
Chapter 3 
Boolean Algebra and 

Digital Logic 
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Chapter 3 Objectives 

•  Understand the relationship between Boolean logic 
and digital computer circuits. 

•  Learn how to design simple logic circuits. 

•  Understand how digital circuits work together to 
form complex computer systems. 
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3.1 Introduction 

•  In the latter part of the nineteenth century, George 
Boole incensed philosophers and mathematicians 
alike when he suggested that logical thought could 
be represented through mathematical equations. 
–  How dare anyone suggest that human thought could be 

encapsulated and manipulated like an algebraic formula? 

•  Computers, as we know them today, are 
implementations of Boole's Laws of Thought. 
–  John Atanasoff and Claude Shannon were among the first 

to see this connection. 

G. Boole:  “An Investigation of the Laws of Thought” (1854)   
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3.1 Introduction 

•  In the middle of the twentieth century, computers 
were commonly known as �thinking machines� and 
�electronic brains.� 
–  Many people were fearful of them. 

•  Nowadays, we rarely ponder the relationship 
between electronic digital computers and human 
logic. Computers are accepted as part of our lives. 
–  Many people, however, are still fearful of them. 

•  In this chapter, you will learn the simplicity that 
constitutes the essence of the machine. 

John von Neumann: “Theory of Self-Reproducing Automata” (1966) 
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3.2 Boolean Algebra 

•  Boolean algebra is a mathematical system for 
the manipulation of variables that can have 
one of two values. 
–  In formal logic, these values are �true� and �false.� 
–  In digital systems, these values are �on� and �off,� 

1 and 0, or �high� and �low�. 

•  Boolean expressions are created by 
performing operations on Boolean variables. 
–  Common Boolean operators include AND, OR, and 

NOT. 
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3.2 Boolean Algebra 

•  A Boolean operator can be 
completely described using a 
truth table. 

•  The truth table for the Boolean 
operators AND and OR are 
shown at the right. 

•  The AND operator is also known 
as a Boolean product. The OR 
operator is the Boolean sum. 
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3.2 Boolean Algebra 

•  The truth table for the 
Boolean NOT operator is 
shown at the right. 

•  The NOT operation is most 
often designated by an 
overbar. It is sometimes 
indicated by a prime mark 
(�) or an �elbow� (¬). 
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3.2 Boolean Algebra 

•  A Boolean function has: 
•  At least one Boolean variable,  
•  At least one Boolean operator, and  
•  At least one input from the set {0,1}.   

•  It produces an output that is also a member of 
the set {0,1}. 
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3.2 Boolean Algebra 

•  The truth table for the 
Boolean function:  
    
 

    is shown at the right. 

•  To make evaluation of the 
Boolean function easier, 
the truth table contains 
extra (shaded) columns to 
hold evaluations of 
subparts of the function. 
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3.2 Boolean Algebra 

•  As with common 
arithmetic, Boolean 
operations have rules of 
precedence. 

•  The NOT operator has 
highest priority, followed 
by AND and then OR. 

•  This is how we chose the 
(shaded) function 
subparts in our table.  
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3.2 Boolean Algebra 

•  Digital computers contain circuits that implement 
Boolean functions. 

•  The simpler that we can make a Boolean function, 
the smaller the circuit that will result. 
–  Simpler circuits are cheaper to build, consume less 

power, and run faster than complex circuits. 
•  With this in mind, we always want to reduce our 

Boolean functions to their simplest form. 
•  There are a number of Boolean identities that help 

us to do this.  
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3.2 Boolean Algebra 

•  Most Boolean identities have an AND (product) 
form as well as an OR (sum) form.  We give our 
identities using both forms. Our first group is rather 
intuitive: 
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3.2 Boolean Algebra 

•  Our second group of Boolean identities should be 
familiar to you from your study of algebra: 
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3.2 Boolean Algebra 

•  Our last group of Boolean identities are perhaps the 
most useful. 

