
 Thus, an alternative formulation of the symmetric TSP is: “Find a minimum
1-tree all whose nodes have degree 2”.
 
 Usually a minimum spanning tree contains many edges in common with an
optimal tour. An optimal tour normally contains between 70 and 80 percent of
the edges of a minimum 1-tree. Therefore, minimum 1-trees seem to be well
suited as a heuristic measure of ‘nearness’. Edges that belong, or ‘nearly be-
long', to a minimum 1-tree, stand a good chance of also belonging to an op-
timal tour. Conversely, edges that are ‘far from’ belonging to a minimum 1-
tree have a low probability of also belonging to an optimal tour. In the Lin-
Kernighan algorithm these ‘far’ edges may be excluded as candidates to enter
a tour. It is expected that this exclusion does not cause the optimal tour to be
missed.
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More formally, this measure of nearness is defined as follows:
 

 Let T be a minimum 1-tree of length L(T) and let T+(i,j) denote
a minimum 1-tree required to contain the edge (i,j). Then the

nearness of an edge (i,j) is defined as the quantity
 

 α(i,j) = L(T+(i,j)) - L(T).

 

 That is, given the length of (any) minimum 1-tree, the α−nearness of an edge
is the increase of length when a minimum 1-tree is required to contain this
edge.
 
 It is easy to verify the following two simple properties of α:
 
 (1) α(i,j) ≥ 0.
 
 (2) If (i,j) belongs to some minimum 1-tree, then α(i,j) = 0.
 
 The α-measure can be used to systematically identify those edges that could
conceivably be included in an optimal tour, and disregard the remainder.
These 'promising edges', called the candidate set, may, for example, consist
of the k α-nearest edges incident to each node, and/or those edges having an
α-nearness below a specified upper bound.
 
 In general, using the α-measure for specifying the candidate set is much better
than using nearest neighbors. Usually, the candidate set may be smaller,
without degradation of the solution quality.
 
 The use of α-nearness in the construction of the candidate set implies com-
putations of α-values. The efficiency, both in time of space, of these compu-
tations is therefore important. The method is not of much practical value, if
the computations are too expensive. In the following an algorithm is pre-
sented that computes all α-values. The algorithm has time complexity O(n2)
and uses space O(n).
 
 Let G = (N, E) be a complete graph, that is, a graph where for all nodes i and
j in N there is an edge (i,j) in E. The algorithm first finds a minimum 1-tree
for G. This can be done by determination of a minimum spanning tree that
contains the nodes {2, 3, …, n}, followed by the addition of the two shortest
edges incident to node 1. The minimum spanning tree may, for example, be
determined using Prim’s algorithm [22], which has a run time complexity of
O(n2). The additional two edges may be determined in time O(n). Thus, the
complexity of this first part is O(n2).
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 Next, the nearness α(i,j) is determined for all edges (i,j). Let T be a minimum
1-tree. From the definition of a minimum spanning tree, it is easy to see that a
minimum spanning tree T+(i,j) containing the edge (i,j) may be determined
from T using the following action rules:
 
 (a) If (i,j) belongs to T, then T+(i,j) is equal to T.
 

 (b) Otherwise, if (i,j) has 1 as end node (i = 1 ∨ j = 1), then T+(i,j) is
       obtained from T by replacing the longest of the two edges of T
       incident to node 1 with (i,j).
 
 (c) Otherwise, insert (i,j) in T. This creates a cycle containing (i,j)
       in the spanning tree part of T. Then T+(i,j) is obtained by
       removing the longest of the other edges on this cycle.
 
 Cases a and b are simple. With a suitable representation of 1-trees they can
both be treated in constant time.
 
 Case c is more difficult to treat efficiently. The number of edges in the pro-
duced cycles is O(n). Therefore, with a suitable representation it is possible to
treat each edge with time complexity O(n). Since O(n2) edges must be treated
this way, the total time complexity becomes O(n3), which is unsatisfactory.
 
 However, it is possible to obtain a total complexity of O(n2) by exploiting a
simple relation between the α-values [23, 24].
 
 Let β(i,j) denote the length of the edge to be removed from the spanning tree
when edge (i,j) is added. Thus α(i,j) = c(i,j) - β(i,j). Then the following fact
may be exploited (see Figure 4.2). If (j1,j2) is an edge of the minimum span-
ning tree, i is one of the remaining nodes and j1 is on that cycle that arises by
adding the edge (i,j2) to the tree, then β(i,j2) may be computed as the maxi-
mum of β(i,j1) and c(j1,j2).
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 Figure 4.2 (i,j2) may be computed from (i,j1).
 
 Thus, for a given node i all the values β(i,j), j = 1, 2, ..., n, can be computed
with a time complexity of O(n), if only the remaining nodes are traversed in a
suitable sequence. It can be seen that such a sequence is produced as a by-
product of Prim’s algorithm for constructing minimum spanning trees,
namely a topological order, in which every node's descendants in the tree are
placed after the node. The total complexity now becomes O(n2).
 
 Figure 4.3 sketches in C-style notation an algorithm for computing β(i,j) for  
i ≠ 1, j ≠ 1, i ≠ j. The algorithm assumes that the father of each node j in the
tree, dad[j], precedes the node (i.e., dad[j] = i ⇒ i < j).
 

 for (i = 2; i < n; i++) {
     β[i][i] = -∞;
     for (j = i+1; j <= n; j++)
         β[i][j] = β[j][i] = max(β[i][dad[j]], c(j,dad[j]));
 }

 
 Figure 4.3 Computation of (i,j) for i ≠1, j ≠1, i  j.

 
 Unfortunately this algorithm needs space O(n2) for storing β-values. Some
space may be saved by storing the c- and β-values in one quadratic matrix, so
that, for example, the c-values are stored in the lower triangular matrix, while
the β-values are stored in the upper triangular matrix. For large values of n,
however, storage limitations may make this approach impractical.
 

 1

i

j1
j2
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 Half of the space may be saved if the c-values are not stored, but computed
when needed (for example as Euclidean distances). The question is whether it
is also possible to save the space needed for the β-values At first sight it
would seem that the β-values must be stored in order to achieve O(n2) time
complexity for their computation. That this is not the case will now be dem-
onstrated.
 
 The algorithm, given in Figure 4.4, uses two one-dimensional auxiliary ar-
rays, b and mark. Array b corresponds to the β-matrix but only contains β-
values for a given node i, i.e., b[j]  = β(i,j). Array mark is used to indicate
that b[j] has been computed for node i.
 
 The determination of b[j] is done in two phases. First, b[j] is computed for
all nodes j on the path from node i to the root of the tree (node 2). These
nodes are marked with i. Next, a forward pass is used to compute the re-
maining b-values. The α-values are available in the inner loop.
 

 for (i = 2; i <= n; i++)
     mark[i] = 0;
 for (i = 2; i <= n; i++) {
     b[i] = -∞;
     for (k = i; k != 2; k = j) {
         j = dad[k];
         b[j] = max(b[k], c(k,j));
         mark[j] = i;
     }
     for (j = 2; j <= n; j++) {
         if (j != i) {
             if (mark[j] != i)
     b[j] = max(b[dad[j]], c(j,dad[j)]);
        /* α(i,j) is now available as c(i,j) - b[j] */
         }
     }
 }

 
 Figure 4.4 Space efficient computation of .

 
 It is easy to see that this algorithm has time complexity O(n2) and uses space
O(n).
 
 The α-values provide a good estimate of the edges’ chances of belonging to
an optimal tour. The smaller α is for an edge, the more promising is this
edge. Using α-nearness it is often possible to limit the search to relative few
of the α-nearest neighbors of a node, and still obtain an optimal tour. Com-
putational tests have shown that the α-measure provides a better estimate of
the likelihood of an edge being optimal than the usual c-measure. For exam-
ple, for the 532-city problem the worst case is an optimal edge being the 22nd
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c-nearest edge for a node, whereas the worst case when using the α-measure
is an optimal edge being the 14th α-nearest. The average rank of the optimal
edges among the candidate edges is reduced from 2.4 to 2.1.
 
 This seems to be quite satisfactory. However, the α-measure can be improved
substantially by making a simple transformation of the original cost matrix.
The transformation is based on the following observations [21]:
 
 (1) Every tour is a 1-tree. Therefore the length of a minimum 1-tree
                 is a lower bound on the length of an optimal tour.
 
 (2) If the length of all edges incident to a node are changed with the
     same amount, π, any optimal tour remains optimal. Thus, if the
     cost matrix C= (cij) is transformed to D = (dij), where
 
 dij = cij + πi + πj,
 
  then an optimal tour for the D is also an optimal tour for C.
          The length of every tour is increased by 2Σπi. The transformation
     leaves the TSP invariant, but usually changes the minimum 1-tree.
 

(3) If Tπ is a minimum 1-tree with respect to D, then its length, L(Tπ),
 is a lower bound on the length of an optimal tour for D.
    Therefore w(π) = L(Tπ) - 2Σπi is lower bound on the length of
     an optimal tour for C.
 
 The aim is now to find a transformation, C → D, given by the vector             
π = (π1, π2, ..., πn), that maximizes the lower bound w(π) = L(Tπ) - 2Σπ i.
 
 If Tπ becomes a tour, then the exact optimum has been found. Otherwise, it
appears, at least intuitively, that if w(π) > w(0), then α-values computed from
D are better estimates of edges being optimal than α-values computed from C.
 
 Usually, the maximum of w(π) is close to the length of an optimal tour. Com-
putational experience has shown that this maximum typically is less than 1
percent below optimum. However, finding maximum for w(π) is not a trivial
task. The function is piece-wise linear and concave, and therefore not differ-
entiable everywhere.
 
 A suitable method for maximizing w(π) is subgradient optimization [21] (a
subgradient is a generalization of the gradient concept). It is an iterative
method in which the maximum is approximated by stepwise changes of π.
 At each step π is changed in the direction of the subgradient, i.e., πk+1 = πk +
tkvk, where vk is a subgradient vector, and tk is a positive scalar, called the
step size.
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 For the actual maximization problem it can be shown that vk = dk - 2 is a sub-
gradient vector, where dk is a vector having as its elements the degrees of the
nodes in the current minimum 1-tree. This subgradient makes the algorithm
strive towards obtaining minimum 1-trees with node degrees equal to 2, i.e.,
minimum 1-trees that are tours. Edges incident to a node with degree 1 are
made shorter. Edges incident to a node with degree greater than 2 are made
longer. Edges incident to a node with degree 2 are not changed.
 
