
Chapter 8
System Software

2

Chapter 8 Objectives

•  Become familiar with the functions provided by
operating systems, programming tools, and
database software.

•  Understand the role played by each software
component in maintaining the integrity of a
computer system and its data.

3

8.1 Introduction

•  The biggest and fastest computer in the world
is of no use if it cannot efficiently provide
beneficial services to its users.

•  Users see the computer through their
application programs. These programs are
ultimately executed by computer hardware.

•  System software -- in the form of operating
systems and middleware -- is the glue that
holds everything together.

4

8.2 Operating Systems

An Operating System is an
interface between hardware
and user which is responsible
for the management and
coordination of activities and
the sharing of the resources
of the computer.

The operating system must have control
over the processor (as well as other
resources).

5

8.2 Operating Systems

•  The evolution of operating systems has paralleled
the evolution of computer hardware.
–  As hardware became more powerful, operating systems

allowed people to more easily manage the power of the
machine.

•  In the days when main memory was measured in
kilobytes, and tape drives were the only form of
magnetic storage, operating systems were simple
resident monitor programs.
–  The resident monitor could only load, execute, and

terminate programs.

6

8.2 Operating Systems

•  In the 1960s, hardware has become powerful
enough to accommodate multiprogramming, the
concurrent execution of more than one task.

•  Multiprogramming is achieved by allocating each
process a given portion of CPU time (a timeslice).

•  Interactive multiprogramming systems were called
timesharing systems.
–  When a process is taken from the CPU and replaced by

another, we say that a context switch has occurred.

7

8.2 Operating Systems

•  Today, multiprocessor systems have become
commonplace.
–  They present an array of challenges to the operating

system designer, including the manner in which the
processors will be synchronized, and how to keep their
activities from interfering with each other.

•  Tightly coupled multiprocessor systems share a
common memory and the same set of I/O devices.
–  Symmetric multiprocessor systems (SMPs) are tightly

coupled and load balanced (workload is distributed
evenly).

8

8.2 Operating Systems

•  Loosely coupled multiprocessor systems have
physically separate memory.
–  These are often called distributed systems.
–  A type of distributed system is a networked system, which

consists of a collection of interconnected, collaborating
workstations.

•  Real time operating systems control computers that
respond to their environment (used for process
control).
–  Hard real time systems have tight timing constraints,

soft real time systems do not.

9

8.2 Operating Systems

•  Personal computer operating systems are designed
for ease of use rather than high performance.

•  The idea that revolutionized small computer
operating systems was the BIOS (Basic Input-
output Operating System) chip that permitted a
single operating system to function on different
types of small systems.
–  The initial function of BIOS is to identify, test and

initialize system devices such as keyboard, video display,
hard disk and other hardware, and to load an operating
system from a mass memory device. This process is
known as booting.

10

8.2 Operating Systems

•  Operating systems having graphical user interfaces
were first brought to market in the 1980s.

•  At one time, these systems were considered
appropriate only for desktop publishing and games.
Today they are seen as technology enablers for
users with little formal computer education.

•  Once solely a server operating system, Linux holds
the promise of bringing Unix to ordinary desktop
systems (originally developed as a free operating
system for x86-based personal computers).

11

8.2 Operating Systems

•  Two operating system components are crucial:
The kernel and the system programs.

•  As the core of the operating system, the kernel
performs scheduling, synchronization, memory
management, interrupt handling, and it provides
protection.

12

8.2 Operating Systems

•  Microkernel systems provide minimal functionality,
with most services carried out by external programs.

•  Monolithic systems provide most of their services
within a single operating system program.

VFS : Virtual File System
IPC : Inter Process Control

Less than 10,000
lines of code

13

8.2 Operating Systems

•  Microkernel systems provide better security,
easier maintenance, and portability at the expense
of execution speed.
–  Examples are Windows 2000, Mach, and QNX.
–  Symmetric multiprocessor computers are ideal platforms

for microkernel operating systems.

•  Monolithic systems give faster execution speed,
but are difficult to port from one architecture to
another.
–  Examples are Linux, MacOS, and DOS.