•  If you have studied set theory or formal logic, these 
laws are also familiar to you. 
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3.2 Boolean Algebra 

•  We can use Boolean identities to simplify: 
  

   as follows: 
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3.2 Boolean Algebra 

•  Sometimes it is more economical to build a 
circuit using the complement of a function (and 
complementing its result) than it is to implement 
the function directly. 

•  DeMorgan's law provides an easy way of finding 
the complement of a Boolean function. 

•  Recall DeMorgan�s law states: 
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3.2 Boolean Algebra 

•  DeMorgan's law can be extended to any number of 
variables. 

•  Replace each variable by its complement and 
change all ANDs to ORs and all ORs to ANDs. 

•  Thus, we find that the complement of: 
 

 is: 

18 

3.2 Boolean Algebra 

•  Through our exercises in simplifying Boolean 
expressions, we see that there are numerous 
ways of stating the same Boolean expression. 
–  These �synonymous� forms are logically equivalent. 
–  Logically equivalent expressions have identical truth 

tables. 
•  In order to eliminate as much confusion as 

possible, designers express Boolean functions in 
standardized or canonical form. 
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3.2 Boolean Algebra 

•  There are two canonical forms for Boolean 
expressions: sum-of-products and product-of-sums. 
–  Recall the Boolean product is the AND operation and the 

Boolean sum is the OR operation. 
•  In the sum-of-products form, ANDed variables are 

ORed together. 
–  For example: 

•  In the product-of-sums form, ORed variables are 
ANDed together: 
–  For example: 
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3.2 Boolean Algebra 

•  It is easy to convert a function 
to sum-of-products form using 
its truth table. 

•  We are interested in the values 
of the variables that make the 
function true (=1). 

•  Using the truth table, we list the 
values of the variables that 
result in a true function value. 

•  Each group of variables is then 
ORed together. 
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3.2 Boolean Algebra 

•  The sum-of-products form 
for our function is: 

We note that this function is not 
in simplest terms. Our aim is 
only to rewrite our function in 
canonical sum-of-products form.  
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•  We have looked at Boolean functions in abstract 
terms. 

•  In this section, we see that Boolean functions are 
implemented in digital computer circuits called gates. 

•  A gate is an electronic device that produces a result 
based on two or more input values. 
–  In reality, gates consist of one to six transistors, but digital 

designers think of them as a single unit. The basic physical 
component of a computer is the transistor; the basic logic 
component is the gate. 

–  Integrated circuits contain collections of gates suited to a 
particular purpose. 

3.3 Logic Gates 
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•  The three simplest gates are the AND, OR, and NOT 
gates. 

•  They correspond directly to their respective Boolean 
operations, as you can see by their truth tables. 

3.3 Logic Gates 
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•  Another very useful gate is the exclusive OR 
(XOR) gate.   

•  The output of the XOR operation is true only when 
the values of the inputs differ. 

3.3 Logic Gates 

Note the special symbol  
for the XOR operation. 

⊕
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•  NAND and NOR 
are two very 
important gates.  
Their symbols and 
truth tables are 
shown at the right.  

3.3 Logic Gates 
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3.3 Logic Gates 

•  NAND and NOR 
are known as 
universal gates 
because they are 
inexpensive to 
manufacture and 
any Boolean 
function can be 
constructed using 
only NAND or only 
NOR gates.   
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3.3 Logic Gates 

•  Gates can have multiple inputs and more than 
one output. 
–  A second output can be provided for the complement 

of the operation. 
–  We'll see more of this later. 
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3.4 Digital Components 

•  The main thing to remember is that combinations 
of gates implement Boolean functions. 

•  The circuit below implements the Boolean 
function: 

We simplify our Boolean expressions so 
that we can create simpler circuits. 
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3.4 Digital Components 

•  Typically, gates are not sold individually; they 
are sold in units called integrated circuits. 