 The π-values are often called penalties. The determination of a (good) set of
penalties is called an ascent.
 
 Figure 4.5 shows a subgradient algorithm for computing an approximation W
for the maximum of w(π).
 

 1. Let k = 0, π0 = 0 and W = -∞ .

 2. Find a minimum 1-tree, Tπ
k.

 3. Compute w(πk) = L(Tπ
k) - 2Σπi.

 4. Let W = max(W, w(πk).

 5. Let vk = dk - 2, where dk contains the degrees of nodes in Tπ
k.

 6. If vk = 0 (Tπ
k is an optimal tour), or a stop criterion is satisfied,

     then stop.

 7. Choose a step size, tk.

 8. Let πk+1 = πk + tkvk.

 9. Let k = k + 1 and go to Step 2.

 
  Figure 4.5 Subgradient optimization algorithm.

 
 It has been proven [26] that W will always converge to the maximum of
w(π), if tk → 0 for k → ∞ and ∑tk = ∞ . These conditions are satisfied, for
example, if tk is t0/k, where t0 is some arbitrary initial step size. But even if
convergence is guaranteed, it is very slow.
 
 The choice of step size is a very crucial decision from the viewpoint of algo-
rithmic efficiency or even adequacy. Whether convergence is guaranteed is
often not important, as long as good approximations can be obtained in a
short time.
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 No general methods to determine an optimum strategy for the choice of step
size are known. However, many strategies have been suggested that are quite
effective in practice [25, 27, 28, 29, 30, 31]. These strategies are heuristics,
and different variations have different effects on different problems. In the
present implementation of the modified Lin-Kernighan algorithm the follow-
ing strategy was chosen (inspired by [27] and [31]):
 
 • The step size is constant for a fixed number of iterations, called a period.
 
 •   When a period is finished, both the length of the period and the step size
  are halved.
 
 • The length of the first period is set to n/2, where n is the number of cities.
 
 • The initial step size, t0, is set to 1, but is doubled in the beginning of the
    first period until W does not increase, i.e., w(πk) ≤ w(πk-1). When this
       happens, the step size remains constant for the rest of the period.
 
 • If the last iteration of a period leads to an increment of W, then the period 
       is doubled.
 
 • The algorithm terminates when either the step size, the length of the
  period or vk becomes zero.
 
 Furthermore, the basic subgradient algorithm has been changed on two points
(inspired by [13]):
 

•  The updating of π, i.e., πk+1 = πk + tkvk, is replaced by
 
        πk+1 = πk + tk(0.7vk + 0.3vk-1), where v-1 = v0.
 
•  The special node for the 1-tree computations is not fixed. A minimum
   1-tree is determined by computing a minimum spanning tree and then
 adding an edge corresponding to the second nearest neighbor of one of
 the leaves of the tree. The leaf chosen is the one that has the longest
 second nearest neighbor distance.

Practical experiments have shown that these changes lead to better bounds.

Having found a penalty vector π, that maximizes w(π), the transformation
given by π of the original cost matrix C will often improve the α-measure
substantially. For example, for the 532-city problem every edge of the opti-
mal tour is among the 5 α-nearest neighbors for at least one of its endpoints.
The improvement of the α-measure reduces the average rank of the optimal
edges among the candidate edges from 2.1 to 1.7. This is close to the ideal
value of 1.5 (when every optimal edge has rank 1 or 2).
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Table 4.1 shows the percent of optimal edges having a given rank among the
nearest neighbors with respect to the c-measure, the α-measure, and the im-
proved α-measure, respectively.
      

rank       c   α (π = 0) Improved α
1    43.7     43.7      47.0
2     24.5     31.2      39.5
3     14.4     13.0        9.7
4      7.3       6.4        2.3
5      3.3       2.5        0.9
6       2.9       1.4        0.1
7     1.1       0.4        0.3
8       0.7       0.7        0.2
9       0.7       0.2

10       0.3       0.1
11       0.2       0.3
12       0.2
13       0.3
14       0.2       0.1
15
16
17
18
19       0.1
20
21
22       0.1

rankavg 2.4 2.1 1.7

Table 4.1. The percentage of optimal edges among candi-
date edges for the 532-city problem.

It appears from the table that the transformation of the cost matrix has the ef-
fect that optimal edges come ‘nearer’, when measured by their α-values. The
transformation of the cost matrix ‘conditions’ the problem, so to speak.
Therefore, the transformed matrix is also used during the Lin-Kernighan
search process. Most often the quality of the solutions is improved by this
means.

The greatest advantage of the α-measure, however, is its usefulness for the
construction of the candidate set. By using the α-measure the cardinality of
the candidate set may generally be small without reducing the algorithm’s
ability to find short tours. Thus, in all test problems the algorithm was able to
find optimal tours using as candidate edges only edges the 5 α-nearest edges
incident to each node. Most of the problems could even be solved when
search was restricted to only the 4 α-nearest edges.
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The candidate edges of each node are sorted in ascending order of their α-val-
ues. If two edges have the same α-value, the one with the smallest cost, cij,
comes first. This ordering has the effect that candidate edges are considered
for inclusion in a tour according to their ‘promise’ of belonging to an optimal
tour. Thus, the α-measure is not only used to limit the search, but also to fo-
cus the search on the most promising areas.

To speed up the search even more, the algorithm uses a dynamic ordering of
the candidates. Each time a shorter tour is found, all edges shared by this new
tour and the previous shortest tour become the first two candidate edges for
their end nodes.

This method of selecting candidates was inspired by Stewart [32], who dem-
onstrated how minimum spanning trees could be used to accelerate 3-opt heu-
ristics. Even when subgradient optimization is not used, candidate sets based
on minimum spanning trees usually produce better results than nearest neigh-
bor candidate sets of the same size.

Johnson [17] in an alternative implementation of the Lin-Kernighan algorithm
used precomputed candidate sets that usually contained more than 20 (ordi-
nary) nearest neighbors of each node. The problem with this type of candidate
set is that the candidate subgraph need not be connected even when a large
fraction of all edges is included. This is, for example, the case for geometrical
problems in which the point sets exhibit clusters. In contrast, a minimum
spanning tree is (by definition) always connected.

Other candidate sets may be considered. An interesting candidate set can be
obtained by exploiting the Delaunay graph [13, 33]. The Delaunay graph is
connected and may be computed in linear time, on the average. A disadvan-
tage of this approach, however, is that candidate sets can only be computed
for geometric problem instances. In contrast, the α-measure is applicable in
general.

4.2 Breaking of tour edges

A candidate set is used to prune the search for edges, Y, to be included in a
tour. Correspondingly, the search of edges, X, to be excluded from a tour
may be restricted. In the actual implementation the following simple, yet very
effective, pruning rules are used:

 (1) The first edge to be broken, x1, must not belong to the currently best
      solution tour. When no solution tour is known, that is, during the

       determination of the very first solution tour, x1 must not belong to
      the minimum 1-tree.

(2) The last edge to be excluded in a basic move must not previously
      have been included in the current chain of basic moves.
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The first rule prunes the search already at level 1 of the algorithm, whereas
the original algorithm of Lin and Kernighan prunes at level 4 and higher, and
only if an edge to be broken is a common edge of a number (2-5) of solution
tours. Experiments have shown that the new pruning rule is more effective.
In addition, it is easier to implement.

The second rule prevents an infinite chain of moves. The rule is a relaxation
of Rule 4 in Section 3.2.

4.3 Basic moves

Central in the Lin-Kernighan algorithm is the specification of allowable
moves, that is, which subset of r-opt moves to consider in the attempt to
transform a tour into a shorter tour.

The original algorithm considers only r-opt moves that can be decomposed
into a 2- or 3-opt move followed by a (possibly empty) sequence of 2-opt
moves. Furthermore, the r-opt move must be sequential and feasible, that is,
it must be a connected chain of edges where edges removed alternate with
edges added, and the move must result in a feasible tour. Two minor devia-
tions from this general scheme are allowed. Both have to do with 4-opt
moves. First, in one special case the first move of a sequence may be a se-
quential 4-opt move (see Figure 3.7); the following moves must still be 2-opt
moves. Second, nonsequential 4-opt moves are tried when the tour can no
longer be improved by sequential moves (see Figure 3.3).

The new modified Lin-Kernighan algorithm revises this basic search structure
on several points.

First and foremost, the basic move is now a sequential 5-opt move. Thus, the
moves considered by the algorithm are sequences of one or more 5-opt
moves. However, the construction of a move is stopped immediately if it is
discovered that a close up of the tour results in a tour improvement. In this
way the algorithm attempts to ensure 2-, 3-, 4- as well as 5-optimality.

Using a 5-opt move as the basic move broadens the search and increases the
algorithm’s ability to find good tours, at the expense of an increase of running
times. However, due to the use of small candidate sets, run times are only
increased by a small factor. Furthermore, computational experiments have
shown that backtracking is no longer necessary in the algorithm (except, of
course, for the first edge to be excluded, x1). The removal of backtracking
reduces runtime and does not degrade the algorithm’s performance signifi-
cantly. In addition, the implementation of the algorithm is greatly simplified.
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The new algorithm’s improved performance compared with the original algo-
rithm is in accordance with observations made by Christofides and Eilon
[16]. They observed that 5-optimality should be expected to yield a relatively
superior improvement over 4-optimality compared with the improvement of
4-optimality over 3-optimality.

Another deviation from the original algorithm is found in the examination of
nonsequential exchanges. In order to provide a better defense against possible
improvements consisting of nonsequential exchanges, the simple nonsequen-
tial 4-opt move of the original algorithm has been replaced by a more power-
ful set of nonsequential moves.

This set consists of

• any nonfeasible 2-opt move (producing two cycles) followed by any
 2- or 3-opt move, which produces a feasible tour (by joining the two

cycles);

• any nonfeasible 3-opt move (producing  two cycles) followed by any
   2-opt move, which produces a feasible tour (by joining the two cycles).

As seen, the simple nonsequential 4-opt move of the original algorithm be-
longs to this extended set of nonsequential moves. However, by using this
set of moves, the chances of finding optimal tours are improved. By using
candidate sets and the “positive gain criterion” the time for the search for such
nonsequential improvements of the tour is small relative to the total running
time.

