
Chapter 3
Boolean Algebra and

Digital Logic

2

Chapter 3 Objectives

•  Understand the relationship between Boolean logic
and digital computer circuits.

•  Learn how to design simple logic circuits.

•  Understand how digital circuits work together to
form complex computer systems.

3

3.1 Introduction

•  In the latter part of the nineteenth century, George
Boole incensed philosophers and mathematicians
alike when he suggested that logical thought could
be represented through mathematical equations.
–  How dare anyone suggest that human thought could be

encapsulated and manipulated like an algebraic formula?

•  Computers, as we know them today, are
implementations of Boole's Laws of Thought.
–  John Atanasoff and Claude Shannon were among the first

to see this connection.

G. Boole: “An Investigation of the Laws of Thought” (1854)
4

3.1 Introduction

•  In the middle of the twentieth century, computers
were commonly known as �thinking machines� and
�electronic brains.�
–  Many people were fearful of them.

•  Nowadays, we rarely ponder the relationship
between electronic digital computers and human
logic. Computers are accepted as part of our lives.
–  Many people, however, are still fearful of them.

•  In this chapter, you will learn the simplicity that
constitutes the essence of the machine.

John von Neumann: “Theory of Self-Reproducing Automata” (1966)

5

3.2 Boolean Algebra

•  Boolean algebra is a mathematical system for
the manipulation of variables that can have
one of two values.
–  In formal logic, these values are �true� and �false.�
–  In digital systems, these values are �on� and �off,�

1 and 0, or �high� and �low�.

•  Boolean expressions are created by
performing operations on Boolean variables.
–  Common Boolean operators include AND, OR, and

NOT.

6

3.2 Boolean Algebra

•  A Boolean operator can be
completely described using a
truth table.

•  The truth table for the Boolean
operators AND and OR are
shown at the right.

•  The AND operator is also known
as a Boolean product. The OR
operator is the Boolean sum.

7

3.2 Boolean Algebra

•  The truth table for the
Boolean NOT operator is
shown at the right.

•  The NOT operation is most
often designated by an
overbar. It is sometimes
indicated by a prime mark
(�) or an �elbow� (¬).

8

3.2 Boolean Algebra

•  A Boolean function has:
•  At least one Boolean variable,
•  At least one Boolean operator, and
•  At least one input from the set {0,1}.

•  It produces an output that is also a member of
the set {0,1}.

9

3.2 Boolean Algebra

•  The truth table for the
Boolean function:

 is shown at the right.

•  To make evaluation of the
Boolean function easier,
the truth table contains
extra (shaded) columns to
hold evaluations of
subparts of the function.

10

3.2 Boolean Algebra

•  As with common
arithmetic, Boolean
operations have rules of
precedence.

•  The NOT operator has
highest priority, followed
by AND and then OR.

•  This is how we chose the
(shaded) function
subparts in our table.

11

3.2 Boolean Algebra

•  Digital computers contain circuits that implement
Boolean functions.

•  The simpler that we can make a Boolean function,
the smaller the circuit that will result.
–  Simpler circuits are cheaper to build, consume less

power, and run faster than complex circuits.
•  With this in mind, we always want to reduce our

Boolean functions to their simplest form.
•  There are a number of Boolean identities that help

us to do this.

12

3.2 Boolean Algebra

•  Most Boolean identities have an AND (product)
form as well as an OR (sum) form. We give our
identities using both forms. Our first group is rather
intuitive:

13

3.2 Boolean Algebra

•  Our second group of Boolean identities should be
familiar to you from your study of algebra:

14

3.2 Boolean Algebra

•  Our last group of Boolean identities are perhaps the
most useful.

•  If you have studied set theory or formal logic, these
laws are also familiar to you.

15

3.2 Boolean Algebra

•  We can use Boolean identities to simplify:

 as follows:

16

3.2 Boolean Algebra

•  Sometimes it is more economical to build a
circuit using the complement of a function (and
complementing its result) than it is to implement
the function directly.

•  DeMorgan's law provides an easy way of finding
the complement of a Boolean function.

•  Recall DeMorgan�s law states:

17

3.2 Boolean Algebra

•  DeMorgan's law can be extended to any number of
variables.

•  Replace each variable by its complement and
change all ANDs to ORs and all ORs to ANDs.

•  Thus, we find that the complement of:

 is:

18

3.2 Boolean Algebra

•  Through our exercises in simplifying Boolean
expressions, we see that there are numerous
ways of stating the same Boolean expression.
–  These �synonymous� forms are logically equivalent.
–  Logically equivalent expressions have identical truth

tables.
•  In order to eliminate as much confusion as

possible, designers express Boolean functions in
standardized or canonical form.