•  Simple SSI integrated circuit with 4 NAND gates 

SSI: Small scale integrated circuit  
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3.4 Digital Components 

Implementation of F(x,y)=     using 3 NAND gates.  

x 

F(x,y) 

xy

y 

xyxy ≡
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3.5 Combinational Circuits 

•  We have designed a circuit that implements the 
Boolean function: 

 
•  This circuit is an example of a combinational logic 

circuit. The output is a strict combination of the 
current inputs. 

•  Combinational logic circuits produce a specified 
output (almost) at the instant when input values 
are applied. 
–  In a later section, we will explore circuits where this is 

not the case. 
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3.5 Combinational Circuits 

•  Combinational logic circuits 
give us many useful devices. 

•  One of the simplest is the 
half adder, which finds the 
sum of two bits. 

•  We can gain some insight 
into the construction of a half 
adder by looking at its truth 
table, shown at the right. 
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3.5 Combinational Circuits 

•  As we see, the sum can be 
found using the XOR 
operation and the carry 
using the AND operation. 
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3.5 Combinational Circuits 

•  We can change our half 
adder into to a full-adder 
by including gates for 
processing the carry bit. 

•  The truth table for a full-
adder is shown at the 
right. 
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3.5 Combinational Circuits 

•  How can we change the 
half adder shown below 
to make it a full-adder? 
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3.5 Combinational Circuits 

•  Here is our completed full-adder (composed of two 
half-adders and an OR gate).  
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3.5 Combinational Circuits 

•  Just as we combined half adders to make a full 
adder, full adders can connected in series. 

•  The carry bit �ripples� from one adder to the next; 
hence, this configuration is called a ripple-carry 
adder. 

Today's systems employ more efficient adders.    
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3.5 Combinational Circuits 

•  Decoders are another important type of 
combinational circuit. 

•  Among other things, they are useful in selecting a 
memory location according a binary value placed on 
the address lines of a memory bus. 

•  Address decoders with n inputs can select any of 2n 
locations.  

This is a block 
diagram for a 
decoder.    
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3.5 Combinational Circuits 

•  This is what a 2-to-4 decoder looks like on the 
inside. 

If x = 0 and y = 1, 
which output line 
is enabled?    
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3.5 Combinational Circuits 

•  A multiplexer selects a single 
output from several inputs. 

•  The particular input chosen 
for output is determined by 
the value of the multiplexer's 
control lines. 

•  To be able to select among n 
inputs, log2n control lines are 
needed.  This is a block 

diagram for a 
multiplexer.    
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3.5 Combinational Circuits 

•  This is what a 4-to-1 multiplexer looks like on the 
inside.   

If S0 = 1 and S1 = 0, 
which input is 
transferred to the 
output?    
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3.5 Combinational Circuits 

•  This shifter 
moves the 
bits of a 
nibble one 
position to the 
left or right.   

If S = 0, in which 
direction do the 
input bits shift?    
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3.5 Combinational Circuits 

00: A + B 
01: NOT A 
10: A OR B 
11: A AND B 

•  A simple     
2-bit ALU.   
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3.6 Sequential Circuits 

•  Combinational logic circuits are perfect for 
situations when we require the immediate 
application of a Boolean function to a set of inputs.  

•  There are other times, however, when we need a 
circuit to change its value with consideration to its 
current state as well as its inputs. 
–  These circuits have to �remember� their current state. 

•  Sequential logic circuits provide this functionality for 
us. Some outputs may depend on past inputs (the 
sequence of inputs over time). 
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3.6 Sequential Circuits 

•  As the name implies, sequential logic circuits require 
a means by which events can be sequenced.  

•  State changes are controlled by clocks. 
–  A �clock� is a special circuit that sends electrical pulses 

through a circuit. 
•  Clocks produce electrical waveforms such as the 

one shown below. 
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3.6 Sequential Circuits 

•  State changes occur in sequential circuits only 
when the clock ticks.  