14

8.2 Operating Systems

•  Process management lies at the heart of operating
system services.
–  The operating system creates processes, schedules their

access to resources, deletes processes, and deallocates
resources that were allocated during process execution.

•  The operating system monitors the activities of each
process to avoid synchronization problems that can
occur when processes use shared resources.

•  If processes need to communicate with one another,
the operating system provides the services.

15

8.2 Operating Systems

•  The operating system schedules process execution.
•  First, the operating system determines which processes

shall be granted access to the CPU.
–  This is long-term scheduling.

•  After a number of processes have been admitted, the
operating system determines which one will have
access to the CPU at any particular moment.
–  This is short-term scheduling.

•  Context switches occur when a process is taken from
the CPU and replaced by another process.
–  Information relating to the state of the process is preserved

during a context switch. For instance, CPU registers and
page tables must be saved.

16

8.2 Operating Systems

•  Short-term scheduling can be nonpreemtive or
premptive.

•  In nonpreemptive scheduling, a process has use of
the CPU until either it terminates, or must wait for
resources that are temporarily unavailable.

•  In preemptive scheduling, each process is allocated
a timeslice. When the timeslice expires, a context
switch occurs.

•  A context switch can also occur when a higher-
priority process needs the CPU.

17

8.2 Operating Systems

•  Four approaches to CPU scheduling are:
–  First-come, first-served where jobs are serviced in arrival

sequence and run to completion if they have all of the resources
they need.

–  Shortest job first where the smallest jobs get scheduled first.
(The trouble is in knowing which jobs are shortest!)

–  Round robin scheduling where each job is allotted a certain
amount of CPU time. A context switch occurs when the time
expires.

–  Priority scheduling preempts a job with a lower priority when a
higher-priority job needs the CPU.

18

8.2 Operating Systems

SLOC: Source Lines Of Code

19

8.3 Protected Environments

•  In their role as resource managers and protectors,
many operating systems provide protected
environments that isolate processes, or groups of
processes from each other.

•  Three common approaches to establishing protected
environments are virtual machines, subsystems, and
partitions.

•  These environments simplify system management
and control, and can provide emulated machines to
enable execution of programs that the system would
otherwise be unable to run.

20

8.3 Protected Environments

•  Virtual machines are a protected environment that
presents an image of itself -- or the image of a totally
different architecture -- to the processes that run
within the environment.

•  A virtual machine is exactly that: an imaginary
computer.

•  The underlying real machine is under the control of
the kernel. The kernel receives and manages all
resource requests that emit from processes running
in the virtual environment.

The next slide provides an illustration.

21

8.3 Protected Environments

22

8.3 Protected Environments

•  Subsystems are another type of protected
environment.

•  They provide logically distinct environments that can
be individually controlled and managed. They can be
stopped and started independent on each other.
–  Subsystems can have special purposes, such as controlling

I/O or virtual machines. Others partition large application
systems to make them more manageable.

–  In many cases, resources must be made visible to the
subsystem before they can be accessed by the processes
running within it.

The next slide provides an illustration.

23

8.3 Protected Environments

24

8.3 Protected Environments

•  In very large computers, subsystems do not go far
enough to establish a protected environment.

•  Logical partitions (LPARs) provide much higher
barriers: Processes running within a logical partition
have no access to processes running in another
partition unless a connection between them (e.g.,
FTP) is explicitly established.

•  LPARs are an enabling technology for the recent
trend of consolidating hundreds of small servers
within the confines of a single large system.

The next slide provides an illustration.

25

8.3 Protected Environments

26

8.4 Programming Tools

•  Programming tools carry out the mechanics of software
creation within the confines of the operating system
and hardware environment.

•  Assemblers are the simplest of all programming tools.
They translate mnemonic instructions to machine code.

•  Most assemblers carry out this translation in two
passes over the source code.
–  The first pass partially assembles the code and builds the

symbol table
–  The second pass completes the instructions by supplying

values stored in the symbol table.

27

8.4 Programming Tools

•  The output of most assemblers is a stream of
relocatable binary code.
–  In relocatable code, operand addresses are relative to

where the operating system chooses to load the program.
–  Absolute (nonrelocatable) code is most suitable for

device and operating system control programming.