19

3.2 Boolean Algebra

•  There are two canonical forms for Boolean
expressions: sum-of-products and product-of-sums.
–  Recall the Boolean product is the AND operation and the

Boolean sum is the OR operation.
•  In the sum-of-products form, ANDed variables are

ORed together.
–  For example:

•  In the product-of-sums form, ORed variables are
ANDed together:
–  For example:

20

3.2 Boolean Algebra

•  It is easy to convert a function
to sum-of-products form using
its truth table.

•  We are interested in the values
of the variables that make the
function true (=1).

•  Using the truth table, we list the
values of the variables that
result in a true function value.

•  Each group of variables is then
ORed together.

21

3.2 Boolean Algebra

•  The sum-of-products form
for our function is:

We note that this function is not
in simplest terms. Our aim is
only to rewrite our function in
canonical sum-of-products form.

22

•  We have looked at Boolean functions in abstract
terms.

•  In this section, we see that Boolean functions are
implemented in digital computer circuits called gates.

•  A gate is an electronic device that produces a result
based on two or more input values.
–  In reality, gates consist of one to six transistors, but digital

designers think of them as a single unit. The basic physical
component of a computer is the transistor; the basic logic
component is the gate.

–  Integrated circuits contain collections of gates suited to a
particular purpose.

3.3 Logic Gates

23

•  The three simplest gates are the AND, OR, and NOT
gates.

•  They correspond directly to their respective Boolean
operations, as you can see by their truth tables.

3.3 Logic Gates

24

•  Another very useful gate is the exclusive OR
(XOR) gate.

•  The output of the XOR operation is true only when
the values of the inputs differ.

3.3 Logic Gates

Note the special symbol
for the XOR operation.

⊕

25

•  NAND and NOR
are two very
important gates.
Their symbols and
truth tables are
shown at the right.

3.3 Logic Gates

26

3.3 Logic Gates

•  NAND and NOR
are known as
universal gates
because they are
inexpensive to
manufacture and
any Boolean
function can be
constructed using
only NAND or only
NOR gates.

27

3.3 Logic Gates

•  Gates can have multiple inputs and more than
one output.
–  A second output can be provided for the complement

of the operation.
–  We'll see more of this later.

28

3.4 Digital Components

•  The main thing to remember is that combinations
of gates implement Boolean functions.

•  The circuit below implements the Boolean
function:

We simplify our Boolean expressions so
that we can create simpler circuits.

29

3.4 Digital Components

•  Typically, gates are not sold individually; they
are sold in units called integrated circuits.

•  Simple SSI integrated circuit with 4 NAND gates

SSI: Small scale integrated circuit

30

3.4 Digital Components

Implementation of F(x,y)= using 3 NAND gates.

x

F(x,y)

xy

y

xyxy ≡

31

3.5 Combinational Circuits

•  We have designed a circuit that implements the
Boolean function:

•  This circuit is an example of a combinational logic

circuit. The output is a strict combination of the
current inputs.

•  Combinational logic circuits produce a specified
output (almost) at the instant when input values
are applied.
–  In a later section, we will explore circuits where this is

not the case.
32

3.5 Combinational Circuits

•  Combinational logic circuits
give us many useful devices.

•  One of the simplest is the
half adder, which finds the
sum of two bits.

•  We can gain some insight
into the construction of a half
adder by looking at its truth
table, shown at the right.

33

3.5 Combinational Circuits

•  As we see, the sum can be
found using the XOR
operation and the carry
using the AND operation.

34

3.5 Combinational Circuits

•  We can change our half
adder into to a full-adder
by including gates for
processing the carry bit.

•  The truth table for a full-
adder is shown at the
right.

35

3.5 Combinational Circuits

•  How can we change the
half adder shown below
to make it a full-adder?

36

3.5 Combinational Circuits

•  Here is our completed full-adder (composed of two
half-adders and an OR gate).

37

3.5 Combinational Circuits

•  Just as we combined half adders to make a full
adder, full adders can connected in series.

•  The carry bit �ripples� from one adder to the next;
hence, this configuration is called a ripple-carry
adder.

Today's systems employ more efficient adders.

38

3.5 Combinational Circuits

•  Decoders are another important type of
combinational circuit.

•  Among other things, they are useful in selecting a
memory location according a binary value placed on
the address lines of a memory bus.

•  Address decoders with n inputs can select any of 2n
locations.