•  Circuits can change state on the rising edge, falling 
edge, or when the clock pulse reaches its highest 
or lowest voltage. 
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3.6 Sequential Circuits 

•  Circuits that change state on the rising edge, or  
falling edge of the clock pulse are called edge-
triggered. 

•  Level-triggered circuits change state when the 
clock voltage reaches its highest or lowest level. 

Most sequential circuits are edge-triggered.  48 

3.6 Sequential Circuits 

•  To retain their state values, sequential circuits rely 
on feedback. 

•  Feedback in digital circuits occurs when an output 
is looped back to the input. 

•  A simple example of this concept is shown below. 
–  If Q is 0 it will always be 0, if it is 1, it will always be 1.  

Why? 
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3.6 Sequential Circuits 

•  You can see how feedback works by examining the 
most basic sequential logic components, the        
SR flip-flop. 
–  The �SR� stands for set/reset. 

•  The internals of an SR flip-flop (using 2 NOR gates) 
are shown below, along with its block diagram. 
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3.6 Sequential Circuits 

•  The behavior of an SR flip-flop is described by 
a characteristic table. 

•  Q(t) means the value of the output at time t.  
Q(t+1) is the value of Q after the next clock 
pulse. 
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3.6 Sequential Circuits 

•  The SR flip-flop actually 
has three inputs: S, R, 
and its current output, Q. 

•  Thus, we can construct 
a truth table for this 
circuit, as shown at the 
right. 

•  Notice the two undefined 
values. When both S 
and R are 1, the SR flip-
flop is unstable. 
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3.6 Sequential Circuits 

•  If we can be sure that the inputs to an SR flip-flop 
will never both be 1, we will never have an 
unstable circuit. This may not always be the case. 

•  The SR flip-flop can be modified to provide a 
stable state when both inputs are 1. 

•  This modified flip-flop is 
called a JK flip-flop, 
shown at the right. 
 -   The �JK� is possibly in 

 honor of  Jack Kilby 
 (inventor of the 

  integrated circuit, 1958). 
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3.6 Sequential Circuits 

•  At the right, we see 
how an SR flip-flop 
can be modified to 
create a JK flip-flop. 

•  The characteristic 
table indicates that 
the flip-flop is stable 
for all inputs. 
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3.6 Sequential Circuits 

•  Another modification of the SR flip-flop is the       
D flip-flop, shown below with its characteristic 
table. 

•  You will notice that the output of the flip-flop 
remains the same during subsequent clock 
pulses. The output changes only when the value 
of D changes. 
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3.6 Sequential Circuits 

•  The D flip-flop is the fundamental circuit of 
computer memory.  
–  D flip-flops are usually illustrated using the block 

diagram shown below. 
•  The characteristic table for the D flip-flop is 

shown at the right. 
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3.6 Sequential Circuits 

•  The behavior of sequential circuits can be 
expressed using characteristic tables or finite state 
machines (FSMs). 
–  FSMs consist of a set of nodes that hold the states of the 

machine and a set of arcs that connect the states. 
•  Moore and Mealy machines are two types of FSMs 

that are equivalent. 
–  They differ only in how they express the outputs of the 

machine. 
•  Moore machines place outputs on each node, while 

Mealy machines present their outputs on the 
transitions.  
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3.6 Sequential Circuits 

•  The behavior of a JK flop-flop is depicted below by 
a Moore machine (left) and a Mealy machine 
(right). 
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3.6 Sequential Circuits 

•  Although the behavior of Moore and Mealy 
machines is identical, their implementations differ. 

This is our Moore 
machine. 

Output depends only on the current state. 

Next State Logic Output Logic 

59 

3.6 Sequential Circuits 

This is our Mealy 
machine. 

Output depends on the current state 
as well as the current input. 