Unlike the original algorithm the search for nonsequential improvements is
not only seen as a post optimization maneuver. That is, if an improvement is
found, further attempts are made to improve the tour by ordinary sequential as
well as nonsequential exchanges. 

4.4 Initial tours

The Lin-Kernighan algorithm applies edge exchanges several times to the
same problem using different initial tours.

In the original algorithm the initial tours are chosen at random. Lin and Ker-
nighan concluded that the use of a construction heuristic only wastes time.
Besides, construction heuristics are usually deterministic, so it may not be
possible to get more than one solution.

However, the question of whether or not to use a construction heuristic is not
that simple to answer. Adrabinsky and Syslo [34], for instance, found that
the farthest insertion construction heuristic was capable of producing good
initial tours for the Lin-Kernighan algorithm. Perttunen [35] found that the
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Clarke and Wright savings heuristic [36] in general improved the performance
of the algorithm. Reinelt [13] also found that is better not to start with a ran-
dom tour. He proposed using locally good tours containing some major er-
rors, for example the heuristics of Christofides [37]. However, he also ob-
served that the difference in performance decreases with more elaborate ver-
sions of the Lin-Kernighan algorithm.

Experiments with various implementations of the new modified Lin-Ker-
nighan algorithm have shown that the quality of the final solutions does not
depend strongly on the initial tours. However, significant reduction in run
time may be achieved by choosing initial tours that are close to being optimal.

In the present implementation the following simple construction heuristic is
used:

1. Choose a random node i.

2. Choose a node j, not chosen before, as follows:
   If possible, choose j such that

    (a) (i,j) is a candidate edge,
         (b) α(i,j) = 0, and

    (c) (i,j) belongs to the current best tour.
     Otherwise, if possible, choose j such that (i,j) is a candidate edge.
     Otherwise, choose j among those nodes not already chosen.
3. Let i = j. If not all nodes have been chosen, then go to Step 2.

If more than one node may be chosen at Step 2, the node is chosen at random
among the alternatives. The sequence of chosen nodes constitutes the initial
tour.

This construction procedure is fast, and the diversity of initial solutions is
large enough for the edge exchange heuristics to find good final solutions.

4.5 Specification of the modified algorithm

This section presents an overview of the modified Lin-Kernighan algorithm.
The algorithm is described top-down using the C programming language.
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Below is given a sketch of the main program.

void main() {
    ReadProblemData();
    CreateCandidateSet();
    BestCost = DBL_MAX;
    for (Run = 1; Run <= Runs; Run++) {
        double Cost = FindTour();
        if (Cost < BestCost) {
      RecordBestTour();
       BestCost = Cost;
      }

    }
    PrintBestTour();
}

First, the program reads the specification of the problem to be solved and cre-
ates the candidate set. Then a specified number (Runs) of local optimal tours
is found using the modified Lin-Kernighan heuristics. The best of these tours
is printed before the program terminates.

The creation of the candidate set is based on α-nearness.

void CreateCandidateSet() {
    double LowerBound = Ascent();
    long MaxAlpha = Excess * fabs(LowerBound);
    GenerateCandidates(MaxCandidates, MaxAlpha);
}

First, the function Ascent determines a lower bound on the optimal tour
length using subgradient optimization. The function also transforms the origi-
nal problem into a problem in which α-values reflect the likelihood of edges
being optimal. Next, the function GenerateCandidates computes the α-val-
ues and associates to each node a set of incident candidate edges. The edges
are ranked according to their α-values. The parameter MaxCandidates speci-
fies the maximum number of candidate edges allowed for each node, and
MaxAlpha puts an upper limit on their α-values. The value of MaxAlpha is set
to some fraction, Excess, of the lower bound.

The pseudo code of the function Ascent shown below should be reasonable
self-explanatory. It follows the description given in Section 4.1. The V-value
of a node is its degree minus 2. Therefore, Norm being the sum of squares of
all V-values, is a measure of a minimum 1-tree’s discrepancy from a tour. If
Norm is zero, then the 1-tree constitutes a tour, and an optimal tour has been
found. In order to speed up the computations the algorithm uses candidate
sets in the computations of minimum 1-trees.
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double Ascent() {
    Node *N;
    double BestW, W;
    int Period = InitialPeriod, P, InitialPhase = 1;
 
    W = Minimum1TreeCost();
    if (Norm == 0) return W;
    GenerateCandidates(AscentCandidates, LONG_MAX);
    BestW = W;
    ForAllNodes(N) {
        N->LastV = N->V;
        N->BestPi = N->Pi;
    }
    for (T = InitialStepSize; T > 0; Period /= 2, T /= 2) {
        for (P = 1; T > 0 && P <= Period; P++) {
            ForAllNodes(N) {
                if (N->V != 0)
                    N->Pi += T*(7*N->V + 3*N->LastV)/10;
                N->LastV = N->V;
            }
            W = Minimum1TreeCost();
            if (Norm == 0) return W;
            if (W > BestW) {
                BestW = W;
                ForAllNodes(N)
                    N->BestPi = N->Pi;
                if (InitialPhase) T *= 2;
                if (P == Period) Period *= 2;
            }
            else if (InitialPhase && P > InitalPeriod/2) {
                InitialPhase = 0;
                P = 0;
                T = 3*T/4;
            }
        }
    }
    ForAllNodes(N)
        N->Pi = N->BestPi;
    return Minimum1TreeCost();
}
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Below is shown the pseudo code of the function GenerateCandidates. For
each node at most MaxCandidates candidate edges are determined. This up-
per limit, however, may be exceeded if a “symmetric” neighborhood is de-
sired (SymmetricCandidates != 0) in which case the candidate set is com-
plemented such that every candidate edge is associated to both its two end
nodes.

void GenerateCandidates(long MaxCandidates, long MaxAlpha) {
    Node *From, *To;
    long Alpha;
    Candidate *Edge;

    ForAllNodes(From)
        From->Mark = 0;
    ForAllNodes(From) {
        if (From != FirstNode) {
            From->Beta = LONG_MIN;

      for (To = From; To->Dad != 0; To = To->Dad) {
              To->Dad->Beta = max(To->Beta, To->Cost);
                To->Dad->Mark = From;

      }
        }
        ForAllNodes(To, To != From) {
            if (From == FirstNode)

          Alpha = To == From->Father ? 0 :
                        C(From,To) - From->NextCost;

      else if (To == FirstNode)
    Alpha = From == To->Father ? 0:
            C(From,To) - To->NextCost;

      else {
                if (To->Mark != From)
                    To->Beta = max(To->Dad->Beta, To->Cost);
                Alpha = C(From,To) - To->Beta;

     }
           if (Alpha <= MaxAlpha)

        InsertCandidate(To, From->CandidateSet);
        }
    }
    if (SymmetricCandidates)
        ForAllNodes(From)
            ForAllCandidates(To, From->CandidateSet)
                if (!IsMember(From, To->CandidateSet))
                    InsertCandidate(From, To->CandidateSet);
}
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After the candidate set has been created the function FindTour is called a pre-
determined number of times (Runs). FindTour performs a number of trials
where in each trial it attempts to improve a chosen initial tour using the modi-
fied Lin-Kernighan edge exchange heuristics. Each time a better tour is
found, the tour is recorded, and the candidates are reordered with the function
AdjustCandidateSet. Precedence is given to edges that are common to the
two currently best tours. The candidate set is extended with those tour edges
that are not present in the current set. The original candidate set is re-estab-
lished at exit from FindTour.

double FindTour() {
    int Trial;
    double BetterCost = DBL_MAX, Cost;

    
    for (Trial = 1; Trial <= Trials; Trial++) {

  ChooseInitialTour();
  Cost = LinKernighan();

        if (Cost < BetterCost) {
            RecordBetterTour();
            BetterCost = Cost
            AdjustCandidateSet();
        }
    }
    ResetCandidateSet();
    return BetterCost;
}

The following function, LinKernighan, seeks to improve a tour by sequen-
tial and nonsequential edge exchanges.
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double LinKernighan() {
    Node *t1, *t2;
    int X2, Failures;
    long G, Gain;
    double Cost = 0;

    ForAllNodes(t1)
        Cost += C(t1,SUC(t1));
    do {
        Failures = 0;
   ForallNodes(t1, Failures < Dimension) {
            for (X2 = 1; X2 <= 2; X2++) {
                t2 = X2 == 1 ? PRED(t1) : SUC(t1);
                if (InBetterTour(t1,t2))

              continue;
                G = C(t1,t2);
                while (t2 = BestMove(t1, t2, &G, &Gain)) {
                    if (Gain > 0) {
                        Cost -= Gain;
                        StoreTour();
                        Failures = 0;
                        goto Next_t1;
                    }

          }
                Failures++;
                RestoreTour();
        }
        Next_t1: ;
        }
        if ((Gain = Gain23()) > 0) {
            Cost -= Gain;
            StoreTour();
        }
    } while (Gain > 0);
}

First, the function computes the cost of the initial tour. Then, as long as im-
provements may be achieved, attempts are made to find improvements using
sequential 5-opt moves (with BestMove), or when not possible, using nonse-
quential moves (with Gain23). For each sequential exchange, a basis edge
(t1,t2) is found by selecting t1 from the set of nodes and then selecting t2
as one of t1’s two neighboring nodes in the tour. If (t1,t2) is an edge of the
trial’s best tour (BetterTour), then it is not used as a basis edge.
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The function BestMove is sketched below. The function BestMove makes
sequential edge exchanges. If possible, it makes an r-opt move (r ≤ 5) that
improves the tour. Otherwise, it makes the most promising 5-opt move that
fulfils the positive gain criterion.