•  When relocatable code is loaded for execution,
special registers provide the base addressing.

•  Addresses specified within the program are
interpreted as offsets from the base address.

28

8.4 Programming Tools

•  The process of assigning physical addresses to
program variables is called binding.

•  Binding can occur at compile time, load time, or run
time.

•  Compile time binding gives us absolute code.
•  Load time binding assigns physical addresses as

the program is loaded into memory.
–  With load time, binding the program cannot be moved!

•  Run time binding requires a base register to carry
out the address mapping.

29

8.4 Programming Tools

•  On most systems, binary instructions must pass
through a link editor (or linker) to create an
executable module.

•  Link editors incorporate various binary routines into
a single executable file as called for by a program’s
external symbols.

•  Like assemblers, link editors perform two passes:
The first pass creates a symbol table and the
second resolves references to the values in the
symbol table.

The next slide shows this process schematically.

30

8.4 Programming Tools

31

8.4 Programming Tools

•  Dynamic linking is when the link editing is delayed
until load time or at run time.

•  External modules are loaded from from dynamic link
libraries (DLLs).

•  Load time dynamic linking slows down program
loading, but calls to the DLLs are faster.

•  Run time dynamic linking occurs when an external
module is first called, causing slower execution time.

•  Dynamic linking makes program modules smaller, but
carries the risk that the programmer may not have
control over the DLL.

32

8.4 Programming Tools

• Dynamic Linking with Load Time Address Resolution

33

8.4 Programming Tools

•  Assembly language is considered a “second
generation” programming language (2GL).

•  Compiled programming languages, such as C, C++,
Pascal, and COBOL, are “third generation”
languages (3GLs).

•  Each language generation presents problem solving
tools that are closer to how people think and farther
away from how the machine implements the solution.

34

8.4 Programming Tools

Keep in mind that the computer can understand only the 1GL!

35

8.4 Programming Tools

•  Compilers bridge the semantic gap between the
higher level language and the machine's binary
instructions.

•  Most compilers effect this translation in a six-phase
process. The first three are analysis phases:
1. Lexical analysis extracts tokens, e.g., reserved words and

variables.
2. Syntax analysis (parsing) checks statement construction.

3. Semantic analysis checks data types and the validity of
operators.

36

8.4 Programming Tools

•  The last three compiler phases are synthesis
phases:
4. Intermediate code generation creates three address code to

facilitate optimization and translation.
5. Optimization creates assembly code while taking into account

architectural features that can make the code efficient.
6. Code generation creates binary code from the optimized

assembly code.

•  Through this modularity, compilers can be written
for various platforms by rewriting only the last two
phases.

The next slide shows this process graphically.

37

8.4 Programming Tools

38

8.4 Programming Tools

•  Interpreters produce executable code from source
code in real time, one line at a time.

•  Consequently, this not only makes interpreted
languages slower than compiled languages but it
also affords less opportunity for error checking.

•  Interpreted languages are, however, very useful
for teaching programming concepts, because
feedback is nearly instantaneous, and
performance is rarely a concern.

39

8.5 Java: All of the Above

•  The Java programming language exemplifies many of
the concepts that we have discussed in this chapter.

•  Java programs (classes) execute within a virtual
machine, the Java Virtual Machine (JVM).

•  This allows the language to run on any platform for
which a virtual machine environment has been written.

•  Java is both a compiled and an interpreted language.
The output of the compilation process is an assembly-
like intermediate code (bytecode) that is interpreted by
the JVM.

40

8.5 Java: All of the Above

• The Java Virtual Machine

41

8.5 Java: All of the Above

•  The JVM is an operating system in miniature.
–  It loads programs, links them, starts execution threads, manages

program resources, and deallocates resources when the
programs terminate.

•  Because the JVM performs so many tasks at run time,
its performance cannot match the performance of a
traditional compiled language.

42

8.5 Java: All of the Above

•  At execution time, a Java Virtual Machine must
be running on the host system.

•  It loads end executes the bytecode class file.