Next State Logic 

Output Logic 

•  Although the behavior of Moore and Mealy 
machines is identical, their implementations differ. 
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3.6 Sequential Circuits 

•  It is difficult to express the complexities of actual 
implementations using only Moore and Mealy 
machines. 
–  For one thing, they do not address the intricacies of 

timing very well. 
–  Secondly, it is often the case that an interaction of 

numerous signals is required to advance a machine from 
one state to the next. 

•  For these reasons, Christopher Clare invented the 
algorithmic state machine (ASM). 

The next slide illustrates the components of an ASM.    
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3.6 Sequential Circuits 
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3.6 Sequential Circuits 

•  This is an ASM for a microwave oven. 
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3.6 Sequential Circuits 

•  Sequential circuits are used anytime that we have 
a �stateful� application. 
–  A stateful application is one where the next state of the 

machine depends on the current state of the machine 
and the input. 

•  A stateful application requires both combinational 
and sequential logic. 

•  The following slides provide several examples of 
circuits that fall into this category. 
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3.6 Sequential Circuits 

•  This illustration shows a 
4-bit register consisting of 
D flip-flops. You will 
usually see its block 
diagram (below) instead. 

A larger memory configuration 
is shown on the next slide. 
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3.6 Sequential Circuits 

4 x 3 memory 
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3.6 Sequential Circuits 

•  A binary counter is 
another example of a 
sequential circuit. 

•  The low-order bit is 
complemented at each 
clock pulse. 

•  Whenever it changes 
from 0 to 1, the next bit 
is complemented, and 
so on through the 
other flip-flops. 
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3.7 Designing Circuits 

•  We have seen digital circuits from two points of 
view: digital analysis and digital synthesis. 
–  Digital analysis explores the relationship between a 

circuits inputs and its outputs. 
–  Digital synthesis creates logic diagrams using the values 

specified in a truth table. 
•  Digital systems designers must also be mindful of 

the physical behaviors of circuits to include minute 
propagation delays that occur between the time 
when a circuit's inputs are energized and when the 
output is accurate and stable. 
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3.7 Designing Circuits 

•  Digital designers rely on specialized software to 
create efficient circuits. 
–  Thus, software is an enabler for the construction of 

better hardware. 

•  Of course, software is in reality a collection of 
algorithms that could just as well be implemented 
in hardware. 
–  Recall the Principle of Equivalence of Hardware and 

Software. 
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3.7 Designing Circuits 

•  When we need to implement a simple, specialized 
algorithm and its execution speed must be as fast as 
possible, a hardware solution is often preferred. 

•  This is the idea behind embedded systems, which 
are small special-purpose computers that we find in 
many everyday things. 

•  Embedded systems require special programming 
that demands an understanding of the operation of 
digital circuits, the basics of which you have learned 
in this chapter. 
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•  Computers are implementations of Boolean logic. 
•  Boolean functions are completely described by 

truth tables. 
•  Logic gates are small circuits that implement 

Boolean operators.  
•  The basic gates are AND, OR, and NOT. 

–  The XOR gate is very useful in parity checkers and 
adders. 

•  The �universal gates� are NOR, and NAND. 

Chapter 3 Conclusion 
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•  Computer circuits consist of combinational logic 
circuits and sequential logic circuits. 

•  Combinational circuits produce outputs (almost) 
immediately when their inputs change. 

•  Sequential circuits require clocks to control their 
changes of state. 

•  The basic sequential circuit unit is the flip-flop: 
The behaviors of the SR, JK, and D flip-flops are 
the most important to know. 

Chapter 3 Conclusion 
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•  The behavior of sequential circuits can be 
expressed using characteristic tables or through 
various finite state machines. 

•  Moore and Mealy machines are two finite state 
machines that model high-level circuit behavior. 

•  Algorithmic state machines are better than 
Moore and Mealy machines at expressing timing 
and complex signal interactions. 

•  Examples of sequential circuits include memory 
counters, and decoders. 

Chapter 3 Conclusion 
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End of Chapter 3 