Node *BestMove(Node *t1, Node *t2, long *G0, long *Gain) {
    Node *t3, *t4, *t5, *t6, *t7, *t8, *t9, *t10;
    Node *T3, *T4, *T5, *T6, *T7, *T8, *T9, *T10 = 0;
    long G1, G2, G3, G4, G5, G6, G7, G8, BestG8 = LONG_MIN;
    int X4, X6, X8, X10;

    *Gain = 0; Reversed = SUC(t1) != t2;
    ForAllCandidates(t3, t2->CandidateSet) {
        if (t3 == PRED(t2) || t3 == SUC(t2) ||
            (G1 = *G0 - C(t2,t3)) <= 0)
            continue;
        for (X4 = 1; X4 <= 2; X4++) {
            t4 = X4 == 1 ? PRED(t3) : SUC(t3);
            G2 = G1 + C(t3,t4);
            if (X4 == 1 && (*Gain = G2 - C(t4,t1)) > 0) {
                Make2OptMove(t1, t2, t3, t4);
                return t4;
            }
            ForAllCandidates(t5, t4->CandidateSet) {
                if (t5 == PRED(t4) || t5 == SUC(t4) ||
                    (G3 = G2 - C(t4,t5)) <= 0)
                    continue;
                for (X6 = 1; X6 <= 2; X6++) {
                    Determine (T3,T4,T5,T6,T7,T8,T9,T10) =
                              (t3,t4,t5,t6,t7,t8,t9,t10)
                    such that
                       G8 = *G0 - C(t2,T3) + C(T3,T4)
                                - C(T4,T5) + C(T5,T6)
                                - C(T6,T7) + C(T7,T8)
                                - C(T8,T9) + C(T9,T10)
                    is maximum (= BestG8), and (T9,T10) has
                    not previously been included; if during
                    this process a legal move with *Gain > 0
                    is found, then make the move and exit
                    from BestMove immediately;
                }
            }
        }
    } 
    *Gain = 0;
    if (T10 == 0) return 0;
    Make5OptMove(t1,t2,T3,T4,T5,T6,T7,T8,T9,T10);
    *G0 = BestG8;
    return T10;
}
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Only the first part of the function (the 2-opt part) is given in some detail. The
rest of the function follows the same pattern. The tour is as a circular list. The
flag Reversed is used to indicate the reversal of a tour.

To prevent an infinite chain of moves the last edge to be deleted in a 5-opt
move, (T9,T10), must not previously have been included in the chain.

A more detailed description of data structures and other implementation issues
may be found in the following section.
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5. Implementation

The modified Lin-Kernighan algorithm has been implemented in the pro-
gramming language C. The software, approximately 4000 lines of code, is
entirely written in ANSI C and portable across a number of computer plat-
forms and C compilers. The following subsections describe the user interface
and the most central techniques employed in the implementation.

5.1 User interface

The software includes code both for reading problem instances and for print-
ing solutions.

Input is given in two separate files:

(1) the problem file and
(2) the parameter file.

The problem file contains a specification of the problem instance to be solved.
The file format is the same as used in TSPLIB [38], a publicly available
library of problem instances of the TSP.

The current version of the software allows specification of symmetric, asym-
metric, as well as Hamiltonian tour problems.

Distances (costs, weights) may be given either explicitly in matrix form (in a
full or triangular matrix), or implicitly by associating a 2- or 3-dimensional
coordinate with each node. In the latter case distances may be computed by
either a Euclidean, Manhattan, maximum, geographical or pseudo-Euclidean
distance function. See [38] for details. At present, all distances must be inte-
gral.

Problems may be specified on a complete or sparse graph, and there is an op-
tion to require that certain edges must appear in the solution of the problem.

The parameter file contains control parameters for the solution process. The
solution process is typically carried out using default values for the parame-
ters. The default values have proven to be adequate in many applications.
Actually, almost all computational tests reported in this paper have been made
using these default settings. The only information that cannot be left out is the
name of the problem file.
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The format is as follows:

PROBLEM_FILE = <string>
Specifies the name of the problem file.

Additional control information may be supplied in the following format:

RUNS = <integer>
The total number of runs.
Default: 10.

MAX_TRIALS = <integer>
The maximum number of trials in each run.
Default: number of nodes (DIMENSION, given in the problem file).

TOUR_FILE = <string>
Specifies the name of a file to which the best tour is to be written.

OPTIMUM = <real>
Known optimal tour length. A run will be terminated as soon as a tour length less
than or equal to optimum is achieved.
Default: DBL_MAX.

MAX_CANDIDATES = <integer> { SYMMETRIC }
The maximum number of candidate edges to be associated with each node.
The integer may be followed by the keyword SYMMETRIC, signifying that the
candidate set is to be complemented such that every candidate edge is associated
with both its two end nodes.
Default: 5.

ASCENT_CANDIDATES = <integer>
The number of candidate edges to be associated with each node during the ascent.
The candidate set is complemented such that every candidate edge is associated
with both its two end nodes.
Default: 50.

EXCESS = <integer>
The maximum α-value allowed for any candidate edge is set to EXCESS times the

 absolute value of the lower bound of a solution tour (determined by the ascent).
Default: 1.0/DIMENSION.

INITIAL_PERIOD = <integer>
The length of the first period in the ascent.
Default: DIMENSION/2 (but at least 100).

INITIAL_STEP_SIZE = <integer>
The initial step size used in the ascent.
Default: 1.
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PI_FILE = <string>
Specifies the name of a file to which penalties (π-values determined by the ascent)
is to be written. If the file already exits, the penalties are read from the file, and the
ascent is skipped.

 
PRECISION = <integer>
The internal precision in the representation of transformed distances:
dij = PRECISION*cij + πi + πj, where dij, cij, πi and πj are all integral.

Default: 100 (which corresponds to 2 decimal places).

SEED = <integer>
Specifies the initial seed for random number generation.
Default: 1.

SUBGRADIENT: [ YES | NO ]
Specifies whether the π-values should be determined by subgradient optimization.
Default: YES.

TRACE_LEVEL = <integer>
Specifies the level of detail of the output given during the solution process.
The value 0 signifies a minimum amount of output. The higher the value is the
more information is given.
Default: 1.

During the solution process information about the progress being made is
written to standard output. The user may control the level of detail of this in-
formation (by the value of the TRACE_LEVEL parameter).

Before the program terminates, a summary of key statistics is written to stan-
dard output, and, if specified by the TOUR_FILE parameter, the best tour
found is written to a file (in TSPLIB format).

The user interface is somewhat primitive, but it is convenient for many appli-
cations. It is simple and requires no programming in C by the user. However,
the current implementation is modular, and an alternative user interface may
be implemented by rewriting a few modules. A new user interface might, for
example, enable graphical animation of the solution process.

5.2 Representation of tours and moves

The representation of tours is a central implementation issue. The data struc-
ture chosen may have great impact on the run time efficiency. It is obvious
that the major bottleneck of the algorithm is the search for possible moves
(edge exchanges) and the execution of such moves on a tour. Therefore, spe-
cial care should be taken to choose a data structure that allows fast execution
of these operations.
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The data structure should support the following primitive operations:

(1) find the predecessor of a node in the tour with respect to a
     chosen orientation (PRED);

(2) find the successor of a node in the tour with respect to a
     chosen orientation (SUC);

(3) determine whether a given node is between two other nodes
     in the tour with respect to a chosen orientation (BETWEEN);

(4) make a move;

(5) undo a sequence of tentative moves.

The necessity of the first three operations stems from the need to determine
whether it is possible to 'close' the tour (see Figures 3.5-3.7). The last two
operations are necessary for keeping the tour up to date.
 
In the modified Lin-Kernighan algorithm a move consists of a sequence of
basic moves, where each basic move is a 5-opt move (k-opt moves with k ≤ 4
are made in case an improvement of the tour is possible).

In order simplify tour updating, the following fact may be used: Any r-opt
move (r ≥ 2) is equivalent to a finite sequence of 2-opt moves [16, 39]. In the
case of 5-opt moves it can be shown that any 5-opt move is equivalent to a
sequence of at most five 2-opt moves. Any 4-opt move as well as any 3-opt
move is equivalent to a sequence of at most three 2-opt moves.

This is exploited as follows. Any move is executed as a sequence of one or
more 2-opt moves. During move execution, all 2-opt moves are recorded in a
stack. A bad move is undone by unstacking the 2-opt moves and making the
inverse 2-opt moves in this reversed sequence.

Thus, efficient execution of 2-opt moves is needed. A 2-opt move, also called
a swap, consists of moving two edges from the current tour and reconnecting
the resulting two paths in the best possible way (see Figure 2.1). This opera-
tion is seen to reverse one of the two paths. If the tour is represented as an
array of nodes, or as a doubly linked list of nodes, the reversal of the path
takes time O(n).

It turns out that data structures exist that allow logarithmic time complexity to
be achieved [13, 40, 41, 42, 43]. These data structures, however, should not
be selected without further notice. The time overhead of the corresponding
update algorithms is usually large, and, unless the problem is large, typically
more than 1000 nodes, update algorithms based on these data structures are
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outperformed by update algorithms based on the array and list structures. In
addition, they are not simple to implement.

In the current implementation of the modified Lin-Kernighan algorithm a tour
may be represented in two ways, either by a doubly linked list, or by a two-
level tree [43]. The user can select one of these two representations. The dou-
bly linked list is recommended for problems with fewer than 1000 nodes. For
larger problems the two-level tree should be chosen.

When the doubly link list representation is used, each node of the problem is
represented by a C structure as outlined below.

struct Node {
    unsigned long Id, Rank;
    struct Node *Pred, *Suc;
};

The variable Id is the identification number of the node (1 ≤ Id ≤ n).

Rank gives the ordinal number of the node in the tour. It is used to quickly
determine whether a given node is between two other nodes in the tour.

Pred and Suc point to the predecessor node and the successor node of the
tour, respectively.

A 2-opt move is made by swapping Pred and Suc of each node of one of the
two segments, and then reconnecting the segments by suitable settings of
Pred and Suc of the segments’ four end nodes. In addition, Rank is updated
for nodes in the reversed segment.

The following small code fragment shows the implementation of a 2-opt 
move. Edges (t1,t2) and (t3,t4) are exchanged with edges (t2,t3) and 
(t1,t4) (see Figure 2.1).

R = t1->Rank; t1->Suc = 0; s2 = t3; 
while (s1 = s2) {
    s2 = s1->Suc;
    s1->Suc = s1->Pred;
    s1->Pred = s2;
    s1->Rank = R--;
}
t3->Suc = t2; t2->Pred = t3;
t1->Pred = t4; t4->Suc = t1;
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Any of the two segments defined by the 2-opt move may be reversed. The
segment with the fewest number of nodes is therefore reversed in order to
speed up computations. The number of nodes in a segment can be found in
constant time from the Rank-values of its end nodes. In this way much run
time can be spared. For an example problem with 1000 nodes the average
number of nodes touched during reversal was about 50, whereas a random
reversal would have touched 500 nodes, on the average. For random Euclid-
ean instances, the length of the shorter segment seems to grow roughly as n0.7

[44].