This is a block
diagram for a
decoder.

39

3.5 Combinational Circuits

•  This is what a 2-to-4 decoder looks like on the
inside.

If x = 0 and y = 1,
which output line
is enabled?

40

3.5 Combinational Circuits

•  A multiplexer selects a single
output from several inputs.

•  The particular input chosen
for output is determined by
the value of the multiplexer's
control lines.

•  To be able to select among n
inputs, log2n control lines are
needed. This is a block

diagram for a
multiplexer.

41

3.5 Combinational Circuits

•  This is what a 4-to-1 multiplexer looks like on the
inside.

If S0 = 1 and S1 = 0,
which input is
transferred to the
output?

42

3.5 Combinational Circuits

•  This shifter
moves the
bits of a
nibble one
position to the
left or right.

If S = 0, in which
direction do the
input bits shift?

43

3.5 Combinational Circuits

00: A + B
01: NOT A
10: A OR B
11: A AND B

•  A simple
2-bit ALU.

44

3.6 Sequential Circuits

•  Combinational logic circuits are perfect for
situations when we require the immediate
application of a Boolean function to a set of inputs.

•  There are other times, however, when we need a
circuit to change its value with consideration to its
current state as well as its inputs.
–  These circuits have to �remember� their current state.

•  Sequential logic circuits provide this functionality for
us. Some outputs may depend on past inputs (the
sequence of inputs over time).

45

3.6 Sequential Circuits

•  As the name implies, sequential logic circuits require
a means by which events can be sequenced.

•  State changes are controlled by clocks.
–  A �clock� is a special circuit that sends electrical pulses

through a circuit.
•  Clocks produce electrical waveforms such as the

one shown below.

46

3.6 Sequential Circuits

•  State changes occur in sequential circuits only
when the clock ticks.

•  Circuits can change state on the rising edge, falling
edge, or when the clock pulse reaches its highest
or lowest voltage.

47

3.6 Sequential Circuits

•  Circuits that change state on the rising edge, or
falling edge of the clock pulse are called edge-
triggered.

•  Level-triggered circuits change state when the
clock voltage reaches its highest or lowest level.

Most sequential circuits are edge-triggered. 48

3.6 Sequential Circuits

•  To retain their state values, sequential circuits rely
on feedback.

•  Feedback in digital circuits occurs when an output
is looped back to the input.

•  A simple example of this concept is shown below.
–  If Q is 0 it will always be 0, if it is 1, it will always be 1.

Why?

49

3.6 Sequential Circuits

•  You can see how feedback works by examining the
most basic sequential logic components, the
SR flip-flop.
–  The �SR� stands for set/reset.

•  The internals of an SR flip-flop (using 2 NOR gates)
are shown below, along with its block diagram.

50

3.6 Sequential Circuits

•  The behavior of an SR flip-flop is described by
a characteristic table.

•  Q(t) means the value of the output at time t.
Q(t+1) is the value of Q after the next clock
pulse.

51

3.6 Sequential Circuits

•  The SR flip-flop actually
has three inputs: S, R,
and its current output, Q.

•  Thus, we can construct
a truth table for this
circuit, as shown at the
right.

•  Notice the two undefined
values. When both S
and R are 1, the SR flip-
flop is unstable.

52

3.6 Sequential Circuits

•  If we can be sure that the inputs to an SR flip-flop
will never both be 1, we will never have an
unstable circuit. This may not always be the case.

•  The SR flip-flop can be modified to provide a
stable state when both inputs are 1.

• This modified flip-flop is
called a JK flip-flop,
shown at the right.
 - The �JK� is possibly in

 honor of Jack Kilby
 (inventor of the

 integrated circuit, 1958).

53

3.6 Sequential Circuits

•  At the right, we see
how an SR flip-flop
can be modified to
create a JK flip-flop.

•  The characteristic
table indicates that
the flip-flop is stable
for all inputs.

54

3.6 Sequential Circuits

•  Another modification of the SR flip-flop is the
D flip-flop, shown below with its characteristic
table.

•  You will notice that the output of the flip-flop
remains the same during subsequent clock
pulses. The output changes only when the value
of D changes.

55

3.6 Sequential Circuits

•  The D flip-flop is the fundamental circuit of
computer memory.
–  D flip-flops are usually illustrated using the block

diagram shown below.
•  The characteristic table for the D flip-flop is

shown at the right.