•  While loading the class file, the JVM verifies the
integrity of the bytecode.

•  The loader then performs a number of run-time
checks as it places the bytecode in memory.

•  The loader invokes the bytecode interpreter.

43

8.5 Java: All of the Above

The bytecode interpreter:
1.  Performs a link edit of the bytecode instructions by

asking the loader to supply all referenced classes
and system binaries, if they are not already loaded.

2.  Creates and initializes the main stack frame and local
variables.

3.  Creates and starts execution thread(s).
4.  Manages heap storage by deallocating unused

storage while the threads are executing.
5.  Deallocates resources of terminated threads.
6.  Upon program termination, kills any remaining

threads and terminates the JVM.

44

8.5 Java: All of the Above

•  Because the JVM does so much as it loads and executes its
bytecode, its can't match the performance of a compiled
language.
–  This is true even when speedup software like Java’s Just-In-Time

(JIT) compiler is used.
•  However class files can be created and stored on one

platform and executed on a completely different platform.
•  This “write once, run-anywhere” paradigm is of enormous

benefit for enterprises with disparate and geographically
separate systems.

•  Given its portability and relative ease of use, the Java
language and its virtual machine environment are the ideal
middleware platform.

45

8.6 Database Software

•  Database systems
contain the most
valuable assets of
an enterprise.
They are the
foundation upon
which application
systems are built.

A database is an organized collection of data.

46

8.6 Database Software

•  Database systems provide a single definition,
the database schema, for the data elements
that are accessed by application programs.
–  A logical schema is the application program’s view of the

database that defines field sizes and data types.

–  A physical schema is the computer’s view of the database
that includes locations of physical files and indexes.

•  Within the logical schema, certain data fields
are designated as record keys that provide
efficient access to records in the database.

47

8.6 Database Software

•  Keys are stored in physical index file structures
containing pointers to the location of the physical
records.

•  Many implementations use a variant of a B+ tree for
index management because B+ trees can be
optimized with consideration to the I/O system and
the applications.

•  In many cases, the “higher” nodes of the tree will
persist in cache memory, requiring physical disk
accesses only when traversing the lower levels of
the index.

48

8.6 Database Software

•  Most database systems also include transaction
management components to assure that the database
is always in a consistent state.

•  Transaction management provides the following
properties:
–  Atomicity - All related updates occur or no updates occur.
–  Consistency - All updates conform to defined data constraints.
–  Isolation - No transaction can interfere with another transaction.
–  Durability - Successful updates are written to durable media as

soon as possible.

•  These are the ACID properties of transaction
management.

49

8.6 Database Software

•  Without the ACID properties, race conditions can
occur:

50

8.6 Database Software

•  Record locking mechanisms assure isolated, atomic
database updates:

51

8.7 Transaction Managers

•  One way to improve database performance is to ask it to
do less work by moving some of its functions to
specialized software.

•  Transaction management is one component that is often
partitioned from the core database system.

•  Transaction managers are especially important when the
transactions involve more than one physical database, or
the application system spans more than one class of
computer, as in a multitiered architecture.

•  One of the most widely-used transaction management
systems is CICS (Customer Information Control System)
shown on the next slide.

52

8.7 Transaction Managers

53

•  The proper functioning and performance of a
computer system depends as much on its
software as its hardware.

•  The operating system is the system software
component upon which all other software rests.

•  Operating systems control process execution,
resource management, protection, and security.

•  Subsystems and partitions provide compatibility
and ease of management.

Chapter 8 Conclusion

54

•  Programming languages are often classed into
generations, with assembly language being the
first generation.

•  All languages above the machine level must be
translated into machine code.

•  Compilers bridge this semantic gap through a
series of six steps.

•  Link editors resolve system calls and external
routines, creating a unified executable module.

Chapter 8 Conclusion

55

•  The Java programming language incorporates
the idea of a virtual machine, a compiler and an
interpreter.

•  Database software provides controlled access
to data files through enforcement of ACID
properties.

•  Transaction managers provide high
performance and cross-platform access to data.

Chapter 8 Conclusion

56

End of Chapter 8