However, the worst-case time cost of a 2-opt move is still O(n), and the costs
of tour manipulation grow to dominate overall running time as n increases.

A worst-case cost of O(√n) per 2-opt move may be achieved using a two-level
tree representation. This is currently the fastest and most robust representation
on large instances that might arise in practice. The idea is to divide the tour
into roughly √n segments. Each segment is maintained as a doubly linked list
of nodes (using pointers labeled Pred and Suc).

Each node is represented by a C structure as outlined below.

struct Node {
    unsigned long Id, Rank;
    struct Node *Pred, *Suc;
    struct Segment *Parent;
};

Rank gives the position of the node within the segment, so as to facilitate
BETWEEN queries. Parent is a pointer the segment containing the node.

Each segment is represented by the following C structure.

struct Segment {
    unsigned long Rank;
    struct Segment *Pred, *Suc;
    struct Node *First, *Last;
    bit Reversed;
};

The segments are connected in a doubly linked list (using pointers labeled
Pred and Suc), and each segment contains a sequence number, Rank, that
represents its position in the list.
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First and Last are pointers to the segment's two end nodes. Reversed is a
reversal bit indicating whether the segment should be traversed in forward or
reverse direction. Just switching this bit reverses the orientation of a segment.

All the query operations (PRED, SUC and BETWEEN) are performed in
constant time (as in the list representation, albeit with slightly larger con-
stants), whereas the move operations have a worst-case cost of O(√n) per
move.

The implementation of the operations closely follows the suggestions given in
[43]. See [43, pp. 444-446] for details.

5.3 Distance computations

A bottleneck in many applications is the computing of distances. For exam-
ple, if Euclidean distances are used, a substantial part of run time may be
spent in computing square roots.

If sufficient space is available, all distances may be computed once and stored
in a matrix. However, for large problems, say more than 5000 nodes, this
approach is usually not possible.

In the present implementation, distances are computed once and stored in a
matrix, only if the problem is smaller than a specified maximum dimension.
For larger problems, the following techniques are used to reduce run time.

(1) Each candidate edge including its length is associated to the node from
which it emanates. A large fraction of edges considered during the solution
process are candidate edges. Therefore, in many cases the length of an edge
may be found by a simple search among the candidate edges associated with
its end nodes.

(2) Computational cheap functions are used in calculating lower bounds for
distances. For example, a lower bound for an Euclidean distance √( dx2+dy2)
may be quickly computed as the maximum of |dx| and |dy|. Often a reasonable
lower bound for a distance is sufficient for deciding that there is no point in
computing the true distance. This may, for example, be used for quickly de-
ciding that a tentative move cannot possibly lead to a tour improvement. If the
current gain, plus a lower bound for the distance of a closing edge, is not
positive, then the tour will not be improved by this move.

(3) The number of distance computations is reduced by the caching technique
described in [45]. When a distance between two nodes has been computed the
distance is stored in a hash table. The hash index is computed from the identi-
fication numbers of the two nodes. Next time the distance between the same
two nodes is to be computed, the table is consulted to see whether the dis-
tance is still available. See [45] for details. The effect of using the caching
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technique was measured in the solution of a 2392-node problem. Here opti-
mum was found with about 70 times fewer ordinary distance calculations than
without the technique, and the running time was more than halved.

5.4 Reduction of checkout time

When the algorithm has found a local optimum, time is spent to check that no
further progress is possible. This time, called the checkout time, can be
avoided if the same local optimum has been found before. There is no point in
attempting to find further improvements - the situation has been previously
been 'checked out'. The checkout time often constitutes a substantial part of
the running time. Lin and Kernighan report checkout times that are typically
30 to 50 per cent of running time.

The modified algorithm reduces checkout time by using the following tech-
niques.

(1) Moves in which the first edge (t1,t2) to be broken belongs to the currently
best solution tour are not investigated.

(2) A hashing technique is used. A hash function maps tours to locations in a
hash table. Each time a tour improvement has been found, the hash table is
consulted to see whether the new tour happens to be local optimum found
earlier. If this is the case, fruitless checkout time is avoided. This technique is
described in detail in [46].

(3) The concept of the don’t look bit, introduced by Bentley [44], is used. If
for a given choice of t1 the algorithm previously failed to find an improve-
ment, and if t1’s tour neighbors have not changed since that time, then it is
unlikely that an improving move can made if the algorithm again looks at t1.
This is exploited as follows. Each node has a don’t look bit, which initially is
0. The bit for node t1 is set to 1 whenever a search for an improving move
with t1 fails, and it is set to 0 whenever an improving move is made in which
it is an end node of one of the its edges. In considering candidates for t1 all
nodes whose don’t look bit is 1 are ignored. This is done in maintaining a
queue of nodes whose bits are zero.

5.5 Speeding up the ascent

Subgradient optimization is used to determine a lower bound for the opti-
mum. At each step a minimum 1-tree is computed. Since the number of steps
may be large, it is important to speed up the computation of minimum 1-trees.
For this purpose, the trees are computed in sparse graphs.

The first tree is computed in a complete graph. All remaining trees but the last
are computed in a sparse subgraph determined by the α-measure. The sub-
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graph consists of a specified number of α-nearest neighbor edges incident to
each node.

Prim's algorithm [22] is used for computing minimum spanning trees. There-
fore, to achieve a speed-up it is necessary to quickly find the shortest edge
from a number of edges. In the current implementation a binary heap is used
for this purpose.

The combination of these methods results in fast computation of minimum
spanning trees, at least when the number of candidate edges allowed for each
node is not too large. On the other hand, this number should not be so small
that the lower bound computed by the ascent is not valid. In the present im-
plementation, the number is 50 by default.
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6. Computational results

The performance of an approximate algorithm such as the Lin-Kernighan al-
gorithm can be evaluated in three ways:

(1) by worst-case analysis
(2) by probabilistic (or average-case) analysis
(3) by empirical analysis

The goal of worst-case analysis is to derive upper bounds for possible devia-
tions from optimum; that is, to provide quality guarantees for results pro-
duced by the algorithm.

All known approximate algorithms for the TSP have rather poor worst-case
behavior. Assume, for example, that the problems to be solved are metric (the
triangle inequality holds). Then the approximate algorithm known to have the
best worst-case behavior is the algorithm of Christofides [37]. This algorithm
guarantees a tour length no more than 50% longer than optimum. For any r-
opt algorithm, where r ≤ n/4 (n being the number of cities), problems may be
constructed such that the error is almost 100% [11]. For non-metric problems
it can proven that it is impossible to construct an algorithm of polynomial
complexity which find tours whose length is bound by a constant multiple of
the optimal tour length [47].

The purpose of the second method, probabilistic analysis, is to evaluate av-
erage behavior of the algorithms. For example, for an approximate TSP algo-
rithm probability analysis can used be to estimate the expected error for large
problem sizes.

The worst-case as well as the probability approach, however, have their
drawbacks. The mathematics involved may be very complex and results
achieved by these methods may often be of little use when solving practical
instances of TSP. Statements concerning problems that almost certainly do
not occur in practice (‘pathological’ problems, or problems with an ‘infinite’
number of cities) will often be irrelevant in connection with practical problem
solving.

In this respect the third method, empirical analysis, seems more appropriate.
Here the algorithm is executed on a number of test problems, and the results
are evaluated, often in relation to optimal solutions. The test problems may be
generated at random, or they may be constructed in a special way. If the test
problems are representative for those problems the algorithm is supposed to
solve, the computations are useful for evaluating the appropriateness of the
algorithm.
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The following section documents computational results of the modified Lin-
Kernighan algorithm. The results include the qualitative performance and the
run time efficiency of the current implementation. Run times are measured in
seconds on a 300 MHz G3 Power Macintosh.

The performance of the implementation has been evaluated on the following
spectrum of problems:

(1) Symmetric problems
(2) Asymmetric problems
(3) Hamiltonian cycle problems
(4) Pathological problems

Each problem has been solved by a number of independent runs. Each run
consist of a series of trials, where in each trial a tour is determined by the
modified Lin-Kernighan algorithm. The trials of a run are not independent,
since edges belonging to the best tour of the current run are used to prune the
search.

In the experiments the number of runs varies. In problems with less than
1000 cities the number of runs is 100. In larger problems the number of runs
is 10.

The number of trials in each run is equal to the dimension of the problem (the
number of cities). However, for problems where optimum is known, the cur-
rent series of trials is stopped if the algorithm finds optimum.

6.1 Symmetric problems

TSPLIB [38] is a library, which is meant to provide researchers with a set of
sample instances for the TSP (and related problems). TSPLIB is publicly
available via FTP from softlib.rice.edu and contains problems from
various sources and with various properties.

At present, instances of the following problem classes are available: symmet-
ric traveling salesman problems, asymmetric traveling salesman problems,
Hamiltonian cycle problems, sequential ordering problems, and capacitated
vehicle routing problems. Information on the length of optimal tours, or
lower and upper bounds for this length, is provided (if available).

More than 100 symmetric traveling salesman problems are included in the li-
brary, the largest being a problem with 85900 cities. The performance
evaluation that follows is based on those problems for which the optimum is
known. Today there are 100 problems of this type in the library, ranging
from a problem with 14 cities to a problem with 7397 cities. The test results
are reported in Table 6.1 and 6.2.
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Table 6.1 displays the results from the subgradient optimization phase. The
table gives the problem names along with the number of cities, the problem
type, the optimal tour length, the lower bound, the gap between optimum and
lower bound as a percentage of optimum, and the time in seconds used for
subgradient optimization.