56

3.6 Sequential Circuits

•  The behavior of sequential circuits can be
expressed using characteristic tables or finite state
machines (FSMs).
–  FSMs consist of a set of nodes that hold the states of the

machine and a set of arcs that connect the states.
•  Moore and Mealy machines are two types of FSMs

that are equivalent.
–  They differ only in how they express the outputs of the

machine.
•  Moore machines place outputs on each node, while

Mealy machines present their outputs on the
transitions.

57

3.6 Sequential Circuits

•  The behavior of a JK flop-flop is depicted below by
a Moore machine (left) and a Mealy machine
(right).

58

3.6 Sequential Circuits

•  Although the behavior of Moore and Mealy
machines is identical, their implementations differ.

This is our Moore
machine.

Output depends only on the current state.

Next State Logic Output Logic

59

3.6 Sequential Circuits

This is our Mealy
machine.

Output depends on the current state
as well as the current input.

Next State Logic

Output Logic

•  Although the behavior of Moore and Mealy
machines is identical, their implementations differ.

60

3.6 Sequential Circuits

•  It is difficult to express the complexities of actual
implementations using only Moore and Mealy
machines.
–  For one thing, they do not address the intricacies of

timing very well.
–  Secondly, it is often the case that an interaction of

numerous signals is required to advance a machine from
one state to the next.

•  For these reasons, Christopher Clare invented the
algorithmic state machine (ASM).

The next slide illustrates the components of an ASM.

61

3.6 Sequential Circuits

62

3.6 Sequential Circuits

•  This is an ASM for a microwave oven.

63

3.6 Sequential Circuits

•  Sequential circuits are used anytime that we have
a �stateful� application.
–  A stateful application is one where the next state of the

machine depends on the current state of the machine
and the input.

•  A stateful application requires both combinational
and sequential logic.

•  The following slides provide several examples of
circuits that fall into this category.

64

3.6 Sequential Circuits

•  This illustration shows a
4-bit register consisting of
D flip-flops. You will
usually see its block
diagram (below) instead.

A larger memory configuration
is shown on the next slide.

65

3.6 Sequential Circuits

4 x 3 memory
66

3.6 Sequential Circuits

•  A binary counter is
another example of a
sequential circuit.

•  The low-order bit is
complemented at each
clock pulse.

•  Whenever it changes
from 0 to 1, the next bit
is complemented, and
so on through the
other flip-flops.

67

3.7 Designing Circuits

•  We have seen digital circuits from two points of
view: digital analysis and digital synthesis.
–  Digital analysis explores the relationship between a

circuits inputs and its outputs.
–  Digital synthesis creates logic diagrams using the values

specified in a truth table.
•  Digital systems designers must also be mindful of

the physical behaviors of circuits to include minute
propagation delays that occur between the time
when a circuit's inputs are energized and when the
output is accurate and stable.

68

3.7 Designing Circuits

•  Digital designers rely on specialized software to
create efficient circuits.
–  Thus, software is an enabler for the construction of

better hardware.

•  Of course, software is in reality a collection of
algorithms that could just as well be implemented
in hardware.
–  Recall the Principle of Equivalence of Hardware and

Software.

69

3.7 Designing Circuits

•  When we need to implement a simple, specialized
algorithm and its execution speed must be as fast as
possible, a hardware solution is often preferred.

•  This is the idea behind embedded systems, which
are small special-purpose computers that we find in
many everyday things.

•  Embedded systems require special programming
that demands an understanding of the operation of
digital circuits, the basics of which you have learned
in this chapter.

70

•  Computers are implementations of Boolean logic.
•  Boolean functions are completely described by

truth tables.
•  Logic gates are small circuits that implement

Boolean operators.
•  The basic gates are AND, OR, and NOT.

–  The XOR gate is very useful in parity checkers and
adders.

•  The �universal gates� are NOR, and NAND.

Chapter 3 Conclusion

71

•  Computer circuits consist of combinational logic
circuits and sequential logic circuits.

•  Combinational circuits produce outputs (almost)
immediately when their inputs change.

•  Sequential circuits require clocks to control their
changes of state.

•  The basic sequential circuit unit is the flip-flop:
The behaviors of the SR, JK, and D flip-flops are
the most important to know.

Chapter 3 Conclusion

72

•  The behavior of sequential circuits can be
expressed using characteristic tables or through
various finite state machines.

•  Moore and Mealy machines are two finite state
machines that model high-level circuit behavior.

•  Algorithmic state machines are better than
Moore and Mealy machines at expressing timing
and complex signal interactions.

•  Examples of sequential circuits include memory
counters, and decoders.

Chapter 3 Conclusion

73

End of Chapter 3