The problem type specifies how the distances are given. The entry MATRIX
indicates that distances are given explicitly in matrix form (as full or triangular
matrix). The other entry names refer to functions for computing the distances
from city coordinates. The entries EUC_2D and CEIL_2D both indicates that
distances are the 2-dimensional Euclidean distances (they differ in their
rounding method). GEO indicates geographical distances on the Earth’s sur-
face, and ATT indicates a special ‘pseudo-Euclidean’ distance function. All
distances are integer numbers. See [38] for details.
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Name Cities Type Optimum Lower bound Gap Time
a280 280 EUC_2D 2579 2565.8 0.5 0.7

ali535 535 GEO 202310 201196.2 0.6 4.0
att48 48 ATT 10628 10602.1 0.2 0.1

att532 532 ATT 27686 27415.7 1.0 2.9
bayg29 29 GEO 1610 1608.0 0.1 0.0
bays29 29 GEO 2020 2013.3 0.3 0.0

berlin52 52 EUC_2D 7542 7542.0 *0.0 0.1
bier127 127 EUC_2D 118282 117430.6 0.7 0.3
brazil58 58 MATRIX 25395 25354.2 0.2 0.1
brg180 180 MATRIX 1950 1949.3 0.0 0.3

burma14 14 GEO 3323 3223.0 *0.0 0.0
ch130 130 EUC_2D 6110 6074.6 0.6 0.2
ch150 150 EUC_2D 6528 6486.6 0.6 0.3
d198 198 EUC_2D 15780 145672.9 7.6 0.4
d493 493 EUC_2D 35002 34822.4 0.5 2.5
d657 657 EUC_2D 48912 48447.6 0.9 5.1

d1291 1291 EUC_2D 50801 50196.8 1.2 19.0
d1655 1655 EUC_2D 62128 61453.3 1.1 47.0

dantzig42 42 MATRIX 699 697.0 0.3 0.0
dsj1000 1000 CEIL_2D 18659688 18339778.9 1.7 12.3

eil51 51 EUC_2D 426 422.4 0.8 0.1
eil76 76 EUC_2D 538 536.9 0.2 0.1

eil101 101 EUC_2D 629 627.3 0.3 0.2
fl417 417 EUC_2D 11861 11287.3 4.8 2.0

fl1400 1400 EUC_2D 20127 19531.9 3.0 36.5
fl1577 1577 EUC_2D 22249 21459.3 3.5 45.2

fnl4461 4461 EUC_2D 182566 181566.1 0.5 332.7
fri26 26 MATRIX 937 937.0 *0.0 0.0

gil262 262 EUC_2D 2378 2354.4 1.0 0.6
gr17 17 MATRIX 2085 2085.0 *0.0 0.0
gr21 21 MATRIX 2707 2707.0 *0.0 0.0
gr24 24 MATRIX 1272 1272.0 *0.0 0.0
gr48 48 MATRIX 5046 4959.0 1.7 0.1
gr96 96 GEO 55209 54569.5 1.2 0.2

gr120 120 MATRIX 6942 6909.9 0.5 0.2
gr137 137 GEO 69853 69113.1 1.1 0.4
gr202 202 GEO 40160 40054.9 0.3 0.4
gr229 229 GEO 134602 133294.7 1.0 0.7
gr431 431 GEO 171414 170225.9 0.7 2.0
gr666 666 GEO 294358 292479.3 0.6 4.8
hk48 48 MATRIX 11461 11444.0 0.1 0.0

kroA100 100 EUC_2D 21282 20936.5 1.6 0.1
kroB100 100 EUC_2D 22141 21831.7 1.4 0.1
kroC100 100 EUC_2D 20749 20472.5 1.3 0.2
kroD100 100 EUC_2D 21294 21141.5 0.7 0.2
kroE100 100 EUC_2D 22068 21799.4 1.2 0.2
kroA150 150 EUC_2D 26524 26293.2 0.9 0.3

Table 6.1 Determination of lower bounds (Part I)
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Name Cities Type Optimum Lower bound Gap Time
kroB150 150 EUC_2D 26130 25732.4 1.5 0.3
kroA200 200 EUC_2D 29368 29056.8 1.1 0.7
kroB200 200 EUC_2D 29437 29163.8 0.9 0.4

lin105 105 EUC_2D 14379 14370.5 0.1 0.2
lin318 318 EUC_2D 42029 41881.1 0.4 1.5

linhp318 318 EUC_2D 41345 41224.3 0.3 1.2
nrw1379 1379 EUC_2D 56638 56393.2 0.4 23.3

p654 654 EUC_2D 34643 33218.1 4.1 4.5
pa561 561 MATRIX 2763 2738.4 0.9 3.2

pcb442 442 EUC_2D 50778 50465.0 0.6 2.0
pcb1173 1173 EUC_2D 56892 56349.7 1.0 15.7
pcb3038 3038 EUC_2D 137694 136582.0 0.8 139.8
pla7397 7397 CEIL_2D 23260728 23113655.4 0.6 1065.6

pr76 76 EUC_2D 108159 105050.6 2.9 0.1
pr107 107 EUC_2D 44303 39991.5 9.7 0.2
pr124 124 EUC_2D 59030 58060.6 1.6 0.2
pr136 136 EUC_2D 96772 95859.2 0.9 0.3
pr144 144 EUC_2D 58537 57875.7 1.1 0.3
pr152 152 EUC_2D 73682 72166.3 2.1 0.5
pr226 226 EUC_2D 80369 79447.8 1.1 0.6
pr264 264 EUC_2D 49135 46756.3 4.8 0.6
pr299 299 EUC_2D 48191 47378.5 1.7 0.9
pr439 439 EUC_2D 107217 105816.3 1.3 2.0

pr1002 1002 EUC_2D 259045 256726.9 0.9 15.6
pr2392 2392 EUC_2D 378032 373488.5 1.2 84.6

rat99 99 EUC_2D 1211 1206.0 0.4 0.2
rat195 195 EUC_2D 2323 2292.0 1.3 0.3
rat575 575 EUC_2D 6773 6723.4 0.7 3.2
rat783 783 EUC_2D 8806 8772.1 0.4 6.5
rd100 100 EUC_2D 7910 7897.1 0.2 0.1
rd400 400 EUC_2D 15281 15155.9 0.8 1.7

rl1304 1304 EUC_2D 252948 249079.2 1.5 19.9
rl1323 1323 EUC_2D 270199 265810.4 1.6 20.8
rl1889 1889 EUC_2D 316536 311305.0 1.7 49.6
si175 175 MATRIX 21407 21373.6 0.2 0.3
si535 535 MATRIX 48450 48339.9 0.2 2.8

si1032 1032 MATRIX 92650 92434.4 0.2 12.6
st70 70 EUC_2D 675 670.9 0.6 0.1

swiss42 42 MATRIX 1273 1271.8 0.1 0.0
ts225 225 EUC_2D 126643 115604.6 8.7 0.5

tsp225 225 EUC_2D 3919 3880.3 1.0 0.5
u159 159 EUC_2D 42080 41925.0 0.4 0.3
u574 574 EUC_2D 36905 36710.3 0.5 3.3
u724 724 EUC_2D 41910 41648.9 0.6 5.2

u1060 1060 EUC_2D 224094 222626.4 0.7 12.2
u1432 1432 EUC_2D 152970 152509.2 0.3 25.7
u1817 1817 EUC_2D 57201 56681.7 0.9 42.9

Table 6.1 Determination of lower bounds (Part II)
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Name Cities Type Optimum Lower bound Gap Time
u2152 2152 EUC_2D 64253 63848.1 0.6 65.2
u2319 2319 EUC_2D 234256 234152.0 0.0 86.2

ulysses16 16 GEO 6859 6859.0 *0.0 0.0
ulysses22 22 GEO 7013 7013.0 *0.0 0.0

vm1084 1084 EUC_2D 239297 236144.7 1.3 12.7
vm1748 1748 EUC_2D 336556 332049.8 1.3 40.6

Table 6.1 Determination of lower bounds (Part III)

The average gap between optimum and lower bound is 1.1%. For some of
the small problems (berlin52, burma14, fri26, gr17, gr21, gr24, ulysses16
and ulysses22) the gap is zero, that is, optima are determined by subgradient
optimization (marked with a *).

Table 6.2 documents the performance of the search heuristics. The table gives
the problem names along with the ratio of runs succeeding in finding the op-
timal solution, the minimum and average number of trials in a run, the mini-
mum and average gap between the length of the best tour obtained and opti-
mum as a percentage of optimum, and the minimum and average time in sec-
onds per run.

For example, for the problem att532 of Padberg and Rinaldi [19] the optimal
solution was determined in 98 runs out of 100. The minimum number of tri-
als made to find optimum was 1. The average number of trials in a run was
66.2 (a run is stopped if the optimal solution is found, or the number of trials
made equals the number of cities). The average gap between the length of the
best tour obtained and optimum as a percentage of optimum was 0.001%.
The maximum gap was 0.072%. Finally, the minimum and average CPU
time used in a run was 0.2 and 3.6 seconds, respectively.

All instances were solved to optimality with the default parameter settings.
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Name Success  Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

a280 100/100 1 1.0 0.000 0.000 0.0 0.1
ali535 100/100 1 8.0 0.000 0.000 0.2 0.7
att48 100/100 1 1.0 0.000 0.000 0.0 0.0

att532 98/100 1 66.2 0.001 0.072 0.2 3.6
bayg29 100/100 1 1.0 0.000 0.000 0.0 0.0
bays29 100/100 1 1.0 0.000 0.000 0.0 0.0

berlin52 *1/0 1 1.0 0.000 0.000 0.0 0.0
bier127 100/100 1 1.1 0.000 0.000 0.0 0.0
brazil58 100/100 1 1.0 0.000 0.000 0.0 0.0
brg180 100/100 1 3.3 0.000 0.000 0.0 0.0

burma14 *1/0 1 1.0 0.000 0.000 0.0 0.0
ch130 100/100 1 3.0 0.000 0.000 0.0 0.1
ch150 62/100 1 62.9 0.023 0.077 0.0 0.4
d198 100/100 1 13.6 0.000 0.000 0.2 1.0
d493 100/100 1 45.8 0.000 0.000 0.2 3.2
d657 100/100 1 85.8 0.000 0.000 0.3 3.3

d1291 8/10 152 584.2 0.033 0.167 23.1 59.8
d1655 10/10 98 494.6 0.000 0.000 10.5 41.1

dantzig42 100/100 1 1.0 0.000 0.000 0.0 0.0
dsj1000 7/10 90 514.1 0.035 0.116 13.1 55.1

eil51 100/100 1 1.0 0.000 0.000 0.0 0.0
eil76 100/100 1 1.0 0.000 0.000 0.0 0.0

eil101 100/100 1 1.0 0.000 0.000 0.0 0.0
fl417 88/100 1 64.2 0.052 0.430 1.2 12.4

fl1400 1/10 13 1261.3 0.162 0.199 13.1 583.3
fl1577 2/10 134 1350.1 0.046 0.063 120.2 1097.5

fnl4461 6/10 665 2767.3 0.001 0.003 284.1 1097.3
fri26 100/100 1 1.0 0.000 0.000 0.0 0.0

gil262 100/100 1 13.3 0.000 0.000 0.1 0.4
gr17 *1/0 1 1.0 0.000 0.000 0.0 0.0
gr21 *1/0 1 1.0 0.000 0.000 0.0 0.0
gr24 100/100 1 1.0 0.000 0.000 0.0 0.0
gr48 100/100 1 1.0 0.000 0.000 0.0 0.0
gr96 100/100 1 10.2 0.000 0.000 0.0 0.1

gr120 100/100 1 1.0 0.000 0.000 0.0 0.0
gr137 100/100 1 1.0 0.000 0.000 0.0 0.0
gr202 100/100 1 1.0 0.000 0.000 0.0 0.1
gr229 12/100 6 216.6 0.009 0.010 0.2 1.7
gr431 17/100 81 401.4 0.053 0.077 4.4 13.1

      gr666 30/100 25 531.9 0.026 0.040 2.0 18.8
hk48 100/100 1 1.0 0.000 0.000 0.0 0.0

kroA100 100/100 1 1.0 0.000 0.000 0.0 0.0
kroB100 100/100 1 1.4 0.000 0.000 0.0 0.1
kroC100 100/100 1 1.0 0.000 0.000 0.0 0.0
kroD100 100/100 1 1.3 0.000 0.000 0.0 0.0
kroE100 99/100 1 10.7 0.002 0.172 0.0 0.2
kroA150 100/100 1 1.2 0.000 0.000 0.0 0.1

Table 6.2 Determination of solutions (Part I)
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Name Success  Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

kroB150 55/100 1 97,7 0.003 0.008 0.1 0.8
kroA200 100/100 1 2.1 0.000 0.000 0.1 0.2
kroB200 100/100 1 2.0 0.000 0.000 0.0 0.1

lin105 100/100 1 1.0 0.000 0.000 0.0 0.0
lin318 71/100 1 154.1 0.076 0.271 0.1 2.0

linhp318 100/100 1 2.4 0.000 0.000 0.0 0.1
nrw1379 3/10 414 1148.5 0.006 0.009 20.2 69.3

p654 100/100 1 46.6 0.000 0.000 1.1 9.7
pa561 99/100 1 40.8 0.001 0.072 0.2 3.5

pcb442 93/100 1 102.7 0.001 0.014 0.1 4.0
pcb1173 8/10 2 475.2 0.002 0.009 0.6 14.6
pcb3038 9/10 121 1084.7 0.000 0.004 39.1 323.7
pla7397 7/10 1739 4588.4 0.001 0.004 4507.9 13022.0

pr76 100/100 1 1.0 0.000 0.000 0.0 0.1
pr107 100/100 1 1.0 0.000 0.000 0.0 0.0
pr124 100/100 1 1.4 0.000 0.000 0.0 0.1
pr136 100/100 1 1.0 0.000 0.000 0.1 0.2
pr144 100/100 1 1.0 0.000 0.000 0.1 0.1
pr152 100/100 1 3.4 0.000 0.000 0.1 0.1
pr226 100/100 1 1.0 0.000 0.000 0.1 0.1
pr264 100/100 1 7.5 0.000 0.000 0.2 0.5
pr299 100/100 1 4.5 0.000 0.000 0.3 0.8
pr439 98/100 1 72.8 0.001 0.041 0.1 1.6

pr1002 10/10 38 215.1 0.000 0.000 1.0 3.4
pr2392 10/10 37 396.6 0.000 0.000 8.7 54.5

rat99 100/100 1 1.0 0.000 0.000 0.0 0.0
rat195 100/100 1 3.5 0.000 0.000 0.1 0.4
rat575 77/100 2 290.6 0.004 0.030 0.4 8.2
rat783 100/100 1 6.6 0.000 0.000 0.1 0.3
rd100 100/100 1 1.1 0.000 0.000 0.0 0.0
rd400 99/100 1 51.0 0.000 0.020 0.1 1.1

rl1304 8/10 14 840.0 0.019 0.161 1.1 35.8
rl1323 1/10 244 1215.1 0.018 0.048 10.9 51.6
rl1889 4/10 1 1418.1 0.002 0.004 1.2 113.8
si175 100/100 1 6.8 0.000 0.000 0.1 0.2
si535 33/100 70 460.8 0.006 0.017 5.2 30.0

si1032 2/10 49 844.6 0.057 0.071 3.4 20.1
st70 100/100 1 1.0 0.000 0.000 0.0 0.0

swiss42 100/100 1 1.0 0.000 0.000 0.0 0.0
ts225 100/100 1 1.0 0.000 0.000 0.1 0.1

tsp225 100/100 1 5.8 0.000 0.000 0.1 0.3
u159 100/100 1 1.0 0.000 0.000 0.0 0.0
u574 91/100 1 111.4 0.007 0.081 0.2 3.2
u724 98/100 4 162.5 0.000 0.005 0.6 6.8

u1060 9/10 2 305.9 0.000 0.003 1.6 38.0
u1432 10/10 3 59.9 0.000 0.000 0.8 8.0
u1817 2/10 905 1707.8 0.078 0.124 199.6 252.9

Table 6.2 Determination of solutions (Part II)
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Name Success   Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

u2152 5/10 491 1706.5 0.029 0.089 85.0 274.2
u2319 10/10 1 3.2 0.000 0.000 0.5 2.6

ulysses16 *1/0 1 1.0 0.000 0.000 0.0 0.0
ulysses22 *1/0 1 1.0 0.000 0.000 0.0 0.0

vm1084 7/10 8 425.2 0.007 0.022 1.9 28.6
vm1748 4/10 65 1269.6 0.023 0.054 7.3 1016.1

Table 6.2 Determination of solutions (Part III)

In addition to these problems, TSPLIB contains 11 symmetric problems for
which no optimum solutions are known today. The dimension of these prob-
lems varies from 2103 to 85900 cities.

Table 6.3 lists for each of these problems the currently best known lower and
upper bound (published in TSPLIB, October 1997).

Name Cities Type Lower bound Upper bound
brd14051 14051 EUC_2D 469272 469445

d2103 2103 EUC_2D 80099 80450
d15112 15112 EUC_2D 1572810 1573152
d18512 18512 EUC_2D 645075 645300
fl3795 3795 EUC_2D 28724 28772

pla33810 33810 CEIL_2D 65960739 66116530
pla85900 85900 CEIL_2D 142244225 142482068

rl5915 5915 EUC_2D 565277 565530
rl5934 5934 EUC_2D 555579 556045

rl11849 11849 EUC_2D 922859 923368
usa13509 13509 EUC_2D 19981013 19982889

Table 6.3 Problems in TSPLIB with unknown optimal solutions

When the new algorithm was executed on these problems, it found tour
lengths equal to the best known upper bounds for 4 of the problems (d2103,
fl3795, rl5915 and rl5934).

However, for the remaining 7 problems, the algorithm was able find tours
shorter than the best known upper bounds. These new upper bounds are
listed in Table 6.4.
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Name New upper bound
brd14051 469395

d15112
d18512

1573089
645250

pla33810 66060236
pla85900 142416327

rl11849 923307
usa13509 19982859

Table 6.4 Improved upper bounds

The new upper bound for the largest of these problems, pla85900, was found
using two weeks of CPU time.

It is difficult to predict the running time needed to solve a given problem with
the algorithm. As can be seen from Table 6.2, the size alone is not enough.
One problem may require much more running time than a larger problem.

However, some guidelines may be given. Random problems may be used to
provide estimates of running times. By solving randomly generated problems
of different dimensions and measuring the time used to solve these problems,
it is possible to get an idea of how running time grows as a function of prob-
lem dimension.

An algorithm for randomly generating traveling salesman problem with
known optimal tours, described by Arthur and Frendewey [48], was used for
this purpose. Figure 6.1 and 6.2 show total running times (in seconds) for
solving symmetric with problems generated by this algorithm. The dimension
varies from 50 to 1000 cities. The following parameter values have been cho-
sen: ρ = 0.1, σ = 0.25 (both suggested by Arthur and Frendewey), and        
R = n, where n is the dimension of the problem. See [48] for details.
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Figure 6.1 Run time as a function of problem dimension
(non-metric problems)

The problems used to produce Figure 6.1 are not required to satisfy the trian-
gle inequality. These problems are very simple for the algorithm. For all
problems, optimum was found in only one trial. The curve depicts the func-
tion f(n) = 8.6e-6

*n2.2 (correlation coefficient: 0.997).

Figure 6.2 depicts total running time as a function of dimension for randomly
generated problems satisfying the triangle inequality. These problems seem to
be harder to solve (probably due to a smaller diversity in the distances). How-
ever, the optimum for these problems was also found in one trial only. The
curve depicts the function f(n) = 3.2e-5

* n2.2 (correlation coefficient : 0.944).
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Figure 6.2 Run time as a function of problem dimension
(metric problems)

These results indicate that the average running time of the algorithm is ap-
proximately O(n2.2).

Another method often used in studying the average performance of TSP heu-
ristics is to solve problem instances consisting of random points within a rec-
tangle under the Euclidean metric. The instances are solved for increasing val-
ues of n and compared to the theoretical value for the expected length of an
optimal tour (Lopt). A well-known formula is Lopt(n,A) = K√n√A when n cit-
ies are distributed uniformly randomly over a rectangular area of A units [49].
That is, the ratio of the optimal tour length to √n√A approaches a constant K
for N → ∞ . Experiments of Johnson, McGeoch and Rothenberg [50] suggest
that K is approximated by 0.7124.

Figure 6.3 shows the results obtained when the modified Lin-Kernighan al-
gorithm was used to solve such problems on a 104x104 square for n ranging
from 500 to 5000 and n increasing by 500. The figure depicts the tour length
divided by √n*104. These results are consistent with the estimate K ≈ 0.7124
for large n.
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Figure 6.3 Solutions of random Euclidean problems on a square

Figure 6.4 shows the total running time in seconds to find the best (local op-
timal) tour as a function of problem dimension. The curve depicts the function
f(n) = 2.9e -5

*n2.2 (with correlation coefficient 0.968).

Figure 6.4 Run time as a function of problem dimension
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6.2 Asymmetric problems

The implemented algorithm is primarily intended for solving symmetric
TSPs. However, any asymmetric problem may be transformed into a sym-
metric problem and therefore be solved by the algorithm.

The transformation method of Jonker and Volgenant [51] transforms a asym-
metric problem with n nodes into a problem 2n nodes. Let C = (cij) denote the
nxn cost matrix of the asymmetric problem. Then let C’ = (c’ij) be the 2nx2n
symmetric matrix computed as follows:

c’n+i,j = c’j,n+i = ci,j for i = 1, 2, ..., n,
           j = 1, 2, ..., n,

and i ≠ j

c’n+i,i = c’i,n+i = -M for i = 1, 2, ..., n
               

c’i,j = M otherwise

where M is a sufficiently large number, e.g., M = max(cij).

It is easy to prove that any optimal solution of the new symmetric problem
corresponds to an optimal solution of the original asymmetric problem.

An obvious disadvantage of the transformation is that it doubles the size of
the problem. Therefore, in practice it is more advantageous to use algorithms
dedicated for solving asymmetric problems. However, as can been seen from
Table 6.5 the performance of the modified Lin-Kernighan algorithm for
asymmetric problems is quite impressive. The optimum was obtained for all
asymmetric problems of TSPLIB. The largest of these problems, rbg443, has
443 nodes (thus, the transformed problem has 886 nodes).

The problems prefixed with ft have size equal to their suffix number plus 1.
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Name Success   Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

br17 100/100 1 1.0 0.000 0.000 0.0 0.0
ft53 100/100 1 8.0 0.000 0.000 0.0 0.0
ft70 100/100 1 1.6 0.000 0.000 0.0 0.0

ftv33 100/100 1 1.0 0.000 0.000 0.0 0.0
ftv35 47/100 1 43.6 0.072 0.136 0.0 0.1
ftv38 53/100 1 40.3 0.061 0.131 0.0 0.1
ftv44 100/100 1 2.8 0.000 0.000 0.0 0.0
ftv47 100/100 1 1.5 0.000 0.000 0.0 0.0
ftv55 100/100 1 3.5 0.000 0.000 0.0 0.0
ftv64 100/100 1 3.6 0.000 0.000 0.0 0.0
ftv70 100/100 1 3.6 0.000 0.000 0.0 0.0

 ftv170 88/100 1 119.7 0.039 0.327 0.0 1.0
kro124p 95/100 1 24.6 0.002 0.030 0.0 0.1

p43 21/100 1 72.2 0.014 0.018 0.0 0.5
rbg323 97/100 17 116.3 0.018 0.679 1.9 8.5
rbg358 99/100 19 96.8 0.060 6.019 2.5 8.3
rbg403 100/100 19 87.5 0.000 0.000 2.6 11.3
rbg443 100/100 18 105.2 0.000 0.000 2.5 12.6
ry48p 99/100 1 9.8 0.002 0.166 0.0 0.0

Table 6.5 Performance for asymmetric problems
 
6.3 Hamiltonian cycle problems

The Hamiltonian cycle problem is the problem of deciding if a given undi-
rected graph contains a cycle. The problem can be answered by solving a
symmetric TSP in the complete graph where all edges of G have cost 0 and all
other edges have a positive cost. Then G contains a Hamiltonian cycle if and
only if an optimal tour has cost 0.

At present TSPLIB includes 9 Hamiltonian cycle problems ranging in size
from 1000 to 5000 nodes. Every instance of the problems contains a Hamilto-
nian cycle. Table 6.6 shows the excellent performance of the modified Lin-
Kernighan algorithm for these problem instances.
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Name Success   Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

alb1000 10/10 1 1.0 0.000 0.000 0.0 0.1
alb2000 10/10 1 1.0 0.000 0.000 0.1 0.1

alb3000a 10/10 1 1.0 0.000 0.000 0.1 0.1
alb3000b 10/10 1 1.0 0.000 0.000 0.1 0.1
alb3000c 10/10 1 1.0 0.000 0.000 0.1 0.1
alb3000d 10/10 1 1.0 0.000 0.000 0.1 0.1
alb3000e 10/10 1 1.0 0.000 0.000 0.1 0.1
alb4000 10/10 1 1.0 0.000 0.000 0.1 0.1
alb5000 10/10 1 1.0 0.000 0.000 0.2 0.2

Table 6.6 Performance for the Hamiltonian cycle problems of TSPLIB

An interesting special Hamilton cycle problem is the so-called knight’s-tour
problem. A knight is to be moved around on a chessboard in such a way that
all 64 squares are visited exactly once and the moves taken constitute a round
trip on the board. Figure 6.5 depicts one solution of the problem. The two
first moves are shown with arrows.

 16  31  14  21 18  50 3

 13   6 17 30 23 19 4 64

32 15 22   5 20 49   2 57

  7 12 29  24 43 52 63 56

28 33  8 37 48 55 44 53

  9 38 11 42 25 62   57 60

34 27 40 47 36 59 54 45

39 10 35 26 41 46 61 58

1

Figure 6.5 One solution of the knight’s-tour problem

The problem is an instance of the general “leaper” problem: “Can a {r,s}-
leaper, starting at any square of a mxn board, visit each square exactly once
and return to its starting square” [52]. The knight’s-tour problem is the
{1,2}-leaper problem on a 8x8 board.

Table 6.7 shows the performance statistics for a few leaper problems. A small
C-program, included in TSPLIB, was used for generating the leaper graphs.
Edges belonging to the graph cost 0, and the remaining edges cost 1.
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Problem Success   Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

{1,2}, 8x8 100/100 1 1.0 0.000 0.000 0.0 0.0
{1,2}, 10x10 100/100 1 1.0 0.000 0.000 0.0 0.0
{1,2}, 20x20 100/100 1 2.1 0.000 0.000 0.0 0.0

{7,8}, 15x106 10/10 4 8.6 0.000 0.000 0.3 0.7
{6,7}, 13x76 100/100 1 1.1 0.000 0.000 0.3 0.5

Table 6.7 Performance for leaper problems (Variant 1)

The last of these problems has an optimal tour length of 18. All the other
problems contain a Hamiltonian cycle, i.e., their optimum tour length is 0.

Table 6.8 shows the performance for the same problems, but now the edges
of the leaper graph cost 100, and the remaining edges cost 101. Lin and Ker-
nighan observed that knight’s-tour problems with these edge costs were hard
to solve for their algorithm [1].

Problem Success   Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

{1,2}, 8x8 100/100 1 1.0 0.000 0.000 0.0 0.0
{1,2}, 10x10 100/100 1 1.0 0.000 0.000 0.0 0.0
{1,2}, 20x20 100/100 1 1.1 0.000 0.000 0.0 0.0

{7,8}, 15x106 10/10 3 10.0 0.000 0.000 0.4 1.0
{6,7}, 13x76 100/100 1 1.1 0.000 0.000 0.4 0.7

Table 6.8 Performance for leaper problems (Variant 2)

As seen the new implementation is almost unaffected.

6.4 Pathological problems

The Lin-Kernighan algorithm is not always as effective as it seems to be with
“random” or “typical” problems. Papadimitriou and Steiglitz [53] have con-
structed a special class of instances of the TSP for which local search algo-
rithms, such as the Lin-Kernighan algorithm, appears to be very ineffective.
Papadimitriou and Steiglitz denote this class of problems as ‘perverse’.

Each problem has n = 8k nodes. There is exactly one optimal tour with cost
n, and there are 2k-1(k-1)! tours that are next best, have arbitrary large cost,
and cannot be improved by changing fewer than 3k edges. See [53] for a pre-
cise description of the constructed problems.

The difficulty of the problem class is illustrated in Table 6.9 showing the per-
formance of the algorithm when subgradient optimization is left out. Note the
results for the cases k = 3 and k = 5. Here the optimum was frequently
found, whereas the implementation of the Lin-Kernighan algorithm by Pa-
padimitriou and Steiglitz was unable to discover the optimum even once.
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k n Success   Trialsmin Trialsavg Gapavg Gapmax Timemin Timeavg

3 24 46/100 1 14.9 2479.5 8291.7 0.0 0.0
4 32 55/100 1 17.4 1732.8 6209.4 0.0 0.0
5 40 48/100 1  24.1 1430.4 4960.0 0.0 0.0
6 48 53/100 1 26.6 1045.1 4127.1 0.0 0.0
7 56 32/100 1 41.2 1368.2 3532.1 0.0 0.0
8 64 41/100 1 41.2 1040.2 3085.9 0.0 0.0
9 72 1/100 5 71.3 1574.1 2738.9 0.0 0.1

10 80 2/100 1 78.6 1700.5 4958.8 0.0 0.2
 

Table 6.9 Performance for perverse problems
(without subgradient optimization)

However, all problems are solved without any search, if subgradient optimi-
zation is used, provided that the initial period is sufficiently large
(5*DIMENSION). Table 6.10 shows the time (in seconds) to find the optimal
solutions by subgradient optimization.

k n Time
3 24 0.0
4 32 0.0
5 40 0.0
6 48 0.1
7 56 0.1
8 64 0.1
9 72 0.1

10 80 0.2
 

Table 6.10 Time to find optimal solutions for perverse problems
(with subgradient optimization)
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7. Conclusions

This report has described a modified Lin-Kernighan algorithm and its imple-
mentation. In the development of the algorithm great emphasis was put on
achieving high quality solutions, preferably optimal solutions, in a reasonable
short time.

Achieving simplicity was of minor concern here. In comparison, the modified
Lin-Kernighan algorithm of Mak and Morton [54] has a very simple algo-
rithmic structure. However, this simplicity has been achieved with the ex-
pense of a reduced ability to find optimal solutions. Their algorithm does not
even guarantee 2-opt optimality.

Computational experiments have shown that the new algorithm is highly ef-
fective. An optimal solution was obtained for all problems with a known op-
timum. This is remarkable, considering that the modified algorithm does not
employ backtracking.

The running times were satisfactory for all test problems. However, since
running time is approximately O(n2.2), it may be impractical to solve very
large problems. The current implementation seems to be feasible for problems
with fewer than 100,000 cities (this depends, of course, of the available com-
puter resources).

When distances are implicitly given, space requirements are O(n). Thus, the
space required for geometrical problems is linear. For such problems, not
space, but run time, will usually be the limiting factor.

The effectiveness of the algorithm is primarily achieved through an efficient
search strategy. The search is based on 5-opt moves restricted by carefully
chosen candidate sets. The α-measure, based on sensitivity analysis of mini-
mum spanning trees, is used to define candidate sets that are small, but large
enough to allow excellent solutions to be found (usually the optimal solu-
tions).
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